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Preface to the First Edition

Environmental remote sensing is the measurement, from
a distance, of the spectral features of the Earth’s sur-
face and atmosphere. These measurements are normally
made by instruments carried by satellites or aircraft, and
are used to infer the nature and characteristics of the
land or sea surface, or of the atmosphere, at the time of
observation. The successful application of remote sens-
ing techniques to particular problems, whether they be
geographical, geological, oceanographic or cartographic,
requires knowledge and skills drawn from several areas of
science. An understanding of the way in which remotely
sensed data are acquired by a sensor mounted onboard an
aircraft or satellite needs a basic knowledge of the physics
involved, in particular environmental physics and optics.
The use of remotely-sensed data, which are inherently
digital, demands a degree of mathematical and statisti-
cal skill plus some familiarity with digital computers and
their operation. A high level of competence in the field in
which the remotely-sensed data are to be used is essential
if full use of the information contained in those data is
to be made. The term ‘remote-sensing specialist’ is thus,
apparently, a contradiction in terms for a remote-sensing
scientist must possess a broad range of expertise across
a variety of disciplines. While it is, of course, possible
to specialise in some particular aspect of remote sens-
ing, it is difficult to cut oneself off from the essential
multidisciplinary nature of the subject.

This book is concerned with one specialised area
of remote sensing, that of digital image processing of
remotely sensed data but, as we have seen, this topic
cannot be treated in isolation and so Chapter 1 covers
in an introductory fashion the physical principles of
remote sensing. Satellite platforms currently or recently
in use, as well as those proposed for the near future, are
described in Chapter 2, which also contains a description
of the nature and sources of remotely sensed data. The
characteristics of digital computers as they relate to
the processing of remotely-sensed image data is the
subject of Chapter 3. The remaining five chapters cover
particular topics within the general field of the processing
of remotely-sensed data in the form of digital images,
and their application to a range of problems drawn from
the Earth and environmental sciences. Chapters 1–3 can

be considered to form the introduction to the material
treated in later chapters.

The audience for this book is perceived as consisting
of undergraduates taking advanced options in remote
sensing in universities and colleges as part of a first
degree course in geography, geology, botany, environ-
mental science, civil engineering or agricultural science,
together with postgraduate students following taught
Masters courses in remote sensing. In addition, postgrad-
uate research students and other research workers whose
studies involve the use of remotely-sensed images can
use this book as an introduction to the digital processing
of such data. Readers whose main scientific interests
lie elsewhere might find here a general survey of this
relatively new and rapidly-developing area of science
and technology. The nature of the intended audience
requires that the formal presentation is kept to a level
that is intelligible to those who do not have the benefit
of a degree in mathematics, physics, computer science or
engineering. This is not a research monograph, complete
in every detail and pushing out to the frontiers of
knowledge. Rather, it is a relatively gentle introduction
to a subject which can, at first sight, appear to be over-
whelming to those lacking mathematical sophistication,
statistical cunning or computational genius. As such it
relies to some extent on verbal rather than numerical
expression of ideas and concepts. The author’s intention
is to provide the foundations upon which readers may
build their knowledge of the more complex and detailed
aspects of the use of remote-sensing techniques in their
own subject rather than add to the already extensive
literature which caters for a mathematically-orientated
readership. Because of the multidisciplinary nature of
the intended audience, and since the book is primarily
concerned with techniques, the examples have been kept
simple, and do not assume any specialist knowledge
of geology, ecology, oceanography or other branch of
Earth science. It is expected that the reader is capable
of working out potential applications in his or her own
field, or of following up the references given here.

It is assumed that most readers will have access to a
digital image processing system, either within their own
department or institution, or at a regional or national
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remote sensing centre. Such processors normally have
a built-in software package containing programs to carry
out most, if not all, of the operations described in this
book. It is hoped that the material presented here will pro-
vide such readers with the background necessary to make
sensible use of the facilities at their disposal. Enough
detail is provided, however, to allow interested readers to
develop computer programs to implement their own ideas
or to modify the operation of a standard package. Such
ventures are to be encouraged, for software skills are an
important part of the remote sensing scientist’s training.
Furthermore, the development and testing of individual
ideas and conjectures provides the opportunity for exper-
iment and innovation, which is to be preferred to the
routine use of available software. It is my contention that
solutions to problems are not always to be found in the
user manual of a standard software package.

I owe a great deal to many people who have helped
or encouraged me in the writing of this book. Michael
Coombes of John Wiley & Sons, Ltd. took the risk of
asking me to embark upon the venture, and has proved
a reliable and sympathetic source of guidance as well
as a model of patience. The Geography Department,
University of Nottingham, kindly allowed me to use
the facilities of the Remote Sensing Unit. I am grateful
also to Jim Cahill for many helpful comments on early
drafts, to Michael Steven for reading part of Chapter 1
and for providing advice on some diagrams, and to
Sally Ashford for giving a student’s view and to George
Korybut-Daszkiewicz for his assistance with some of
the photography. An anonymous referee made many

useful suggestions. My children deserve a mention
(my evenings on the word-processor robbed them of
the chance to play their favourite computer games) as
does my wife for tolerating me. The contribution of
the University of Nottingham and the Shell Exploration
and Development Company to the replacement of an
ageing PDP11 computer by a VAX 11/730-based image
processing system allowed the continuation of remote
sensing activities in the university and, consequently,
the successful completion of this book. Many of the
ideas presented here are the result of the development
of the image processing software system now in use
at the University of Nottingham and the teaching of
advanced undergraduate and Masters degree courses.
I am also grateful to Mr J. Winn, Chief Technician,
Mr. C. Lewis and Miss E. Watts, Cartographic Unit and
Mr M.A. Evans, Photographic Unit, Geography Depart-
ment, University of Nottingham, for their invaluable
and always friendly assistance in the production of the
photographs and diagrams. None of those mentioned can
be held responsible for any errors or misrepresentations
that might be present in this book; it is the author’s
prerogative to accept liability for these.

Paul M. Mather,
March 1987

Remote Sensing Unit,
Department of Geography,

The University of Nottingham,
Nottingham NG7 2RD, UK



Preface to the Second Edition

Many things have changed since the first edition of this
book was written, more than 10 years ago. The increasing
emphasis on scientific rigour in remote sensing (or Earth
observation by remote sensing, as it is now known), the
rise of interest in global monitoring and large-scale cli-
mate modelling, the increasing number of satellite-borne
sensors in orbit, the development of Geographical Infor-
mation Systems (GISs) technology, and the expansion in
the number of taught Masters courses in GIS and remote
sensing are all noteworthy developments. Perhaps the
most significant single change in the world of remote
sensing over the past decade has been the rapid increase
in and the significantly reduced cost of computing power
and software available to students and researchers alike,
which allows them to deal with growing volumes of
data and more sophisticated and demanding processing
tools. In 1987 the level of computing power available to
researchers was minute in comparison with that which
is readily available today. I wrote the first edition of
this book using a BBC Model B computer, which had
32 kb of memory, 100 kb diskettes and a processor which
would barely run a modern refrigerator. Now I am using a
266 MHz Pentium II with 64 Mb of memory and a 2.1 Gb
disk. It has a word processor that corrects my spelling
mistakes (though its grammar checking can be infuri-
ating). I can connect from my home to the University
of Nottingham computers by fibre optic cable and run
advanced software packages. The cost of this computer
is about 1% of that of the VAX 11/730 that is mentioned
in the preface to the first edition of this book.

Although the basic structure of the book remains
largely unaltered, I have taken the opportunity to revise
all of the chapters to bring them up to date, as well as
to add some new material, to delete obsolescent and
uninteresting paragraphs, and to revise some infelicitous
and unintelligible passages. For example, Chapter 4
now contains new sections covering sensor calibration,
plus radiometric and topographic correction. The use
of artificial neural networks in image classification has
grown considerably in the years since 1987, and a new
section on this topic is added to Chapter 8, which also
covers other recent developments in pattern recognition

and methods of estimating Earth surface properties.
Chapter 3, which provides a survey of computer
hardware and software, has been almost completely
re-written. In Chapter 2 I have tried to give a brief
overview of a range of present and past sensor systems
but have not attempted to give a full summary of every
sensor, because details of new developments are now
readily available via the Internet. I doubt whether anyone
would read this book simply because of its coverage of
details of individual sensors.

Other chapters are less significantly affected by
recent research as they are concerned with the basics
of image processing (filtering, enhancement and image
transforms), details of which have not changed much
since 1987, though I have added new references and
attempted to improve the presentation. I have, however,
resisted the temptation to write a new chapter on GIS,
largely because there are several good books on this topic
that are widely accessible (for example Bonham-Carter
(1994) and McGuire et al . (1991)), but also because I
feel that this book is primarily about image processing.
The addition of a chapter on GIS would neither do justice
to that subject nor enhance the reader’s understanding
of digital processing techniques. However, I have made
reference to GIS and spatial databases at a number of
appropriate points in the text. My omission of a survey
of GIS techniques does not imply that I consider digital
image processing to be a ‘stand-alone’ topic. Clearly,
there are significant benefits to be derived from the
use of spatial data of all kinds within an integrated
environment, and this point is emphasized in a number
of places in this book. I have added a significant number
of new references to each of the chapters, in the hope
that readers might be encouraged to enjoy the comforts
of his or her local library.

I have added a number of ‘self-assessment’ questions at
the end of each chapter. These questions are not intended
to constitute a sample examination paper, nor do they
provide a checklist of ‘important’ topics (the implication
being that the other topics covered in the book are unim-
portant). They are simply a random set of questions – if
you can answer them then you probably understand the
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contents of the chapter. Readers should use the Mather’s
Image Processing System (MIPS) software described in
Appendices A and B to try out the methods mentioned
in these questions. Data sets are also available on the
accompanying CD, and are described in Appendix C.

Perhaps the most significant innovation that this book
offers is the provision of a CD containing software and
images. I am not a mathematician, and so I learn by trying
out ideas rather than exclusively by reading or listening.
I learn new methods by writing computer programs and
applying them to various data sets. I am including a small
selection of the many programs that I have produced over
the past 30 years, in the hope that others may find them
useful. These programs are described in Appendix B. I
have been teaching a course on remote sensing for the
last 14 years. When this course began there were no soft-
ware packages available, so I wrote my own (my students
will remember NIPS, the Nottingham Image Processing
System, with varying degrees of hostility). I have com-
pletely re-written and extended NIPS so that it now runs
under Microsoft Windows 95. I have renamed it to MIPS,
which is rather an unimaginative name, but is neverthe-
less pithy. It is described in Appendix A. Many of the
procedures described in this book are implemented in
MIPS, and I encourage readers to try out the methods
discussed in each chapter. It is only by experimenting
with these methods, using a range of images, that you
will learn how they work in practice. MIPS was devel-
oped on an old 486-based machine with 12 Mb of RAM
and a 200 Mb disk, so it should run on most PCs avail-
able in today’s impoverished universities and colleges.
MIPS is not a commercial system, and should be used
only for familiarisation before the reader moves on to
the software behemoths that are so readily available for
both PCs and UNIX workstations. Comments and sug-
gestions for improving MIPS are welcome (preferably
by email) though I warn readers that I cannot offer an
advisory service nor assist in research planning!

Appendix C contains a number of Landsat, SPOT,
AVHRR and RADARSAT images, mainly extracts of size
512 512 pixels. I am grateful to the copyright owners
for permission to use these data sets. The images can
be used by the reader to gain practical knowledge and
experience of image processing operations. Many univer-
sity libraries contain map collections, and I have given
sufficient details of each image to allow the reader to
locate appropriate maps and other back-up material that
will help in the interpretation of the features shown on
the images.

The audience for this book is seen to be advanced
undergraduate and Masters students, as was the case in
1987. It is very easy to forget that today’s student of

remote sensing and image processing is starting from
the same level of background knowledge as his or her
predecessors in the 1980s. Consequently, I have tried to
restrain myself from including details of every technique
that is mentioned in the literature. This is not a research
monograph or a literature survey, nor is it primarily an
exercise in self-indulgence and so some restriction on the
level and scope of the coverage provided is essential if the
reader is not to be overwhelmed with detail and thus dis-
couraged from investigating further. Nevertheless, I have
tried to provide references on more advanced subjects for
the interested reader to follow up. The volume of pub-
lished material in the field of remote sensing is now very
considerable, and a full survey of the literature of the last
20 years or so would be both unrewarding and tedious.
In any case, online searches of library catalogues and
databases are now available from networked computers.
Readers should, however, note that this book provides
them only with a background introduction – successful
project work will require a few visits to the library to
peruse recent publications, as well as practical experience
of image processing.

I am most grateful for comments from readers,
a number of whom have written to me, mainly to
offer useful suggestions. The new edition has, I hope,
benefited from these ideas. Over the past years, I have
been fortunate enough to act as supervisor to a number
of postgraduate research students from various countries
around the world. Their enthusiasm and commitment
to research have always been a factor in maintaining
my own level of interest, and I take this opportunity
to express my gratitude to all of them. My friends and
colleagues in the Remote Sensing Society, especially Jim
Young, Robin Vaughan, Arthur Cracknell, Don Hardy
and Karen Korzeniewski, have always been helpful and
supportive. Discussions with many people, including
Mike Barnsley, Giles Foody and Robert Gurney, have
added to my knowledge and awareness of key issues
in remote sensing. I also acknowledge with gratitude
the help given by Dr Magaly Koch, Remote Sensing
Center, Boston University, who has tested several of
the procedures reported in this book and included on
the CD. Her careful and thoughtful advice, support and
encouragement have kept me from straying too far from
reality on many occasions. My colleagues in the School
of Geography in the University of Nottingham continue
to provide a friendly and productive working environ-
ment, and have been known occasionally to laugh at
some of my jokes. Thanks especially to Chris Lewis and
Elaine Watts for helping to sort out the diagrams for the
new edition, and to Dee Omar for his patient assistance
and support. Michael McCullagh has been very helpful,
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and has provided a lot of invaluable assistance. The staff
of John Wiley & Sons has been extremely supportive, as
always. Finally, my wife Rosalind deserves considerable
credit for the production of this book, as she has quietly
undertaken many of the tasks that, in fairness, I should
have carried out during the many evenings and weekends
that I have spent in front of the computer. Moreover,
she has never complained about the chaotic state of our

dining room, nor about the intrusive sound of Wagner’s
music dramas. There are many people, in many places,
who have helped or assisted me; it is impossible to name
all of them, but I am nevertheless grateful. Naturally, I
take full responsibility for all errors and omissions.

Paul M. Mather
Nottingham, June 1998





Preface to the Third Edition

In the summer of 2001 I was asked by Lyn Roberts of
John Wiley & Sons, Ltd. to prepare a new edition of this
book. Only minor updates would be needed, I was told,
so I agreed. A few weeks later was presented with the
results of a survey of the opinions of the ‘great and the
good’ as to what should be included in and what should
be excluded from the new edition. You are holding the
result in your hands. The ‘minor updates’ turned into two
new chapters (a short one on computer basics, replacing
the old Chapter 3, and a lengthier one on the advanced
topics of interferometry, imaging spectroscopy and lidar,
making a new Chapter 9) plus substantial revisions of
the other chapters. In addition, I felt that development of
the MIPS software would be valuable to readers who did
not have access to commercial remote sensing systems.
Again, I responded to requests from postgraduate students
to include various modules that they considered essential,
and the result is a Windows-based package of 90 000+
lines of code.

Despite these updates and extensions both to the text of
the book and the accompanying software, my target audi-
ence is still the advanced undergraduate taking a course
in environmental remote sensing. I have tried to intro-
duce each topic at a level that is accessible to the reader
who is just becoming aware of the delights of image pro-
cessing while, at the same time, making the reasonable
assumption that my readers are, typically, enthusiastic,
aware and intelligent, and wish to go beyond the basics.
In order to accommodate this desire to read widely,
I have included an extensive reference list. I am aware,
too, that this book is used widely by students taking
Masters level courses. Some of the more advanced
material, for example in Chapters 6, 8 and 9, is meant
for them; for example the new material on wavelets
and developments in principal components analysis may
stimulate Masters students to explore these new methods
in their dissertation work. The first three chapters should
provide a basic introduction to the background of remote
sensing and image processing; Chapters 4–8 introduce
essential ideas (noting the remark above concerning
parts of Chapters 6 and 8), while Chapter 9 is really for
the postgraduate or the specialist undergraduate.

I am a firm believer in learning by doing. Reading
is not a complete substitute for practical experience of

the use of image processing techniques applied to real
data that relates to real problems. For most people, inter-
est lies in the meaning of the results of an operation in
terms of the information that is conveyed about a problem
rather than in probing the more arcane details of particular
methods, though for others it is the techniques themselves
that fascinate. The level of mathematical explanation has
therefore been kept to a minimum and I have attempted to
use an approach involving examples, metaphors and ver-
bal explanation. In particular, I have introduced a number
of examples, separate from the main text, which should
help the reader to interpret image-processing techniques
in terms of real-world applications.

Many of these examples make use of the MIPS soft-
ware that is provided on the CD that accompanies this
book. MIPS has grown somewhat since 1999, when the
second edition of this book was published. It has a new
user interface, and is able to handle images of any size
in 8-, 16- or 32-bit representation. A number of new fea-
tures have been added, and it is now capable of providing
access to many of the techniques discussed in this book.
I would appreciate reports from readers of any difficulties
they experience with MIPS, and I will maintain a web site
from which updates and corrections can be downloaded.
The URL of this web site, and my email address, can be
found in the file contactme.txt which is located in the
root directory of the CD.

Many of the ideas in this book have come from my
postgraduate students. Over the past few years, I have
supervised a number of outstanding research students,
whose work has kept me up to date with new develop-
ments. In particular, I would like to thank Carlos Vieira,
Brandt Tso, Taskin Kavzoglu, Premelatha Balan, Mahesh
Pal, Juazir Hamid, Halmi Kamarrudin and Helmi Shafri
for their tolerance and good nature. Students attending
my Masters classes in digital image processing have also
provided frank and valuable feedback. I would also like to
acknowledge the valuable assistance provided by Rose-
mary Hoole and Karen Laughton of the School of Geog-
raphy, University of Nottingham. The help of Dr Koch
of Boston University, who made many useful comments
on the manuscript and the MIPS software as they have
progressed, is also gratefully acknowledged, as is the
kindness of Professor J. Gumuzzio and his group at the
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Autonomous University of Madrid in allowing me access
to DAIS images of their La Mancha study site. The
DAIS data were recorded by DLR in the frame of the
EC funded programme ‘Access to Research Infrastruc-
tures’, project ‘DAIS/ROSIS – Imaging Spectrometers at
DLR’, Co. Ro. HPRI-CT-1999-0075. Dr Koch has also
provided a set of four advanced examples, which can be
found in the Examples folder of the accompanying CD.
I am very grateful to her for this contribution, which I
am sure significantly enhances the value of the book. My
wife continues to tolerate what she quietly considers to
be my over-ambitious literary activities, as well as my
predilection for the very loudest bits of Mahler, Berlioz,
Wagner and others. Colleagues and students of the School

of Geography, University of Nottingham, have helped in
many ways, not least by humouring me. Finally, I would
like to thank Lyn Roberts, Kiely Larkins, and the staff of
John Wiley who have helped to make this third edition a
reality, and showed infinite patience and tolerance.

A book without errors is either trivial or guided by a
divine hand. I can’t believe that this book is in the latter
category, and it is possible that it isn’t in the former.
I hope that the errors that you do find, for which I take
full responsibility, are not too serious and that you will
report them to me.

Paul M. Mather
Nottingham, August 2003



Preface to the Fourth Edition

Almost 25 years have passed since the publication of the
first edition of this book. Back in 1987, image process-
ing and geographical information systems (GIS) required
dedicated computers that lived in air-conditioned rooms.
At that time, I had access to a VAX 11/730, which had
about the same computing power as a mobile phone of
today. We had four megabytes of RAM and it took 12
hours to carry out a maximum likelihood classification
on a 512 × 512 Landsat four-band MSS image. Imagery
with the highest multispectral spatial resolution (20 m)
was acquired by the SPOT-1 satellite, and there was not
a great deal of software to process it. In those days an
ability to write your own programmes was essential.

Over those 25 years, new companies, new products
and new applications have come into being. Integrated
software packages running on fast desktop machines, pro-
cessing data that may have up to 256 bands, or a spatial
resolution of 50 cm, with stereo capability for DEM pro-
duction, are all seen as a natural if rapid development
over the period 1987–2010. Yet the basic principles of
image processing remain the same, and so does the struc-
ture of this book. However, a new chapter, number ten,
has been added. It covers the topic of Environmental Geo-
graphical Information Systems and Remote Sensing. I
wrote in the preface to the second edition (1999) that
I had resisted the temptation to include a chapter on
GIS because there were several good GIS texts already
available. However, developments in the fields of image
processing and GIS mean that nowadays no environ-
mental remote sensing course is complete without some
reference to environmental GIS, and no environmental
GIS course can be considered adequate without a discus-
sion of the uses of remotely sensed data. In fact, over
the past two or three years there has been a ‘coming
together’ of GIS, remote sensing and photogrammetry.
Nowadays most software vendors describe their products
not as ‘Image Processing for Remote Sensing’ but as
geospatial, integrated, and so on. They can interact with
GIS either directly or through a common data format.
This book has, therefore, to include material on GIS from
a remote sensing point of view. Being aware of my inad-
equacies in the field of GIS, I asked Dr Magaly Koch of
Boston University’s Centre for Remote Sensing to help
with the new Chapter 10 and with other chapters, as she

has the benefit of considerable practical experience in the
areas of remote sensing and GIS. I am very grateful to
her for accepting this invitation and for making a valuable
contribution to the book as a whole.

Perhaps the most important change in the appearance
of the book is the introduction of colour illustrations and
tables. This development is of tremendous value in a book
on image processing. The use of colour supplements is
a half-way house, and I always found it more trouble
than it was worth. I am grateful to the publishers, and
in particular to Fiona Woods, for negotiating a new full
colour edition. In retrospect, trying to describe the effects
of, for example, a decorrelation stretch while using only
greyscale illustrations would have been a challenge to
any of the great literary figures of the past, and I am sure
that my powers of descriptive writing are but a shadow
of theirs.

As far as other changes are concerned, I have rewrit-
ten most of Chapter 3. In the third edition Chapter 3
described the workings of the MIPS software package,
which was included on a CD that accompanied the book.
MIPS is still available, and can now be downloaded from
the publisher’s web site (www.wiley.com/go/mather4).
Chapter 3 now deals with aspects of computing and statis-
tics which should be appreciated and understood by all
users of computers. In particular, I feel strongly that users
of remote sensing and GIS software packages should have
a good understanding of the way their favoured pack-
age handles data; many people have been surprised to
find that sometimes software does not always do what
it says on the box. In comparison, economists and com-
puter scientists have tested spreadsheet software such as
Excel almost to destruction (McCullough, 1998, 1999).
It is particularly important for the user to be aware of
the nature and type of data being processed, as 8-, 10-,
12- and 16-bit data values are now in widespread use.
Yet most graphics cards still limit displayed data to 8 bits
per primary colour (red, green and blue) and the way that
data are converted from their original format (8-, 10-, 11-
or 16-bit) to fit the requirements of the graphics hardware
is a matter of considerable interest, as the appearance of
the image depends to a greater or lesser extent on this
conversion process.
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Other topics that are new to the fourth edition (apart
from Chapters 3 and 10) include: updated information
on new satellites and sensors (Chapter 2), new sections
on change detection, and image fusion (Chapter 6), a
description of the Frost filter (Chapter 7), a new section
on independent components analysis (Chapter 8) plus
descriptions of recent developments in image classifica-
tion (support vector machines and decision trees, object-
oriented classification and bagging and boosting). Other
chapters have been updated, with old references removed
and replaced by new ones, though several key papers
from the 1970s to 1980s remain in the bibliography where
they provide an uniquely intelligible description of a spe-
cific topic.

Some may query the size of the bibliography. How-
ever, modern bachelors’ and Masters’ programmes are
more focused on assessed project work than was the case
in the 1980s, and the key papers in the recent literature
are catalogued in the following pages in order to provide
guidance to students who are undertaking projects. I have
tried to ensure that most journal paper references postdate
1994, because many electronically accessible journals are
available only from the mid-1990s on, and I know that
both students and researchers like to read their favourite
journals online at their desk. The importance of wide
reading of original papers should not be underestimated;
relying solely on textbooks is not a good idea.

I have already noted that the MIPS software can
be downloaded from www.wiley.com/go/mather4. That
web site also contains compressed files of PowerPoint
figures and tables which can be downloaded by lecturers
and teachers. These files, one for each chapter, are
compressed using the popular zip method. The four case
studies included on the CD that accompanied the third
edition of this book are also available on the web site as
pdf files (with accompanying data sets).

I would like to acknowledge the help I have received
from Rachel Ballard, Fiona Woods, Izzy Canning and
Sarah Karim of John Wiley & Sons, Ltd. and Gayatri
Shanker of Laserwords, who have looked after me during
the production of this book with great patience and for-
bearance. Special thanks go to Alison Woodhouse, who
copy-edited the manuscript in a masterly way. I must also
thank my wife, who has been a great support over the
past few years while the ‘book project’ was developing
and before. My son James helped enormously in con-
verting diagrams to colour. There are many other people
who have had an input into the writing and production of
this book, ranging from librarians to graphics designers
and copy editors. I thank all of them for their assistance.
Finally, a note to the reader: remote sensing is a capti-
vating and intellectually demanding subject, but it is also
fun. I have enjoyed teaching and researching in remote
sensing for the best part of 30 years and I hope that my

enjoyment of and enthusiasm for the subject comes across
in the text and maybe inspires you to take a keen interest
in whatever aspect of the subject that you are studying.

Needless to say, I take full responsibility for any errors
that may be found in the book. I would be grateful if
readers could advise me by email of any such errors
or misrepresentations. My current email address can be
found in the Contacts link on the book’s web page.

Paul M. Mather
Nottingham, January, 2010.

In the last decade, technological advances have led to
a seemingly overwhelming amount of Earth observation
information acquired at increasingly finer spatial, spectral
and temporal scales. At the same time data processing and
assimilation systems are continuously offering new and
innovative ways of capturing, processing and delivering
almost in real time this steady stream of geospatial data
to end users, who may range from expert users to the
untrained person requiring higher-level or value-added
image products for decision making and problem solving.

This trend in geospatial technology development has
naturally closed or at least narrowed the gap between
remote sensing and GIS systems. RS data can provide
both image maps for background display and estimates of
the characteristics or values of environmental variables.
These products can most profitably be used in conjunction
with other environmental data such as rainfall or geology
in the context of GIS.

I am honoured to contribute a new chapter, Chapter
10, on remote sensing and GIS integration to this new
edition and would like to thank Prof. Paul Mather for
giving me the opportunity to do so, and for guiding me
through the process of ‘co-writing a book’. The new
chapter draws from my experience in applying remote
sensing and GIS techniques over a number of years while
working on numerous research projects mainly conducted
in Boston University’s Center for Remote Sensing. In this
respect I am very grateful to Prof. Farouk El-Baz, direc-
tor of the Center, who has been my adviser and colleague
for the past two decades. I would also like to acknowl-
edge the contributions and revisions of my colleagues Dr
Francisco Estrada-Belli (Boston University), Dr Michael
DiBlasi (Boston University), Dr Luisa Sernicola (Uni-
versity of Naples ‘L’Orientale’) and my PhD student Mr
Ahmed Gaber (Tohoku University) in the case studies
included in the new chapter 10. I hope that the combi-
nation of theoretical treatment and practical application
of geospatial techniques will inspire the reader to create
remote sensing and GIS-based solutions to a variety of
environmental problems.

Magaly Koch
Boston, January 2010
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‘I hope that posterity will judge me kindly, not only as to the things which I have explained but also
as to those which I have intentionally omitted so as to leave to others the pleasure of discovery.’

René Descartes (1596–1660)

‘I am none the wiser, but I am much better informed.’

Queen Victoria (1819–1901)

(After being addressed by Lord Rutherford on the state of modern physics)
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worth knowing can be taught.’
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1 Remote Sensing: Basic Principles

Electromagnetic radiation is just basically mysterious.

B.K. Ridley, Time, Space and Things , 2nd edition.
Cambridge University Press, Cambridge, 1984.

1.1 Introduction

The science of remote sensing consists of the analysis
and interpretation of measurements of electromagnetic
radiation (EMR) that is reflected from or emitted by a
target and observed or recorded from a vantage point by
an observer or instrument that is not in contact with the
target. Earth observation by remote sensing (EO) is the
interpretation and understanding of measurements made
by airborne or satellite-borne instruments of EMR that
is reflected from or emitted by objects on the Earth’s
land, ocean or ice surfaces or within the atmosphere,
together with the establishment of relationships between
these measurements and the nature and distribution of
phenomena on the Earth’s surface or within the atmo-
sphere. Figure 1.1 shows in schematic form the various
methods of computer processing (blue boxes) that gen-
erate products (green boxes) from remotely-sensed data.
This book deals with the methods of computer process-
ing of remotely sensed data (the green and blue boxes)
as well as providing an introduction to environmental
geographical information systems (E-GISs) (Chapter 10)
which make use of remotely-sensed products.

Remotely-sensed images are often used as image maps
or backcloths for the display of spatial data in an E-GIS.
Methods of improving the appearance of an image
(termed enhancement procedures) are dealt with in
Chapters 4, 5 and 7. Chapter 8 is an introduction to pat-
tern recognition techniques that produce labelled images
in which each type of land use, for example is repre-
sented by a numeric code (for example 1 = broadleaved
forest, 2 = water, and so on.). These labelled images can
provide free-standing information or can be combined
with other spatial data within an E-GIS. Properties of
earth surface materials, such as soil moisture content, sea
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surface temperature (SST) or biomass can be related to
remotely sensed measurements using statistical methods.
For instance, a sample of measurements of soil moisture
content can be collected close to the time of satellite
overpass and the corresponding ground reflectance or
ground temperature that are recorded by the satellite’s
instruments can be related via regression analysis to
the ground measurements. This sample relationship can
then be applied to the entire area of interest. These
bio-geophysical variables are used in environmental
modelling, often within an E-GIS. Elevation models are
another form of remotely-sensed spatial information that
is used in E-GIS. Digital elevation models can be derived
from optical imagery using two sensors, for example one
pointing down and one pointing obliquely backwards
(this is the case with the ASTER sensor, discussed in
Chapter 2). Another way of producing elevation models is
by the use of synthetic aperture radar (SAR) interferome-
try, which is discussed in Chapter 9. The increasing coop-
eration between remote sensing specialists and E-GIS
users means that more products are available to E-GIS
users and the more spatial information is combined with
remotely sensed data to produce improved results. This
is an example of synergy (literally, working together).

A fundamental principle underlying the use of remotely
sensed data is that different objects on the Earth’s surface
and in the atmosphere reflect, absorb, transmit or emit
electromagnetic energy (EME) in different proportions
across the range of wavelengths known as the electro-
magnetic spectrum, and that such differences allow these
objects to be identified uniquely. Sensors mounted on
aircraft or satellite platforms record the magnitude of
the energy flux reflected from or emitted by objects on
the Earth’s surface. These measurements are made at a
large number of points distributed either along a one-
dimensional profile on the ground below the platform or
over a two-dimensional area below or to one side of the
ground track of the platform. Figure 1.2a shows an image
being collected by a nadir-looking sensor.

Data in the form of one-dimensional profiles are
not considered in this book, which is concerned with
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Remotely Sensed
Image Data

Quantitative Data Image Maps

Nominal Scale

Classified
Image

Ratio/Interval Scale

Biomass, Leaf Area
Index, Soil Moisture
content, Surface
elevation, Sea surface
temperature, etc.

Calibration, Vegetation
ratios, regression
analysis,
Interferometric SAR,
Lidar, Stereo, image
transforms.

Pattern
recognition

Enhancement (contrast,
brightness, sharpening),
filtering, image
transforms (PCA,
Tasselled Cap),
Geometric correction.

Figure 1.1 Uses of remotely-sensed data. The green boxes show the products derived from remotely-sensed data, such as image
maps and classified images. The blue boxes show the computer processing techniques that are used to derive these products.
Image maps are frequently used as backdrops in a GIS, whereas the process of pattern recognition produces labelled (nominal
scale) images showing the distribution of individual Earth surface cover types. Quantitative measures such as vegetation indices
are derived from calibrated data, and are often linked via regression analysis to Earth surface properties such as sea-surface
temperature or soil moisture content. The computer processing techniques to extract and analyse remotely-sensed data are
presented in the remainder of this book.

the processing of two-dimensional (spatial) data col-
lected by imaging sensors. Imaging sensors are either
nadir – (vertical) or side-looking. In the former case,
the ground area to either side of the point immediately
below the satellite or aircraft platform is imaged, while
in the latter case an area of the Earth’s surface lying
to one side or other of the satellite or aircraft track is
imaged. The most familiar kinds of images, such as
those collected by the nadir-looking thematic mapper
(TM) and enhanced thematic mapper plus (ETM+)
instruments carried by US Landsat satellites numbered 5
and 7 (6 never reached orbit), and by the HRV instrument
(which can be side-looking or nadir-pointing) on board
the French/Belgian/Swedish SPOT satellites, are scanned
line by line (from side to side) as the platform moves
forwards along its track. This forward (or along track)
motion of the satellite or aircraft is used to build up
an image of the Earth’s surface by the collection of
successive scan lines (Figure 1.2a).

Two kinds of scanners are used to collect the EMR
that is reflected or emitted by the ground surface along
each scan line. Electromechanical scanners have a small
number of detectors, and they use a mirror that moves
back and forth to collect electromagnetic energy across

the width of the scan line (AB in Figure 1.2a). The
electromagnetic energy reflected by or emitted from
the portion of the Earth’s surface that is viewed at a
given instant in time is directed by the mirror onto these
detectors (Figure 1.2b). The second type of scanner, the
push-broom scanner, uses an array of solid-state charge-
coupled devices (CCDs), each one of which ‘sees’ a sin-
gle point on the scan line (Figure 1.2c). Thus, at any given
moment, each detector in the CCD array is observing a
small area of the Earth’s surface along the scan line. This
ground area is called a pixel. A remotely-sensed image is
made up of a rectangular matrix of measurements of the
flux or flow of EMR emanating from individual pixels,
so that each pixel value represents the magnitude of
upwelling EMR for a small ground area (though it will be
seen later that there is ‘interference’ from neighbouring
pixels). This upwelling radiation contains information
about (i) the nature of the Earth-surface material present
in the pixel area, (ii) the topographic position of the pixel
area (i.e. whether it is horizontal, on a sunlit slope or on a
shaded slope) and (iii) the state of the atmosphere through
which the EMR has to pass. This account of image
acquisition is a very simplified one, and more detail
is provided in Chapter 2. The nature of Earth-surface
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Figure 1.2 (a) A sensor carried onboard a platform, such as an Earth-orbiting satellite, builds up an image of the Earth’s surface
by taking repeated measurements across the swath AB. As the satellite moves forward, so successive lines of data are collected
and a two-dimensional image is generated. The distance AB is the swath width. The point immediately below the platform is the
nadir point, and the imaginary line traced on the Earth’s surface by the nadir point is the subsatellite track. (b) Upwelling energy
from point P is deflected by a scanning mirror onto the detector. The mirror scans across a swath between points A and B on the
Earth’s surface. (c) An array of solid state (CCD) detectors images the swath AB. The image is built up by the forward movement
of the platform.

materials and their interaction with EMR is covered in
Section 1.3. Topographic and atmospheric interactions
are described in Sections 4.7 and 4.4, respectively.

The magnitude of the radiance reflected or emitted by
the small ground area represented by a pixel is a physical
measurement that is converted to a number, usually an
integer (a whole number) lying within a specified range,
such as 0–255 (8 bits) or 0–65 535 (16 bits). Remotely-
sensed images thus consist of rectangular arrays of num-
bers, and because they are numerical in nature so com-
puters are used to display, enhance and manipulate them.
The main part of this book deals with techniques used
in these types of processing. Spatial patterns evident in
remotely-sensed images can be interpreted in terms of
geographical variations in the nature of the material form-
ing the surface of the Earth. These Earth surface materials
may be vegetation, exposed soil and rock or water sur-
faces. Notice that the characteristics of these materials are
not detected directly by remote sensing. Their nature is
inferred from the properties of the EMR that is reflected,
scattered or emitted by these materials and recorded by
the sensor. Another characteristic of digital image data is
that they can be calibrated in order to provide estimates of
physical measurements of properties of the target such as

radiance, reflection or albedo. These values are used, for
example in models of climate or crop growth. Examples
of the uses of remotely-sensed image data in Earth sci-
ence and environmental management can be found in
Calder (1991). Kaufman et al. (1998) demonstrate the
wide variety of applications of remote sensing data col-
lected by the instruments on the American Terra satellite.
A number of web sites provide access to image libraries.
Perhaps the most accessible of these is NASA’s Earth
Observatory. The Internet contains an ever-changing but
large number of Earth-observation images that can be best
discovered by using a search engine. Many national space
agencies maintain good web sites, for example NASA
(USA), CNES (France) and DLR (Germany).

Aerial photography is a familiar form of EO by remote
sensing. Past generations of air photographs differ from
digital images in that they are analogue in nature. Ana-
logue means: using some alternative physical represen-
tation to display some property of interest. For example,
a photographic film represents a range of light levels in
terms of the differential response of silver halide parti-
cles in the film emulsion. Analogue images cannot be
processed by computer unless they are converted to dig-
ital form, using a scanning device. Computer scanners
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operate much in the same way as those carried by satel-
lites in that they view a small area of the photograph,
record the proportion of incident light that is reflected
back by that small area and convert that proportion to a
number, usually in the range 0 (no reflection, or black) to
255 (100% reflection, or white). The numbers between 0
and 255 represent increasingly lighter shades of grey.

Nowadays, analogue cameras are rarely used and dig-
ital cameras are most often chosen for use in aerial pho-
tography. Images acquired by such cameras are similar in
nature to those produced by the pushbroom type of sensor
mentioned above. Instead of a film, a digital camera has a
two-dimensional array of charge-coupled devices (CCD)
(rather than a one-dimensional CCD array, as used by
the SPOT satellite’s HRV instrument, mentioned above).
The amount of light from the scene that impinges on an
individual CCD is recorded as a number in the range
0 (no light) to 255 (detector saturated). A value of 255
is typically used as the upper bound of the range but a
different value may be selected depending on the camera
characeteristics. A two-dimensional set of CCD measure-
ments produces a greyscale image. Three sets of CCDs
are used to produce a colour image, just as three layers
of film emulsion are used to generate an analogue colour
photograph. The three sets of CCDs measure the amounts
of red, green and blue light that reach the camera. Nowa-
days, digital imagery is relatively easily available from
digital cameras, from scanned analogue photographs,
as well as from sensors carried by aircraft, including
unmanned drones (see Zhou et al., 2009) and satellites.

The nature and properties of EMR are considered in
Section 1.2, and are those which concern its interaction
with the atmosphere, through which the EMR passes on
its route from the Sun (or from another source such
as a microwave radar) to the Earth’s surface and back
to the sensor mounted onboard an aircraft or satellite.
Interactions between EMR and Earth surface materials
are summarized in Section 1.3. It is by studying these
interactions that the nature and properties of the material
forming the Earth’s surface are inferred.

The topics covered in this book are dealt with to a
greater or lesser extent in a number of textbooks, research
monographs and review articles. A good library will
provide paper or electronic access to a selection of recent
texts that include: Adams and Gillespie (2006), Campbell
(2006), Chuvieco (2008), Drury (2004), Elachi and van
Zyl (2006), Gao (2009), Gonzales and Woods (2007),
Jensen (1996), Landgrebe (2003), Liang (2004), Liang
et al. (2008), Lillesand, Kiefer and Chipman (2008),
Milman (1999), Olsen (2007), Rees (2001), Richards
and Jia (2006), Schowengerdt (2006), Smith (2001),
Warner, Nellis and Foody (2009) and Weng and Quat-
trochi (2007). Sanchez and Canton (1998) discuss both
remote sensing and space telescope images, while Rees

(2001) covers basic principles in a very understandable
way. Trauth et al. (2007) contains MATLAB code and
explanation of some of the topics mentioned in this
book, including image processing, DEM manipulation
and geostatistics. Some of the material listed above is not
written specifically for a remote sensing audience, but
nevertheless, contain useful and often additional reading
for those readers wishing to follow up a particular topic
for a thesis or dissertation. The above list of books and
articles may seem to be lengthy, but some readers may
prefer to avoid an overtly mathematical approach and
thus select one source rather than another.

1.2 Electromagnetic Radiation
and Its Properties

1.2.1 Terminology

The terminology used in remote sensing is sometimes
understood only imprecisely, and is therefore occasion-
ally used loosely. A brief guide is therefore given in this
section. It is neither complete nor comprehensive, and is
meant only to introduce some basic ideas. The subject is
dealt with more thoroughly by Bird (1991a, b), Chapman
(1995), Hecht (2001), Kirkland (2007), Martonchik,
Bruegge and Strahler (2000), Nicodemus et al. (1977),
Rees (2001), Schaepman-Strub et al. (2006), Slater
(1980), Smith (2001) and the references listed at the end
of the preceding section.

EMR transmits energy. As the name implies, EMR
has two components. One is the electric field and the
other is the magnetic field. These two fields are mutually
perpendicular, and are also perpendicular to the direction
of travel (Figure 1.3). There is no ‘right way up’ – EMR
can be transmitted with a horizontal electric field and
a vertical magnetic field, or vice versa. The disposition
of the two fields is described by the polarization state
of the EMR, which can be either horizontal or vertical.
Polarization state is used in microwave remote sensing
(Section 2.4).

Energy is the capacity to do work. It is expressed in
joules (J), a unit that is named after James Prescott Joule,
an English brewer whose hobby was physics. Radiant
energy is the energy associated with EMR. The rate of
transfer of energy from one place to another (for example
from the Sun to the Earth) is termed the flux of energy,
the word flux being derived from the Latin word mean-
ing ‘flow’. It is measured in watts (W), after James Watt
(1736–1819), the Scottish inventor who was instrumen-
tal in designing an efficient steam engine while he was
working as a technician at Glasgow University (he is also
credited with developing the first rev counter). The inter-
action between EMR and surfaces such as that of the
Earth can be understood more clearly if the concept of
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Figure 1.3 Electromagnetic wave. The wavelength of the
electromagnetic energy is represented by the Greek let-
ter lambda (λ). Adapted from a figure by Nick Strobel,
from http://www.astronomynotes.com/light/s2.htm. Accessed
24 May 2010.

radiant flux density is introduced. Radiant flux is the rate
of transfer of radiant (electromagnetic) energy. Density
implies variability over the two-dimensional surface on
which the radiant energy falls, hence radiant flux density
is the magnitude of the radiant flux that is incident upon
or, conversely, is emitted by a surface of unit area (mea-
sured in watts per square metre or W m−2). The topic of
emission of EMR by the Earth’s surface in the form of
heat is considered at a later stage. If radiant energy falls
(i.e. is incident) upon a surface then the term irradiance
is used in place of radiant flux density. If the energy flow
is away from the surface, as in the case of thermal energy
emitted by the Earth or solar energy that is reflected by
the Earth, then the term radiant exitance or radiant emit-
tance (measured in units of W m−2) is appropriate.

The term radiance is used to mean the radiant flux
density transmitted from a unit area on the Earth’s sur-
face as viewed through a unit solid (three-dimensional)
angle (just as if you were looking through a hole at the
narrow end of an ice-cream cone). This solid angle is
measured in steradians , the three-dimensional equivalent
of the familiar radian (defined as the angle subtended
at the centre of a circle by a sector which cuts out a
section of the circumference that is equal in length to the
radius of the circle). If, for the moment, we consider that
the irradiance reaching the surface is back-scattered in
all upward directions (Figure 1.4), then a proportion of
the radiant flux would be measured per unit solid view-
ing angle. This proportion is the radiance (Figure 1.5).
It is measured in watts per square metre per steradian
(W m−2 sr−1). The concepts of the radian and steradian
are illustrated in Figure 1.6.

θINC θREF

(a) (b)

(c) (d)

Figure 1.4 Types of scattering of electromagnetic radiation.
(a) Specular, in which incident radiation is reflected in the
forward direction, (b) Lambertian, in which incident radiation
is equally scattered in all upward directions, (c) corner reflec-
tor, which acts like a vertical mirror, especially at microwave
wavelengths and (d) volume scattering, in which (in this
example) branches and leaves produce single-bounce (pri-
mary) and multiple-bounce (secondary) scattering.

Surface normal
Radiant Flux

Solid Angle α

θ

Source
Area A

Figure 1.5 Radiance is the flux of electromagnetic energy
leaving a source area A in direction θ per solid angle α. It is
measured in watts per square metre per steradian (W m−2 sr−1).

Reflectance, ρ, is the dimensionless ratio of the radiant
emittance of an object and the irradiance. The reflectance
of a given object is independent of irradiance, as it is
a ratio. When remotely-sensed images collected over a
time period are to be compared it is common practice
to convert the radiance values recorded by the sensor
into reflectance factors in order to eliminate the effects
of variable irradiance over the seasons of the year. This
topic is considered further in Section 4.6.

The quantities described above can be used to refer to
particular wavebands rather than to the whole electromag-
netic spectrum (Section 1.2.3). The terms are then pre-
ceded by the adjective spectral; for example the spectral
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Figure 1.6 (a) The angle α formed when the length of the arc
PQ is equal to the radius of the circle r is equal to 1 radian
or approximately 57◦. Thus, angle α = PQ/ r radians. There
are 2π radians in a circle (360◦). (b) A steradian is a solid
three-dimensional angle formed when the area A delimited
on the surface of a sphere is equal to the square of the radius
r of the sphere. A need not refer to a uniform shape. The
solid angle shown is equal to A/r2 steradians (sr). There are
4π steradians in a sphere.

radiance for a given waveband is the radiant flux density
in that waveband (i.e. spectral radiant flux density) per
unit solid angle. Terms such as spectral irradiance, spec-
tral reflectance and spectral exitance are defined in a
similar fashion.

1.2.2 Nature of Electromagnetic Radiation

An important point of controversy in physics over
the last 300 years has concerned the nature of EMR.
Newton, while not explicitly rejecting the idea that light
is a wave-like form of energy (the wave theory) inclined
to the view that it is formed of a stream of particles (the
corpuscular theory). The wave–corpuscle dichotomy was
not to be resolved until the early years of the twentieth
century with the work of Planck, Einstein and others.
The importance to remote sensing of the nature of EMR
is fundamental, for we need to consider radiation both as
a waveform and as a stream of particles. The wave-like
characteristics of EMR allow the distinction to be made
between different manifestations of such radiation (for
example microwave and infrared (IR) radiation) while,
in order to understand the interactions between EMR
and the Earth’s atmosphere and surface, the idea that
EMR consists of a stream of particles is most easily
used. Building on the work of Planck, Einstein proposed
in 1905 that light consists of particles called photons ,
which, in most respects, were similar to other sub-atomic
particles such as protons and neutrons. It was found that,
at the subatomic level, both wave-like and particle-like
properties were exhibited, and that phenomena at this

level appear to be both waves and particles. Erwin
Schrödinger (1867–1961) wrote as follows in Science,
Theory and Man (New York, Dover, 1957):

In the new setting of ideas, the distinction [between par-
ticles and waves] has vanished, because it was discovered
that all particles have also wave properties, and vice-versa.
Neither of the concepts must be discarded, they must be
amalgamated. Which aspect obtrudes itself depends not on
the physical object but on the experimental device set up
to examine it.

Thus, from the point of view of quantum mechanics,
EMR is both a wave and a stream of particles. Whichever
view is taken will depend on the requirements of the
particular situation. In Section 1.2.5, the particle theory
is best suited to explain the manner in which incident
EMR interacts with the atoms, molecules and other
particles which form the Earth’s atmosphere. Readers
who, like myself, were resistant in their formative years
to any kind of formal training in basic physics will find
Gribben (1984) to be readable as well as instructive,
while Feynman (1985) is a clear and well-illustrated
account of the surprising ways that light can behave.

1.2.3 The Electromagnetic Spectrum

The Sun’s light is the form of EMR that is most familiar
to human beings. Sunlight that is reflected by physical
objects travels in most situations in a straight line to
the observer’s eye. On reaching the retina, it generates
electrical signals that are transmitted to the brain by the
optic nerve. The brain uses these signals to construct an
image of the viewer’s surroundings. This is the process
of vision, which is closely analogous to the process of
remote sensing; indeed, vision is a form – perhaps the
basic form – of remote sensing (Greenfield, 1997). A
discussion of the human visual process can be found
in Section 5.2. Note that the process of human vision
involves image acquisition (essentially a physiological
process) and image understanding (a psychological
process), just as EO by remote sensing does. Image
interpretation and understanding in remote sensing might
therefore be considered to be an attempt to simulate or
emulate the brain’s image understanding functions.

Visible light is so called because the eye detects it,
whereas other forms of EMR are invisible to the unaided
eye. Sir Isaac Newton (1643–1727) investigated the
nature of white light, and in 1664 concluded that it is
made up of differently coloured components, which he
saw by passing white light through a prism to form a
rainbow-like spectrum. Newton saw the visible spec-
trum , which ranges from red through orange, yellow and
green to blue, indigo and violet. Later, the astronomer
Friedrich Wilhelm (Sir William) Herschel (1728–1822)
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demonstrated the existence of EMR with wavelengths
beyond those of the visible spectrum; these he called
infrared , meaning beyond the red . It was subsequently
found that EMR also exists beyond the violet end of the
visible spectrum, and this form of radiation was given
the name ultraviolet . (Herschel, incidentally, started his
career as a band-boy with the Hanoverian Guards and
later came to live in England.)

Other forms of EMR, such as X-rays and radio waves,
were discovered later, and it was eventually realized that
all were manifestations of the same kind of radiation
which travels at the speed of light in a wave-like form,
and which can propagate through empty space. The
speed of light (c0) is 299 792 458 m s−1 (approximately
3 × 108 m s−1) in a vacuum, but is reduced by a factor
called the index of refraction if the light travels through
media such as the atmosphere or water. EMR reaching
the Earth comes mainly from the Sun and is produced
by thermonuclear reactions in the Sun’s core. The set of
all electromagnetic waves is called the electromagnetic
spectrum , which includes the range from the long radio
waves, through the microwave and IR wavelengths to
visible light waves and beyond to the ultraviolet and to
the short-wave X and γ rays (Figure 1.7).

Symmetric waves can be described in terms of their fre-
quency ( f ), which is the number of waveforms passing a
fixed point in unit time. This quantity used to be known

as cycles per second (cps) but nowadays the preferred
term is Hz (Hertz, after Heinrich Hertz (1857–1894),
who, between 1885 and 1889 became the first person
to broadcast and receive radio waves). Alternatively, the
concept of wavelength can be used (Figure 1.8). The
wavelength is the distance between successive peaks (or
successive troughs) of a waveform, and is normally mea-
sured in metres or fractions of a metre (Table 1.1). Both
frequency and wavelength convey the same information
and are often used interchangeably. Another measure of
the nature of a waveform is its period (T ). This is the
time, in seconds, needed for one full wave to pass a fixed
point. The relationships between wavelength, frequency
and period are given by:

f = c/λ

λ = c/f

T = 1/f = λ/c

In these expressions, c is the speed of light. The veloc-
ity of propagation (v ) is the product of wave frequency
and wavelength, that is

v = λf

The amplitude (A) of a wave is the maximum distance
attained by the wave from its mean position (Figure 1.8).
The amount of energy, or intensity, of the waveform
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Figure 1.7 The electromagnetic spectrum showing the range of wavelengths between 0.3 µm and 80 cm. The vertical dashed
lines show the boundaries of wavebands such as ultraviolet (UV) and near-infrared (near IR). The shaded areas between 2 and
35 cm wavelength indicate two microwave wavebands (X band and L band) that are used by imaging radars. The curve shows
atmospheric transmission. Areas of the electromagnetic spectrum with a high transmittance are known as atmospheric windows.
Areas of low transmittance are opaque and cannot be used to remotely sense the Earth’s surface. Reprinted from AFH Goetz and
LC Rowanm 1981, Geologic Remote Sensing, Science, 221, 781–791, Figure 1.
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Figure 1.8 Two curves (waveforms) A and B have the same wavelength (360◦ or 2π radians, x-axis). However, curve A has an
amplitude of two units (y-axis) while curve B has an amplitude of four units. If we imagine that the two curves repeat to infinity
and are moving to the right, like traces on an oscilloscope, then the frequency is the number of waveforms (0–2π ) that pass a
fixed point in unit time (usually measured in cycles per second or Hertz, Hz). The period of the waveform is the time taken for
one full waveform to pass a fixed point. These two waveforms have the same wavelength, frequency and period and differ only
in terms of their amplitude.

Table 1.1 Terms and symbols used in measurement.

Factor Prefix Symbol Factor Prefix Symbol

10−18 atto a – – –

10−15 femto f 1015 peta P

10−12 pico p 1012 tera T

10−9 nano n 109 giga G

10−6 micro µ 106 mega M

10−3 milli m 103 kilo k

is proportional to the square of the amplitude. Using
the relationships specified earlier we can compute the
frequency given the wavelength, and vice versa. If, for
example wavelength λ is 0.6 µm or 6 × 10−7 m, then,
since velocity v equals the product of wavelength and
frequency f , it follows that:

v = 6 × 10−7f

so that:

f = c0

v
= 3 × 108

6 × 10−7
Hz

that is

f = 0.5 × 1015Hz = 0.5 PHz

1 PHz (petahertz) equals 1015 Hz (Table 1.1). Thus,
EMR with a wavelength of 0.6 µm has a frequency of
0.5 × 1015 Hz. The period is the reciprocal of the fre-
quency, so one wave of this frequency will pass a fixed

point in 2 × 10−15 s. The amount of energy carried by
the waveform, or the squared amplitude of the wave, is
defined for a single photon by the relationship

E = hf

where E is energy, h is a constant known as Planck’s con-
stant (6.625 × 10−34 J s) and f is frequency. Energy thus
increases with frequency, so that high frequency, short-
wavelength EMR such as X-rays carries more energy than
does longer-wavelength radiation in the form of visible
light or radio waves.

While EMR with particular temporal and spatial prop-
erties is used in remote sensing to convey information
about a target, it is interesting to note that both time
and space are defined in terms of specific characteris-
tics of EMR. A second is the duration of 9 192 631 770
oscillations of the caesium radiation (in other words, that
number of wavelengths or cycles are emitted by caesium
radiation in 1 s; its frequency is approximately 9 GHz
or a wavelength of around 0.03 m). A metre is defined
as 1 650 764.73 vacuum wavelengths of the orange–red
light emitted by krypton-86.

Visible light is defined as electromagnetic radiation
with wavelengths between (approximately) 0.4 and
0.7 µm. We call the shorter wavelength end (0.4 µm) of
the visible spectrum ‘blue’ and the longer wavelength
end (0.7 µm) ‘red’ (Table 1.2). The eye is not uniformly
sensitive to light within this range, and has its peak
sensitivity at around 0.55 µm, which lies in the green
part of the visible spectrum (Figure 1.7 and Figure 1.9).
This peak in the response function of the human eye
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Table 1.2 Wavebands corresponding to perceived
colours of visible light.

Colour Waveband (µm) Colour Waveband (µm)

Red 0.780 to 0.622 Green 0.577 to 0.492

Orange 0.622 to 0.597 Blue 0.492 to 0.455

Yellow 0.597 to 0.577 Violet 0.455 to 0.390

(a)

(b)

Green

Red

Blue
(× 20)

400 500 600 700
Violet Wavelength, nm Red

100

80

60

40

20

0

R
el

at
iv

e 
se

ns
iti

vi
ty

400 500 600 700
Violet Wavelength, nm Red

100

80

60

40

20

0

R
el

at
iv

e 
se

ns
iti

vi
ty

Figure 1.9 (a) Response function of the red-, green- and
blue-sensitive cones on the retina of the human eye. (b)
Overall response function of the human eye. Peak sensitivity
occurs near 550 nm (0.55 µm).

corresponds closely to the peak in the Sun’s radiation
emittance distribution (Section 1.2.4).

The process of atmospheric scattering, discussed in
Section 1.2.5 below, deflects light rays from a straight
path and thus causes blurring or haziness. It affects the
blue end of the visible spectrum more than the red end,

and consequently the blue wave and is not used in many
remote-sensing systems.

Figure 1.10a–c shows three greyscale images collected
in the blue/green, green and red wavebands respectively
by a sensor called the Thematic Mapper that is carried
by the American Landsat-5 and Landsat-7 satellites
(Chapter 2). The different land cover types reflect energy
in the visible spectrum in a differential manner, although
the clouds and cloud shadows in the upper centre of the
image are clearly visible in all three images. Various
crops in the fields round the village of Littleport (north
of Cambridge in eastern England) can be discriminated,
and the River Ouse can also be seen as it flows
northwards in the right hand side of the image area. It
is dangerous to rely solely on visual interpretation of
images such as these. This book is about the processing
and manipulation of images, and we will see that it
is possible to change the colour balance, brightness
and contrast of images to emphasize (or de-emphasize)
particular targets. Digital image processing should be
an aid to interpretation, but the user should always be
aware of enhancements that have been carried out.

EMR with wavelengths shorter than those of visible
light (less than 0.4 µm) is divided into three spectral
regions, called γ rays, X-rays and ultraviolet radiation.
Because of the effects of atmospheric scattering and
absorption (Section 4.4; Figure 4.11), none of these
wavebands is used in satellite remote sensing, though
low-flying aircraft can detect γ -ray emissions from
radioactive materials in the Earth’s crust. Radiation in
these wavebands is dangerous to life, so the fact that
it is mostly absorbed or scattered by the atmosphere
allows life to exist on Earth. In terms of the discussion
of the wave–particle duality in Section 1.2.2, it should
be noted that γ radiation has the highest energy levels
and is the most ‘particle-like’ of all EMR, whereas radio
frequency radiation is most ‘wave-like’ and has the
lowest energy levels.

Wavelengths that are longer than the visible red are
subdivided into the IR, microwave and radio frequency
wavebands. The IR waveband, extending from 0.7 µm to
1 mm, is not a uniform region. Short-wavelength infrared
(SWIR) or near-infrared (NIR) energy, with wavelengths
between 0.7 and 0.9 µm, behaves like visible light
and can be detected by special photographic film. IR
radiation with a wavelength of up to 3.0 µm is primarily
of solar origin and, like visible light, is reflected by the
surface of the Earth. Hence, these wavebands are often
known as the optical bands. Figure 1.11a shows an
image of the area shown in Figure 1.10 collected by the
Landsat TM sensor in the NIR region of the spectrum
(0.75 − 0.90 µm). This image is considerably clearer than
the visible spectrum images shown in Figure 1.10. We
will see in Section 1.3.2 that the differences in reflection
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(a) (b)

(c) (d)

Figure 1.10 Images collected in (a) band 1 (blue–green), (b) band 2 (green) and (c) band 3 (red) wavebands of the optical
spectrum by the Thematic Mapper sensor carried by the Landsat-5 satellite. Image (d) shows the three images (a–c) superimposed
with band 1 shown in blue, band 2 in green and band 3 in red. This is called a natural colour composite image. The area shown
is near the town of Littleport in Cambridgeshire, eastern England. The diagonal green strip is an area of fertile land close to a
river. Original data c© ESA 1994; Distributed by Eurimage.

(a) (b)

Figure 1.11 Image of ground reflectance in (a) the 0.75–0.90 µm band (near infrared) and (b) the middle infrared (2.08–2.35 µm)
image of the same area as that shown in Figure 1.10. These images were collected by the Landsat-5 Thematic Mapper (bands 4
and 7). Original data c© ESA 1994; Distributed by Eurimage.
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between vegetation, water and soil are probably greatest
in this NIR band. An image of surface reflection in the
Landsat TM mid-IR waveband (2.08 − 2.35 µm) of the
same area is shown in Figure 1.11b.

In wavelengths longer than around 3 µm, IR radiation
emitted by the Earth’s surface can be sensed in the form
of heat. The amount and wavelength of this radiation
depends on the temperature of the source (Section 1.2.4).
Because these longer IR wavebands are sensed as heat,
they are called the thermal infrared (TIR) wavebands.
Much of the TIR radiation emitted by the Earth is
absorbed by, and consequently heats, the atmosphere
thus making life possible on the Earth (Figure 1.7).
There is, however, a ‘window’ between 8 and 14 µm
which allows a satellite sensor above the atmosphere to
detect thermal radiation emitted by the Earth, which has
its peak wavelength at 9.7 µm. Note, though, that the
presence of ozone in the atmosphere creates a narrow
absorption band within this window, centred at 9.5 µm.
Boyd and Petitcolin (2004) consider remote sensing in
the region 3.0 − 5.0 µm. There are a number of regions
of high transmittance in this middle IR band, which is
really a transition between reflected visible and NIR
radiation and emitted TIR radiation.

Absorption of longer-wave radiation by the atmosphere
has the effect of warming the atmosphere. This is called
the natural greenhouse effect. Water vapour (H2O) and
carbon dioxide (CO2) are the main absorbing agents,
together with ozone (O3). The increase in the carbon
dioxide content of the atmosphere over the last century,
due to the burning of fossil fuels, is thought to enhance
the greenhouse effect and to raise the temperature of the
atmosphere above its natural level. This could have long-
term climatic consequences. An image of part of Western
Europe acquired by the Advanced Very High Resolu-
tion Radiometer (AVHRR) carried by the US NOAA-14
satellite is shown in Figure 1.12. The different colours
show different levels of emitted thermal radiation in the
11.5 − 12.5 µm waveband. Before these colours can be
interpreted in terms of temperatures, the effects of the
atmosphere as well as the nature of the sensor calibra-
tion must be considered. Both these topics are covered
in Chapter 4. For comparison, a visible band image of
Europe and North Africa produced by the Meteosat-6
satellite is shown in Figure 1.13. Both images were col-
lected by the UK NERC-funded satellite receiving station
at Dundee University, Scotland. Both images were orig-
inally in greyscale but were converted to colour using a
procedure called density slicing, which is considered in
detail in Section 5.4.1.

That region of the spectrum composed of EMR
with wavelengths between 1 mm and 300 cm is called
the microwave band. Most satellite-borne sensors that
operate in the microwave region use microwave radiation

Figure 1.12 NOAA AVHRR band 5 image (thermal infrared,
11.5–12.5 µm) of western Europe and NW Africa collected at
14.20 on 19 March 1998. The image was downloaded by the
NERC Satellite Receiving Station at Dundee University, UK,
where the image was geometrically rectified (Chapter 4) and
the latitude/longitude grid and digital coastline were added.
Darker colours (dark blue, dark green) areas indicate greater
thermal emissions. The position of a high-pressure area (anti-
cyclone) can be inferred from cloud patterns. Cloud tops
are cold and therefore appear white. The NOAA satellite
took just over 15 minutes to travel from the south to the
north of the area shown on this image. The colour sequence
is (from cold to warm): dark blue–dark green–green–light
cyan–pink–yellow–white. c© Dundee Satellite Receiving Sta-
tion, Dundee University.

with wavelengths between 3 and 25 cm. Radiation
at these wavelengths can penetrate cloud, and the
microwave band is thus a valuable region for remote
sensing in temperate and tropical areas where cloud
cover restricts the collection of optical and TIR images.
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Figure 1.13 Portion of a Meteosat-6 visible channel image of Europe and North Africa taken at 18.00 on 17 March 1998,
when the lights were going on across Europe. Image received by Dundee University, UK. The colour sequence is black–dark
blue–cyan–green–yellow–red–white. The banding pattern on the right side of the image (black stripes) is probably electronic
noise. c© Dundee Satellite Receiving Station, Dundee University.

Some microwave sensors can detect the small amounts
of radiation at these wavelengths that is emitted by the
Earth. Such sensors are called passive because they
detect EMR that is generated externally, for example
by emittance by or reflectance from a target. Passive
microwave radiometers such as the SMMR (scanning
multichannel microwave radiometer) produce imagery
with a low spatial resolution (Section 2.2.1) that is used
to provide measurements of sea-surface temperature and
wind speed, and also to detect sea ice.

Because the level of microwave energy emitted by the
Earth is very low, a high-resolution imaging microwave
sensor generates its own EMR at centimetre wavelengths,
transmits this energy towards the ground and then detects
the strength of the return signal that is scattered by the
target in the direction of the sensor. Devices that gen-
erate their own electromagnetic energy are called active
sensors to distinguish them from the passive sensors that
are used to detect and record radiation of solar or terres-
trial origin in the visible, IR and microwave wavebands.
Thus, active microwave instruments are not dependent
on an external source of radiation such as the Sun or,
in the case of thermal emittance, the Earth. It follows
that active microwave sensors can operate independently
by day or by night. An analogy that is often used is
that of a camera. In normal daylight, reflected radiation
from the target enters the camera lens and exposes the
film. Where illumination conditions are poor, the pho-
tographer employs a flashgun that generates radiation in
visible wavebands, and the film is exposed by light from
the flashgun that is reflected by the target. The microwave
instrument produces pulses of energy, usually at centime-
tre wavelengths, that are transmitted by an antenna or
aerial. The same antenna picks up the reflection of these
energy pulses as they return from the target.

Microwave imaging sensors are called imaging
radars (the word radar is an acronym, derived from
radio detection and ranging). The spatial resolution
(Section 2.2.1) of imaging radars is a function of their
antenna length. If a conventional (‘brute force’) radar is
used, then antenna lengths become considerable as spa-
tial resolution increases. Schreier (1993b, p. 107) notes
that if the radar carried by the Seasat satellite (launched
in 1981) had used a ‘brute force’ approach then its 10 m
long antenna would have generated images with a spatial
resolution of 20 km. A different approach, using several
views of the target as the satellite approaches, reaches
and passes the target, provides a means of achieving
high resolution without the need for excessive antenna
sizes. This approach uses the SAR principle, described
in Section 2.4, and all satellite-borne radar systems
have used the SAR principle. The main advantage of
radar is that it is an all-weather, day–night, high spatial
resolution instrument, which can operate independently
of weather conditions or solar illumination. This makes
it an ideal instrument for observing areas of the world
such as the temperate and tropical regions, which are
often cloud-covered and therefore inaccessible to optical
and IR imaging sensors.

A radar signal does not detect either colour informa-
tion (which is gained from analysis of optical wavelength
sensors) or temperature information (derived from data
collected by TIR sensors). It can detect both surface
roughness and electrical conductivity information (which
is related to soil moisture conditions). Because radar is an
active rather than a passive instrument, the characteristics
of the transmitted signal can be controlled. In particular,
the wavelength, depression angle and polarisation of the
signal are important properties of the radiation source
used in remote sensing. Radar wavelength (Table 1.3)
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Table 1.3 Radar wavebands and nomenclature.

Band Frequency Wavelength
designation (MHz) (cm)

P 300–1000 30–100

L 1000–2000 15–30

S 2000–4000 7.5–15

C 4000–8000 3.75–7.5

X 8000−12 000 2.5–3.75

Ku 12 000–18 000 1.667–2.5

K 18 000–27 000 1.111–1.667

Ka 27 000–40 000 0.75–1.111

determines the observed roughness of the surface, in that
a surface that has a roughness with a frequency less than
that of the microwave radiation used by the radar is seen
as smooth. An X-band (circa 3 cm wavelength) image
of the area around the Richat structure in Mauretania is
shown in Figure 1.14. Radar sensors are described in
more detail in Section 2.4.

Beyond the microwave region is the radio band. Radio
wavelengths are used in remote sensing, but not to detect

Figure 1.14 X-band Synthetic aperture radar (SAR) image
of the Richat geological structure in Mauretania col-
lected by the Italian satellite COSMO-Skymed 1 on 8
October 2007. The structure is about 60 km in width.
COSMO-Skymed (COnstellation of small Satellites for
Mediterranean basin Observation) plans to have five satel-
lites in orbit eventually. The third was launched in October,
2008. (http://www.telespazio.it/GalleryMatera.html). COS-
MO-SkyMed Product c© ASI-Agence Spatiale Italiana
(YEAR) – All Rights Reserved.

Earth-surface phenomena. Commands sent to a satellite
utilize radio wavelengths. Image data is transmitted
to ground receiving stations using wavelengths in the
microwave region of the spectrum; these data are
recorded on the ground by high-speed tape-recorders
while the satellite is in direct line of sight of a ground
receiving station. Image data for regions of the world
that are not within range of ground receiving stations are
recorded by onboard tape-recorders or solid-state mem-
ory and these recorded data are subsequently transmitted
together with currently scanned data when the satellite is
within the reception range of a ground receiving station.
The first three Landsat satellites (Section 2.3.6) used
onboard tape recorders to supplement data that were
directly transmitted to the ground. The latest Landsat
(number 7) relies on the TDRS (Tracking and Data
Relay Satellite) system, which allows direct broadcast
of data from Earth resources satellites to one of a set of
communications satellites located above the Equator in
geostationary orbit (meaning that the satellite’s orbital
velocity is just sufficient to keep pace with the rotation
of the Earth). The signal is relayed by the TDRS system
to a ground receiving station at White Sands, NM, USA.
European satellites use a similar system called Artemis,
which became operational in 2003.

1.2.4 Sources of Electromagnetic Radiation

All objects whose temperature is greater than absolute
zero, which is approximately −273 ◦C or 0 K (Kelvin),
emit radiation. However, the distribution of the amount
of radiation at each wavelength across the spectrum is
not uniform. Radiation is emitted by the stars and plan-
ets; chief of these, as far as the human race is con-
cerned, is the Sun, which provides the heat and light
radiation needed to sustain life on Earth. The Sun is an
almost-spherical body with a diameter of 1.39 × 106 km
and a mean distance from Earth of 150 × 106 km. Its
chief constituents are hydrogen and helium. The conver-
sion of hydrogen to helium in the Sun’s core provides
the energy that is radiated from the outer layers. At the
edge of the Earth’s atmosphere the power received from
the Sun, measured over the surface area of the Earth,
is approximately 3.9 × 1022 MW which, if it were dis-
tributed evenly over the Earth, would give an incident
radiant flux density of 1367 W m−2. This value is known
as the solar constant , even though it varies throughout
the year by about ±3.5%, depending on the distance of
the Earth from the Sun (and this variation is taken into
account in the radiometric correction of remotely-sensed
images; see Section 4.6). Bonhomme (1993) provides
a useful summary of a number of aspects relating to
solar radiation. On average, 35% of the incident radi-
ant flux is reflected from the Earth (including clouds
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and atmosphere), the atmosphere absorbs 17%, and 47%
is absorbed by the materials forming the Earth’s sur-
face. From the Stefan–Boltzmann Law (below) it can be
shown that the Sun’s temperature is 5777 K if the solar
constant is 1367 W m−2. Other estimates of the Sun’s
temperature range from 5500 to 6200 K. The importance
of establishing the surface temperature of the Sun lies in
the fact that the distribution of energy emitted in the dif-
ferent regions of the electromagnetic spectrum depends
upon the temperature of the source.

If the Sun were a perfect emitter, it would be an
example of a theoretical ideal, called a blackbody . A
blackbody transforms heat energy into radiant energy at
the maximum rate that is consistent with the laws of ther-
modynamics (Suits, 1983). Planck ’s Law describes the
spectral exitance (i.e. the distribution of radiant flux den-
sity with wavelength, Section 1.2.1) of a blackbody as:

Mλ = c1

λ5(exp[c2/λT ] − 1)

where
c1 = 3.742 × 10−16 W m−2

c2 = 1.4388 × 10−2 m K
λ = wavelength (m)
T = temperature (Kelvin)

M λ = spectral exitance per unit wavelength

Curves showing the spectral exitance of blackbodies
at temperatures of 1000, 1600 and 2000 K are shown
in Figure 1.15. The total radiant energy emitted by a
blackbody is dependent on its temperature, and as temper-
ature increases so the wavelength at which the maximum
spectral exitance is achieved is reduced. The dotted line
in Figure 1.15 joins the peaks of the spectral exitance
curves. It is described by Wien’s Displacement Law,
which gives the wavelength of maximum spectral exi-
tance (λm) in terms of temperature:

λm = c3

T
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Figure 1.15 Spectral exitance curves for blackbodies at tem-
peratures of 1000, 1600 and 2000 K. The dotted line joins
the emittance peaks of the curves and is described by Wien’s
Displacement Law (see text).

and

c3 = 2.898 × 10−3 m K

The total spectral exitance of a blackbody at tempera-
ture T is given by the Stefan–Boltzmann Law as:

M = σT 4

In this equation, σ = 5.6697 × 10−8 W m−2 K−4.
The distribution of the spectral exitance for a black-

body at 5900 K closely approximates the Sun’s spec-
tral exitance curve, while the Earth can be considered
to act like a blackbody with a temperature of 290 K
(Figure 1.16). The solar radiation maximum occurs in the
visible spectrum, with maximum irradiance at 0.47 µm.
About 46% of the total energy transmitted by the Sun
falls into the visible waveband (0.4–0.76 µm).

Wavelength-dependent mechanisms of atmospheric
absorption alter the actual amounts of solar irradiance
that reach the surface of the Earth. Figure 1.17 shows
the spectral irradiance from the Sun at the edge of the
atmosphere (solid curve) and at the Earth’s surface (bro-
ken line). Further discussion of absorption and scattering
can be found in Section 1.2.5. The spectral distribution
of radiant energy emitted by the Earth (Figure 1.16)
peaks in the TIR wavebands at 9.7 µm. The amount
of terrestrial emission is low in comparison with solar
irradiance. However, the solar radiation absorbed by
the atmosphere is balanced by terrestrial emission in
the TIR, keeping the temperature of the atmosphere
approximately constant. Furthermore, terrestrial TIR
emission provides sufficient energy for remote sensing
from orbital altitudes to be a practical proposition.
The characteristics of the radiation sources used in
remote sensing impose some limitations on the range of
wavebands available for use. In general, remote sensing
instruments that measure the spectral reflectance of solar
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Figure 1.17 Solar irradiance at the top of the atmosphere
(solid line) and at sea-level (dotted line). Differences are
due to atmospheric effects as discussed in the text. See also
Figure 1.7. Based on Manual of Remote Sensing, Second
Edition, ed. R.N. Colwell, 1983, Figure 5.5; Reproduced with
permission from American Society for Photogrammetry and
Remote Sensing, Manual of Remote Sensing.

radiation from the Earth’s surface are restricted to the
wavelengths shorter than 2.5 µm. Instruments to detect
terrestrial radiant exitance operate in the spectral region
between 3 and 14 µm. Because of atmospheric absorption
by carbon dioxide, ozone and water vapour, only the
3–5 and 8–14 µm regions of the TIR band are useful in
remote sensing. An absorption band is also present in the
9–10 µm region. As noted earlier, the Earth’s emittance
peak occurs at 9.7 µm, so satellite-borne thermal sensors
normally operate in the 10.5–12.5 µm spectral region.
The 3–5 µm spectral window can be used to detect
local targets that are hotter than their surroundings,
for example forest fires. Since the 3–5 µm region also
contains some reflected solar radiation it can only be
used for temperature sensing at night.

Wien’s Displacement Law (Figure 1.15) shows that
the radiant power peak moves to shorter wavelengths as
temperature increases, so that a forest fire will have a
radiant energy peak at a wavelength shorter than 9.7 µm.
Since targets such as forest fires are sporadic in nature
and require high-resolution imagery the 3–5 µm spectral
region is used by aircraft-mounted thermal detectors. This
is a difficult region for remote sensing because it contains
a mixture of reflected and emitted radiation, the effects
of which are not easy to separate.

The selection of wavebands for use in remote sensing is
therefore seen to be limited by several factors: primarily
(i) the characteristics of the radiation source, as discussed
in this section, (ii) the effects of atmospheric absorption

and scattering (Section 1.2.5), and (iii) the nature of the
target. This last point is considered in Section 1.3.

1.2.5 Interactions with the Earth’s Atmosphere

In later chapters, we consider measurements of radiance
from the Earth’s surface made by instruments carried by
satellites such as Landsat and SPOT that operate in the
optical wavebands, that is, those parts of the electromag-
netic spectrum with properties similar to those of visible
light. It was noted at the beginning of this chapter that
one aim of remote sensing is to identify the nature, and
possibly the properties, of Earth surface materials from
the spectral distribution of EMR that is reflected from,
or emitted by, the target and recorded by the sensor. The
existence of the atmosphere causes problems, because
EMR from the Sun that is reflected by the Earth (the
amount reflected depending on the reflectivity or albedo
of the surface) and detected by the satellite or aircraft-
borne sensor must pass through the atmosphere twice,
once on its journey from the Sun to the Earth and once
after being reflected by the surface of the Earth back to
the sensor. During its passage through the atmosphere,
EMR interacts with particulate matter suspended in the
atmosphere and with the molecules of the constituent
gases. This interaction is usually described in terms of
two processes. One, called scattering , deflects the radia-
tion from its path while the second process, absorption ,
converts the energy present in EMR into the internal
energy of the absorbing molecule. Both absorption and
scattering vary in their effect from one part of the spec-
trum to another. Remote sensing of the Earth’s surface
is impossible in those parts of the spectrum that are seri-
ously affected by scattering and/or absorption, for these
mechanisms effectively render the atmosphere opaque to
incoming or outgoing radiation. As far as remote sens-
ing of the Earth’s surface is concerned, the atmosphere
‘. . . appears no other thing to me but a foul and pestilen-
tial congregation of vapours’ (Hamlet , Act 2, Scene 2).
Atmospheric absorption properties can, however, be use-
ful. Remote sensing of the atmosphere uses these proper-
ties and a good example is the discovery and monitoring
of the Antarctic ozone hole.

Regions of the spectrum that are relatively (but not
completely) free from the effects of scattering and absorp-
tion are called atmospheric windows; EMR in these
regions passes through the atmosphere with less modifica-
tion than does radiation at other wavelengths (Figure 1.7).
This effect can be compared to the way in which the
bony tissues of the human body are opaque to X-rays,
whereas the soft muscle tissue and blood are transparent.
Similarly, glass is opaque to ultraviolet radiation but is
transparent at the visible wavelengths. Figure 1.17 shows
a plot of wavelength against the magnitude of incoming
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radiation transmitted through the atmosphere; the window
regions are those with a high transmittance. The same
information is shown in a different way in Figure 1.7.

The effect of the processes of scattering and absorption
is to add a degree of haze to the image, that is, to reduce
the contrast of the image, and to reduce the amount of
radiation returning to the sensor from the Earth’s surface.
A certain amount of radiation that is reflected from the
neighbourhood of each target may also be recorded by
the sensor as originating from the target. This is because
scattering deflects the path taken by EMR as it travels
through the atmosphere, while absorption involves the
interception of photons or particles of radiation. Our eyes
operate in the visible part of the spectrum by observing
the light reflected by an object. The position of the object
is deduced from the assumption that this light has trav-
elled in a straight line between the object and our eyes.
If some of the light reflected towards our eyes from the
object is diverted from a straight path then the object will
appear less bright. If light from other objects has been
deflected so that it is apparently coming to our eyes from
the direction of the first object then that first object will
become blurred. Taken further, this scattering process will
make it appear to our eyes that light is travelling from all
target objects in a random fashion, and no objects will be
distinguishable. Absorption reduces the amount of light
that reaches our eyes, making a scene relatively duller.
Both scattering and absorption, therefore, limit the use-
fulness of some portions of the electromagnetic spectrum
for remote sensing purposes. They are known collectively
as attenuation or extinction.

Scattering is the result of interactions between EMR
and particles or gas molecules that are present in the
atmosphere. These particles and molecules range in size
from microscopic (with radii approximately equal to the
wavelength of the EMR) to raindrop size (100 µm and
larger). The effect of scattering is to redirect the incident
radiation, or to deflect it from its path. The atmospheric
gases that primarily cause scattering include oxygen,
nitrogen and ozone. Their molecules have radii of less
than 1 µm and affect EMR with wavelengths of 1 µm or
less. Other types of particles reach the atmosphere both
by natural causes (such as salt particles from oceanic
evaporation or dust entrained by aeolian processes) or
because of human activities (for instance, dust from soil
erosion caused by poor land management practices, and
smoke particles from industrial and domestic pollution).
Some particles are generated by photochemical reactions
involving trace gases such as sulfur dioxide or hydrogen
sulfide. The former may reach the atmosphere from car
exhausts or from the combustion of fossil fuels. Another
type of particle is the raindrop, which tends to be larger
than the other kinds of particles mentioned previously
(10–100 µm compared to 0.1–10 µm radius). The

concentration of particulate matter varies both in time
and over space. Human activities, particularly agriculture
and industry, are not evenly spread throughout the
world, nor are natural processes such as wind erosion or
volcanic activity. Meteorological factors cause variations
in atmospheric turbidity over time, as well as over space.
Thus, the effects of scattering are spatially uneven (the
degree of variation depending on weather conditions) and
vary from time to time. Remotely-sensed images of a par-
ticular area will thus be subjected to different degrees of
atmospheric scattering on each occasion that they are pro-
duced. Differences in atmospheric conditions over time
are the cause of considerable difficulty in the quantitative
analysis of time sequences of remotely-sensed images.

The mechanisms of scattering are complex, and are
beyond the scope of this book. However, it is possi-
ble to make a simple distinction between selective and
non-selective scattering. Selective scattering affects spe-
cific wavelengths of EMR, while non-selective scatter-
ing is wavelength independent. Very small particles and
molecules, with radii far less than the wavelength of the
EMR of interest, are responsible for Rayleigh scatter-
ing . The effect of this type of scattering is inversely
proportional to the fourth power of the wavelength, which
implies that shorter wavelengths are much more seriously
affected than longer wavelengths. Blue light (wavelength
0.4–0.5 µm) is thus more powerfully scattered than red
light (0.6–0.7 µm). This is why the sky seems blue, for
incoming blue light is so scattered by the atmosphere that
it seems to reach our eyes from all directions, whereas at
the red end of the visible spectrum scattering is much less
significant so that red light maintains its directional prop-
erties. The sky appears to be much darker blue when seen
from a high altitude, such as from the top of a mountain
or from an aeroplane, because the degree of scattering
is reduced due to the reduction in the length of the path
traversed through the atmosphere by the incoming solar
radiation. Scattered light reaching the Earth’s surface is
termed diffuse (as opposed to direct) irradiance or, more
simply, skylight . Radiation that has been scattered within
the atmosphere and which reaches the sensor without hav-
ing made contact with the Earth’s surface is called the
atmospheric path radiance.

Mie scattering is caused by particles that have radii
between 0.1 and 10 µm, that is approximately the same
magnitude as the wavelengths of EMR in the visible, NIR
and TIR regions of the spectrum. Particles of smoke, dust
and salt have radii of these dimensions. The intensity of
Mie scattering is inversely proportional to wavelength, as
in the case of Rayleigh scattering. However, the exponent
ranges in value from −0.7 to −2 rather than the −4 of
Rayleigh scattering. Mie scattering affects shorter wave-
lengths more than longer wavelengths, but the disparity
is not as great as in the case of Rayleigh scattering.
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Non-selective scattering is wavelength-independent. It
is produced by particles whose radii exceed 10 µm. Such
particles include water droplets and ice fragments present
in clouds. All visible wavelengths are scattered by such
particles. We cannot see through clouds because all visi-
ble wavelengths are non-selectively scattered by the water
droplets of which the cloud is formed. The effect of scat-
tering is, as mentioned earlier, to increase the haze level
or reduce the contrast in an image. If contrast is defined
as the ratio between the brightest and darkest areas of an
image, and if brightness is measured on a scale running
from 0 (darkest) to 100 (brightest), then a given image
with a brightest area of 90 and a darkest area of 10 will
have a contrast of 9. If scattering has the effect of adding
a component of upwelling radiation of 10 units then the
contrast becomes 100 : 20 or 5. This reduction in contrast
will result in a decrease in the detectability of features
present in the image. Figure 1.18 shows relative scatter
as a function of wavelength for the 0.3–1.0 µm region of
the spectrum for a variety of levels of atmospheric haze.
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Figure 1.18 Relative scatter as a function of wavelength for a
range of atmospheric haze conditions. Based on R.N. Colwell
(ed.), 1983, Manual of Remote Sensing, Second Edition, Figure
6.15. Reproduced with permission from American Society for
Photogrammetry and Remote Sensing, Manual of Remote
Sensing.

Absorption is the second process by which the Earth’s
atmosphere interacts with incoming EMR. Gases such as
water vapour, carbon dioxide and ozone absorb radia-
tion in particular, regions of the electromagnetic spec-
trum called absorption bands. The processes involved
are very complex and are related to the vibrational and
rotational properties of the molecules of water vapour,
carbon dioxide or ozone, and are caused by transitions
in the energy levels of the atoms. These transitions occur

at characteristic wavelengths for each type of atom and
at these wavelengths absorption rather than scattering is
dominant. Remote sensing in these absorption bands is
thus rendered impossible. Fortunately, other regions of
the spectrum with low absorption (high transmission) can
be used. These regions are called ‘windows’, and they
cover the 0.3–1.3 µm (visible/NIR), 1.5–1.8, 2.0–2.5 and
3.5–4.1 µm (middle IR) and 7.0–15.0 µm (TIR) wave-
bands. The utility of these regions of the electromagnetic
spectrum in remote sensing is considered at a later stage.

1.3 Interaction with Earth-Surface Materials

1.3.1 Introduction

Electromagnetic energy reaching the Earth’s surface from
the Sun is reflected, transmitted or absorbed. Reflected
energy travels upwards through, and interacts with, the
atmosphere; that part of it which enters the field of view
of the sensor (Section 2.2.1) is detected and converted
into a numerical value that is transmitted to a ground
receiving station on Earth. The amount and spectral distri-
bution of the reflected energy is used in remote sensing to
infer the nature of the reflecting surface. A basic assump-
tion made in remote sensing is that specific targets (soils
of different types, water with varying degrees of impuri-
ties, rocks of differing lithologies or vegetation of various
species) have an individual and characteristic manner of
interacting with incident radiation that is described by
the spectral response of that target. In some instances,
the nature of the interaction between incident radiation
and Earth-surface material will vary from time to time
during the year, such as might be expected in the case of
vegetation as it develops from the leafing stage, through
growth to maturity and, finally, to senescence.

The spectral response of a target also depends upon
such factors as the orientation of the Sun (solar azimuth,
Figure 1.19), the height of the Sun in the sky (solar
elevation angle), the direction that the sensor is pointing
relative to nadir (the look angle) and the state of health
of vegetation, if that is the target. Nevertheless, if
the assumption that specific targets are characterized
by an individual spectral response were invalid then
Earth Observation (EO) by remote sensing would be an
impossible task. Fortunately, experimental studies in the
field and in the laboratory, as well as experience with
multispectral imagery, have shown that the assumption
is generally a reasonable one. Indeed, the successful
development of remote sensing of the environment over
the last few decades bears witness to its validity. Note
that the term spectral signature is sometimes used to
describe the spectral response curve for a target. In
view of the dependence of spectral response on the
factors mentioned above, this term is inappropriate for
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Figure 1.19 Solar elevation and azimuth angles. The ele-
vation angle of the Sun – target line is measured upwards
from the horizontal plane. The zenith angle is measured from
the surface normal, and is equal to (90 – elevation angle)◦.
Azimuth is measured clockwise from north.

it gives a misleading impression of constancy. Remote
sensing scientists are not alone in trying to estimate the
nature of surface materials from their spectral reflection
properties; an English newspaper, the Daily Telegraph
(16 March 2009), reported that a thief routinely used
Google Earth to identify and steal lead sheathing on the
roofs of churches and public buildings.

In this section, spectral reflectance curves of vege-
tation, soil, rocks and water are examined in order to
emphasize their characteristic features. The results sum-
marized in the following paragraphs must not be taken
to be characteristic of all varieties of materials or all
observational circumstances. One of the problems met in
remote sensing is that the spectral reflectance of a given
Earth-surface cover type is influenced by a variety of
confusing factors. For example, the spectral reflectance
curve of a particular agricultural crop such as wheat is
not constant over time, nor is it the same for all kinds
of wheat. The spectral reflectance curve is affected by
factors such as soil nutrient status, the growth stage of
the vegetation, the colour of the soil (which may be
affected by recent weather conditions), the solar azimuth
and elevation angles and the look angle of the sensor.
The topographic position of the target in terms of slope
orientation with respect to solar azimuth and slope angle
also has an effect on the reflectance characteristics of the
target, as will the state of the atmosphere. Methods for
dealing with some of these difficulties are described in
Sections 4.5 and 4.7. Hence, the examples given in this
section are idealized models rather than templates.

Before turning to the individual spectral reflectance
features of Earth surface materials, a distinction must be

drawn between two kinds of reflectance that occur at a
surface. Specular reflection is that kind of reflection in
which energy leaves the reflecting surface without being
scattered, with the angle of incidence being equal to the
angle of reflectance (Figure 1.4a). Surfaces that reflect
specularly are smooth relative to the wavelength of the
incident energy. Diffuse or Lambertian reflectance occurs
when the reflecting surface is rough relative to the wave-
length of the incident energy, and the incident energy is
scattered in all directions (Figure 1.4b). A mirror reflects
specularly while a piece of paper reflects diffusely. In the
visible part of the spectrum, many terrestrial targets are
diffuse reflectors, whereas calm water can act as a specu-
lar reflector. At microwave wavelengths, however, some
terrestrial targets are specular reflectors, while volume
reflectance (scattering) can occur at optical wavelengths
in the atmosphere and the oceans, and at microwave
wavelengths in vegetation (Figure 1.4d).

A satellite sensor operating in the visible and NIR spec-
tral regions does not detect all the reflected energy from
a ground target over an entire hemisphere. It records the
reflected energy that is returned at a particular angle (see
the definition of radiance in Section 1.2.1). To make use
of these measurements, the distribution of radiance at
all possible observation and illumination angles (called
the bidirectional reflectance distribution function; BRDF)
must be taken into consideration. Details of the BRDF are
given by Slater (1980) who writes:

. . .the reflectance of a surface depends on both the direc-
tion of the irradiating flux and the direction along which
the reflected flux is detected.

Hyman and Barnsley (1997) demonstrate that multiple
images of the same area taken at different viewing angles
provide enough information to allow different land cover
types to be identified as a result of their differing BRDF.
The MISR (Multi-Angle Imaging SpectroRadiometer)
instrument, carried by the American Terra satellite,
collects multi-directional observations of the same ground
area over a timescale of a few minutes, at nadir and at fore
and aft angles of view of 21.1◦, 45.6◦, 60.0◦ and 70.5◦ and
in four spectral bands in the visible and NIR regions of
the electromagnetic spectrum. The instrument therefore
provides data for the analysis and characterisation of
reflectance variation of Earth surface materials over a
range of angles (Diner et al., 1991). Chopping et al.
(2003) use a BRDF model to extract information on
vegetation canopy physiognomy. The European Space
Agency’s (ESA’s) Compact High Resolution Imaging
Spectrometer (CHRIS), carried by a small satellite
named PROBA (Project for On Board Autonomy) can
image an 18.6 km2 area with its high resolution mode
at multiple angles. See http://directory.eoportal.org/
get_announce.php?an_id=7299. Furthermore, its agile
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platform can be tilted during acquisition so multi-angle
observations can be acquired. See Guanter, Alonso and
Moreno (2005) for more details of the PROBA/CHRIS
mission and its first results.

It follows from the foregoing that, even if the target
is a diffuse reflector such that incident radiation is scat-
tered in all directions, the assumption that radiance is
constant for any observation angle θ measured from the
surface normal does not generally hold. A simplifying
assumption is known as Lambert’s Cosine Law , which
states that the radiance measured at an observation angle
θ is the same as that measured at an observation angle of
0◦ adjusted for the fact that the projection of the unit
surface at a view angle of θ is proportional to cos θ

(Figure 1.20). Surfaces exhibiting this property are called
‘Lambertian’, and a considerable body of work in remote
sensing either explicitly or implicitly assumes that Lam-
bert’s Law applies. However, it is usually the case that
the spectral distribution of reflected flux from a surface
is more complex than the simple description provided by
Lambert’s Law, for it depends on the geometrical con-
ditions of measurement and illumination. The topic of
correction of images for sun and view angle effects is
considered further in Chapter 4.

0°; 100%

30°; 87%

45°; 71%

60°; 50%

75°; 26%

Figure 1.20 Lambert’s cosine law. Assume that the illumi-
nation angle is 0◦. A range of view angles is shown, together
with the percentage of incoming radiance that is scattered in
the direction of the view angle.

1.3.2 Spectral Reflectance of Earth Surface
Materials

In this section, typical spectral reflectance curves
for characteristic types of Earth-surface materials are
discussed. The remarks in Section 1.3.1 should not be

overlooked when reading the following paragraphs. The
Earth-surface materials that are considered in this section
are vegetation, soil, bare rock and water. The short
review by Verstraete and Pinty (1992) is recommended.
Hobbs and Mooney (1990) provide a useful survey of
remote sensing of the biosphere. Aplin (2004, 2005)
covers progress in remote sensing in ecology.

1.3.2.1 Vegetation

The reflectance spectra of 3 pixels selected from a DAIS
imaging spectrometer data set (Section 9.3) covering a
small area of La Mancha in central Spain (Figure 1.21a)
show that real-world vegetation spectra conform to the
ideal pattern, though there is significant variation, espe-
cially in the NIR region. Two of the three curves in
Figure 1.21b show relatively low values in the red and
the blue regions of the visible spectrum, with a minor
peak in the green region. These peaks and troughs are
caused by absorption of blue and red light by chloro-
phyll and other pigments. Typically, 70–90% of blue
and red light is absorbed to provide energy for the pro-
cess of photosynthesis. The slight reflectance peak in the
green waveband between 0.5 and 0.6 µm is the reason that
actively growing vegetation appears green to the human
eye. Non-photosynthetically active vegetation lacks this
‘green peak’.

For photosynthetically active vegetation, the spectral
reflectance curve rises sharply between about 0.65 and
0.76 µm, and remains high in the NIR region between
0.75 and 1.35 µm because of interactions between the
internal leaf structure and EMR at these wavelengths.
Internal leaf structure has some effect between 1.35 and
2.5 µm, but reflectance is largely controlled by leaf-tissue
water content, which is the cause of the minima recorded
near 1.45 and 1.95 µm. The status of the vegetation (in
terms of photosynthetic activity) is frequently character-
ized by the position of a point representative of the steep
rise in reflectance at around 0.7 µm. This point is called
the red edge point, and its characterization and uses are
considered in Section 9.3.2.3.

As the plant senesces, the level of reflectance in the
NIR region (0.75–1.35 µm) declines first, with reflectance
in the visible part of the spectrum not being affected sig-
nificantly. This effect is demonstrated by the reflectance
spectrum shown in orange on Figure 1.21. The slope of
the curve from the red to the NIR region of the spectrum
is lower, as is the reflectance in the area of the ‘infrared
plateau’. However, changes in reflectance in the visible
region are not so apparent. As senescence continues, the
relative maximum in the green part of the visible spectrum
declines as pigments other than chlorophyll begin to
dominate, and the leaf begins to lose its greenness and
to turn yellow or reddish, depending on species. The
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Figure 1.21 (a) DAIS image of part of La Mancha, Central Spain. (b) Reflectance spectra in the optical wavebands of three
vegetation pixels selected from this image. The two green curves represent the typical spectral reflectance curves of active
vegetation. The 2 pixels which these curves represent were selected from the bright red area in the bottom left of image (a) and
the similar area by the side of the black lagoon. The third reflectance curve, shown in orange, was selected from the orange area
in the top right of image (a). The spectral reflectance plots are discontinuous because parts of the atmosphere absorb and/or
scatter incoming and outgoing radiation (see Figure 1.7 and Chapter 4). Reproduced with permission from the German Space
Agency, DLR.

wavelength of the red edge point also changes. Stress
caused by environmental factors such as drought or by the
presence or absence of particular minerals in the soil can
also produce a spectral response that is similar to senes-
cence. Areas of vegetation showing adverse effects due to
the presence (or absence) of certain minerals in the soil

are called geobotanical anomalies, and their distribution
has been used successfully to determine the location of
mineral deposits (Goetz, Rock and Rowan, 1983).

The shape of the spectral reflectance curve is used to dis-
tinguish vegetated and non-vegetated areas on remotely-
sensed imagery. Differences between species can also be
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considerable, and may be sufficient to permit their discrim-
ination, depending on the number, width and location of
the wavebands used by the sensor (Section 2.2). Such dis-
crimination may be possible on the basis of relative differ-
ences in the spectral reflectance curves of the vegetation or
crop types. Absolute reflectance values (Section 4.6) may
be used to estimate physical properties of the vegetation,
such as leaf area index (LAI) or biomass production. In
agriculture, the estimation of crop yields is often a signifi-
cant economic requirement. Ratios of reflectance values in
two or more spectral bands are widely used to characterize
vegetation (Section 6.2.4). It is important to remember,
however, the points made in Section 1.3.1; there is no
single, ideal spectral reflectance curve for any particular
vegetation type, and the recorded radiance from a point on
the ground will depend upon the viewing and illumination
angles, as well as other variables. The geometry of the crop
canopy will strongly influence the BRDF (Section 1.3.1),
while factors such as the transmittance of the leaves, the
number of leaf layers, the actual arrangement of leaves on
the plant and the nature of the background (which may be
soil, or leaf litter or undergrowth) are also important. In
order to distinguish between some types of vegetation, and
to assess growth rates from remotely-sensed imagery, it is
necessary to use multi-temporal imagery , that is imagery
of the same area collected at different periods in the grow-
ing season.

1.3.2.2 Geology

Geological use of remotely-sensed imagery relies, to
some extent, upon knowledge of the spectral reflectance
curves of vegetation, for approximately 70% of the
Earth’s land surface is vegetated and the underlying
rocks cannot be observed directly, and differences in soil
and underlying bedrock can be seen in the distribution
of vegetation species, numbers of species and vigour.
Even in the absence of vegetated surfaces, weathering
products generally cover the bedrock. It was noted in
the preceding section that geobotanical anomalies might
be used to infer the location of mineral deposits. Such
anomalies include peculiar or unexpected species distri-
bution, stunted growth or reduced ground cover, altered
leaf pigmentation or yellowing (chlorosis) and alteration
to the phenological cycle, such as early senescence or
late leafing in the spring. It would be unwise to suggest
that all such changes are due to soil geochemistry;
however, the results of a number of studies indicate that
the identification of anomalies in the vegetation cover of
an area can be used as a guide to the presence of mineral
deposits. If the relationship between soil formation and
underlying lithology has been destroyed, for example by
the deposition of glacial material over the local rock,
then it becomes difficult to make associations between

the phenological characteristics of the vegetation and
lithology of the underlying rocks.

In semi-arid and arid areas such as the Great Sandy
Desert of Western Australia (Figure 1.22), the spectral
reflectance curves of rocks and minerals may be used
directly in order to infer the lithology of the study area,
though care should be taken because weathering crusts
with spectra that are significantly different from the par-
ent rock may develop. Laboratory studies of reflectance
spectra of minerals have been carried out by Hunt and
co-workers in the United States (Hunt, 1977, 1979; Hunt
and Ashley, 1979; Hunt and Salisbury, 1970, 1971; Hunt,
Salisbury and Lenhoff, 1971). Spectral libraries, accessi-
ble over the Internet from the Jet Propulsion Laboratory
(the ASTER Spectral Library and the US Geological Sur-
vey Digital Spectral Library), contain downloadable data
derived from the studies of Hunt, Salisbury and others.
A new version (numbered 2.0) of the ASTER Spectral
Library is now available (Baldridge et al., 2009) and
can be found at http://speclib.jpl.nasa.gov/. These stud-
ies demonstrate that rock-forming minerals have unique

Figure 1.22 Landsat-7 Thematic Mapper image of the Great
Sandy Desert of Western Australia. Despite its name, not
all of the desert is sandy and this image shows how the
differing spectral reflectance properties of the weathered rock
surfaces allow rock types to be differentiated. Field work
would be necessary to identify the specific rock types, while
comparison of the spectral reflectance properties at each
pixel with library spectra (such as those contained in the
ASTER spectral library, for example Figure 1.23) may allow
the identification of specific minerals. The image was collected
on 24 February 2001 and was made using shortwave-infrared,
near-infrared and red wavelengths as the red, green and blue
components of this false-colour composite image. Image
courtesy NASA/USGS.
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spectral reflectance curves. The presence of absorption
features in these curves is diagnostic of the presence of
certain mineral types. Some minerals, for example quartz
and feldspars, do not have strong absorption features in
the visible and NIR regions, but can be important as dilu-
tants for minerals with strong spectral features such as
the clay minerals, sulfates and carbonates. Clay miner-
als have a decreasing spectral reflectance beyond 1.6 µm,
while carbonate and silicate mineralogy can be inferred
from the presence of absorption bands in the mid-IR
region, particularly 2.0–2.5 µm. Kahle and Rowan (1980)

show that multi-spectral TIR imagery in the 8–12 µm
region can be used to distinguish silicate and non-silicate
rocks. Two examples of library spectra (for limestone
and basalt) are shown in Figure 1.23. The data for these
figures were derived from the ASTER Spectral Library.

Some of the difficulties involved in the identification
of rocks and minerals from the properties of spectral
reflectance curves include the effects of atmospheric scat-
tering and absorption, the solar flux levels in the spec-
tral regions of interest (Section 1.2.5) and the effects
of weathering. Buckingham and Sommer (1983) indicate
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Figure 1.23 Reflectance and emittance spectra of (a) limestone and (b) basalt samples. Data from the ASTER spectral library
through the courtesy the Jet Propulsion Laboratory, California Institute of Technology,Pasadena, California, c© California Institute
of Technology. All rights reserved.
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that the nature of the spectral reflectance of a rock is
determined by the mineralogy of the upper 50 µm, and
that weathering, which produces a surface layer that is
different in composition from the parent rock, can signif-
icantly alter the observed spectral reflectance.

The use of multiband (or hyperspectral) imaging
spectrometers mounted on aircraft and satellites can now
measure the spectra of ground surface materials at a
large number of closely spaced points. The interpretation
of these spectra requires a detailed knowledge of the
chemistry of the materials concerned. Imaging spectrom-
eters are described in Chapter 9. Clark (1999) gives an
accessible survey of the use of imaging spectrometers in
identifying surface materials. Introductions to geological
remote sensing are Drury (2004), Goetz (1989), Gupta
(2003), Prost (2002) and Vincent (1997).

1.3.2.3 Water Bodies

The characteristic spectral reflectance curve for water
shows a general reduction in reflectance with increasing
wavelength in the visible wavebands, so that in the
NIR the reflectance of deep, clear water is virtually
zero. This is shown schematically in Figure 1.24a, in
which the penetration depth of red, green and blue
light is indicated by the arrows depicted in those
colours. The black arrow represents NIR radiation,
which is absorbed by the first few centimetres of water.
Figure 1.25 shows an image of the Tanzanian coast
south of Dar-es-Salaam. The red component of the

Figure 1.25 Image of the coast of Tanzania south of
Dar-es-Salaam. Shades of red in the image show spatial vari-
ations in near-infrared reflectance, while shades of green in
the image show variations in the reflectance of red light. Blue
shades in the image show variations in the reflectance of green
light. This representation is usually termed ‘false colour’. Black
shows no reflection in any of the three wavebands, whereas
lighter colours show higher reflectance. The water in this area
is clear and the reflection from the sea bed is visible, showing
the extent of the continental shelf. This image was taken by
Landsat’s Multispectral Scanner (MSS), which is described in
Chapter 2. Image courtesy of NASA/USGS.

(a) (b)

Figure 1.24 (a) Showing the differential penetration depths of red, green and blue light in clear, calm water. The black line
shows longer (infrared) wavelengths that are totally absorbed by the first few centimetres of water. (b) The solid arrows show,
from right to left, bottom reflectance (the water depth is assumed to be less than the depth of penetration of blue light), volume
reflectance (caused by light being scattered by suspended sediment particles, phytoplankton, dissolved organic matter and
surface reflectance. The dotted line shows the path taken by light from the Sun that interacts with the atmosphere in the process
of atmospheric scattering (Chapter 4). Electromagnetic radiation scattered by the atmosphere may be considerably greater in
magnitude than that which is backscattered by surface reflectance, volume reflectance and bottom reflectance.
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image shows variations in the NIR reflectance of the land
and water surface, the green component of the image
shows variations in visible red reflectance and the blue
component of the image shows variations in the visi-
ble green reflectance. The increase in reflection from the
water from the deep, offshore region (where the ocean
is seen as black) to the inshore region, where the colour
changes to blue then blue–green, is clearly apparent. The
edge of the continental shelf is shown as an abrupt change
of colour, from light blue to black. The red colour of
the land surface shows the presence of vegetation, which
reflects strongly in the NIR, as noted in Section 1.3.2.1.

The spectral reflectance of water is affected by the
presence and concentration of dissolved and suspended
organic and inorganic material, and by the depth of the
water body. Thus, the intensity and distribution of the
radiance upwelling from a water body are indicative of
the nature of the dissolved and suspended matter in the
water, and of the water depth. Figure 1.24b shows how
the information that oceanographers and hydrologists
require is only a part of the total signal received at
the sensor. Solar irradiance is partially scattered by the
atmosphere, and some of this scattered light (the path
radiance) reaches the sensor. Next, part of the surviving
irradiance is reflected by the surface of the water body.
This reflection might be specular under calm conditions,
or its distribution might be strongly influenced by surface
waves and the position of the sun relative to the sensor,
giving rise to sunglint . Once within the water body, EMR
may be absorbed by the water (the degree of absorption
being strongly wavelength-dependent) or selectively

absorbed by dissolved substances, or back-scattered by
suspended particles. This latter component is termed the
volume reflectance. At a depth of 20 m only visible light
(mainly in the blue region) is present, as the NIR com-
ponent has been completely absorbed. Particulate matter,
or suspended solids, scatters the downwelling radiation,
the degree of scatter being proportional to the concen-
tration of particulates, although other factors such as the
particle-size distribution and the colour of the sediment
are significant. Over much of the observed low to medium
range of concentrations of suspended matter a positive,
linear relationship between suspended matter concen-
tration and reflectance in the visible and NIR bands
has been observed, though the relationship becomes
non-linear at increasing concentrations. Furthermore, the
peak of the reflectance curve moves to progressively
longer wavelengths as concentration increases, which
may lead to inaccuracy in the estimation of concentration
levels of suspended materials in surface waters from
remotely-sensed data. Another source of error is the
inhomogeneous distribution of suspended matter through
the water body, which is termed patchiness .

The presence of chlorophyll is an indication of the
trophic status of lakes and is also of importance in
estimating the level of organic matter in coastal and
estuarine environments. Whereas suspended matter has a
generally broadband reflectance in the visible and NIR,
chlorophyll exhibits absorption bands in the region below
0.5 µm and between 0.64 and 0.69 µm. Detection of the
presence of chlorophyll therefore requires an instrument
with a higher spectral resolution (Section 2.2.2) than
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Figure 1.26 Reflectance spectrum of tap water from 0.4 to 2.55 µm. Data from the ASTER spectral library through the courtesy
the Jet Propulsion Laboratory, California Institute of Technology,Pasadena, California, c© California Institute of Technology. All
rights reserved.
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Figure 1.27 This image of the ocean east of Tasmania in
December, 2004 depicts subtle differences in water colour
that result from varying distributions of such scattering and
absorbing agents in the water column as phytoplankton,
dissolved organic matter, suspended sediment, bubbles,
and so on. The ocean colours shown above result from
independently scaling the satellite-derived normalised
water-leaving radiances (nLw) at 551, 488 and 412 nm and
using the results as the red, green and blue components
of the image, respectively. Differences in the colours may
also partially reflect differences in atmospheric compo-
nents or levels of sun and sky glint or differences in the
path that light takes through the MODIS instrument. The
MODIS instrument is described in Section 2.3. Source:
http://oceancolor.gsfc.nasa.gov/cgi/image_archive.cgi?c
=CHLOROPHYLL. Image courtesy of NASA/USGS.

would be required to detect suspended sediment. Fur-
thermore, the level of backscatter from chlorophyll is
lower than that produced by suspended sediment; con-
sequently, greater radiometric sensitivity is also required.
Ocean observing satellites (Section 2.2.4) carry instru-
ments that are ‘tuned’ to specific wavebands that match
reflectance peaks or absorption bands in the spectra of
specific materials such as chlorophyll.

Although the spectral reflectance properties of sus-
pended matter and chlorophyll have been described
separately, it is not uncommon to find both are present at
one particular geographical locality. The complications
in separating-out the contribution of each to the total

Figure 1.28 Surface temperature image of the seas around
the Galapagos and Cocos Islands. This heat map, pro-
duced through ESA’s Medspiration project, shows the sea
surface temperatures around Galapagos Islands and Cocos
Island in the Pacific Ocean for 18 March 2007 using data
from the AATSR sensor carried by the ENVISAT satel-
lite (Section 2.2.1). Reproduced with permission from
http://dup.esrin.esa.it/news/inews/inews_130.asp.

observed reflectance are considerable. Furthermore,
the suspended matter or chlorophyll may be unevenly
distributed in the horizontal plane (the patchiness
phenomenon noted above) and in the vertical plane.
This may cause problems if the analytical technique
used to determine concentration levels from recorded
radiances is based on the assumption that the material
is uniformly mixed at least to the depth of penetration
of the radiation. In some cases, a surface layer of
suspended matter may ride on top of a lower, colder,
layer with a low suspended matter concentration, giving
rise to considerable difficulty if standard analytical
techniques are used. Reflection from the bed of the water
body can have unwanted effects if the primary aim of
the experiment is to determine suspended sediment or
chlorophyll concentration levels, for it adds a component
of reflection to that resulting from backscatter from the
suspended or dissolved substances. In other instances,
collection of the EMR reflected from the sea bed might
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Figure 1.29 Reflectance spectrum of a brown fine sandy loam soil from 0.4 to 2.5 µm. Note that the y-axis is graduated in
percentage reflection. Soil spectra vary with the mineralogical properties of the soil and also its moisture status. The latter varies
temporally and spatially. Data from the ASTER spectral library through the courtesy the Jet Propulsion Laboratory, California
Institute of Technology,Pasadena, California, c© California Institute of Technology. All rights reserved.

be the primary focus of the exercise, in which case the
presence of organic or inorganic material in the water
would be a nuisance.

The reflectance spectrum of clear water can be inferred
from Figure 1.24a. The magnitude of reflected radiation is
low, with absorption increasing with wavelength so that
in the NIR region of the spectrum absorption is almost
total, and water appears black in the image. Indeed, one
of the methods of estimating the atmospheric contribu-
tion to the signal received at the sensor is to look at the
recorded radiance for a deep clear lake in the NIR. The
departure from zero is an estimate of the atmospheric path
length (Figure 1.24b). The spectral reflectance curve for
tap water is shown in Figure 1.26.

One of the main interests of satellite oceanography is in
the derivation of images showing patterns in the oceans
and seas of the world. Ocean colour is a term used to
describe the variability in colour in images. Figure 1.27 is
an example. Ocean colour is related to oxygen consump-
tion and can help in, for example guiding fishing fleets to
their prey. A second, important, area of satellite oceanog-
raphy is the study of SST distribution. Figure 1.28 is an
example of a SST image.

1.3.2.4 Soils

The spectral reflectance curves of soils (Figure 1.29) are
generally characterized by a rise in reflectivity as wave-
length increases – the opposite, in fact, of the shape of
the spectral reflectance curve for water. Reflectivity in the

visible wavebands is affected by the presence of organic
matter in the soil, and by the soil moisture content, while
at 0.85–0.93 µm there is a ferric iron absorption band. As
ferric iron also absorbs ultraviolet radiation in a broad
band, the presence of iron oxide in soils is expressed
visually by a reddening of the soil, the redness being due
to the absorption of the wavelengths shorter (and longer)
than the red. Between 1.3–1.5 and 1.75–1.95 µm water
absorption bands occur, as mentioned in Section 1.2.5.
Soil reflectance in the optical part of the electromag-
netic spectrum is usually greatest in the region between
these two water absorption bands, and declines at wave-
lengths longer than 2 µm with clay minerals, if present,
being identifiable by their typical narrow-band absorp-
tion features in the 2.0–2.5 µm region. Irons, Weismiller
and Petersen (1989) provide a comprehensive survey of
factors affecting soil reflectance. Huete (1989) gives a
summary of the influence of the soil background on mea-
surements of vegetation spectra, while Huete (2004) is
a good review of the remote sensing of soils and soil
processes.

1.4 Summary

In the opening paragraph of Section 1.3.2.1, a basic
principle of applied remote sensing is set out. This
states that individual Earth-surface cover types are
distinguishable in terms of their spectral reflection
and emission characteristics. Changes in the spectral
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response of objects can also be used as an indication
of changes in the properties of the object, for example
the health or growth stage of a plant or the turbidity
of a water body. In this chapter, the basic principles of
EMR are reviewed briefly, and the relevant terminology
is defined. An understanding of these basic principles
is essential if the methods described in the remainder
of this book are to be applied sensibly. Chapter 2
provides details of the characteristics of sensors that
are used to measure the magnitude of EMR that is
reflected from or emitted by the Earth surface. It is
from these measurements that the spectral reflectance
curves of Earth surface elements can be derived. Further
details of the derivation of absolute spectral reflectance
values from remotely-sensed measurements are provided
in Chapter 4, while the use of data from imaging

spectrometers, which can record data in tens or hundreds
of bands, is described in Chapter 9. However advanced
the processing techniques are, their results cannot be
properly understood if the user does not have a good
working knowledge of the material covered in Chapter
1. Readers are encouraged to consult the main references
given in the text, and to familiarize themselves with the
reflection spectra of natural targets, for example by using
the MIPS software that can be downloaded from the pub-
lisher’s web site at URL www.wiley.com/go/mather4.
MIPS contains a small spectral library which is accessed
from the Plot|Plot Library Spectrum menu. It includes
a selection of spectra from the ASTER spectral library
(with the permission of the Jet Propulsion Labora-
tory, California Institute of Technology, Pasadena,
CA, USA).





2 Remote Sensing Platforms and Sensors

2.1 Introduction

This chapter contains a description of the nature and
characteristics of digital images of the Earth’s surface
produced by aircraft and satellite-borne sensors operating
in the visible, infrared and microwave regions of the
electromagnetic spectrum. The properties of a selection
of representative sensors operating in each of these
spectral regions are also described, and examples of
typical applications are discussed. No attempt is made to
provide full details of all planned, current and past plat-
forms and sensors as that subject would require a book
in itself that, furthermore, would be out of date before
it was written. However, some surveys are valuable
historical documents, for example Verger et al. (2003).
Others, such as the Committee on Earth Observation
Satellites (CEOS) CEOS EO Handbook – Earth Obser-
vation Satellite Capabilities and Plans (CEOS, 2008)
are comprehensive and reasonably up to date. See also
Wooster (2007) and Petrie (2008). Examples of the most
widely used satellite-borne imaging instruments, such as
the High Resolution Visible (HRV) (carried by the SPOT
satellite), Thematic mapper (TM)/Enhanced Thematic
Mapper Plus (ETM+) (Landsat), Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER)
(Terra) and Synthetic Aperture Radar (SAR) (Radarsats-1
and -2, and ERS-2) are used to illustrate those sections of
this chapter that deal with instruments for remote sensing
in the optical, near-infrared (NIR), thermal infrared (TIR)
and microwave wavebands. The trend towards small
satellites carrying a single instrument is also considered,
together with the growing number of commercial high-
resolution satellite systems. Three developing areas of
remote sensing using imaging spectrometers, interfer-
ometric SAR and lidar sensors are described in more
detail in Chapter 9. These datasets are largely, though
not exclusively, collected by sensors carried by aircraft
rather than by satellites. A new and interesting means
of collecting remotely-sensed data is by mounting
instruments on unmanned aerial vehicles (UAVs) which
can remain airborne for long periods and provide a
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stable platform. A Special Issue of IEEE Transactions on
Geoscience and Remote Sensing , devoted to the use of
UAVs in remote sensing is edited by Zhou et al. (2009).

Remote sensing of the surface of the Earth has a long
history, going back to the use of cameras carried by
balloons and pigeons in the eighteenth and nineteenth
centuries but in its modern connotation the term remote
sensing can be traced back to the aircraft-mounted
systems that were developed during the early part of
the twentieth century, initially for military purposes.
Airborne film camera systems are still a source of
remotely-sensed data (Lillesand, Kiefer and Chipman,
2008) and spaceborne film camera systems, initially
used in low Earth-orbit satellites for military purposes,
have also been used for civilian remote sensing from
space; for example the National Aeronautics and Space
Administration (NASA) Large Format Camera (LFC)
flown on the American Space Shuttle in October, 1984.
Astronauts onboard the International Space Station (ISS)
also take photographs of Earth, using any of a variety of
hand-held cameras, both analogue (film) and digital. See
http://eol.jsc.nasa.gov/default.htm for details of astronaut
photography. Analogue photography is now much less
important than it used to be, and most photography using
aircraft or spacecraft now uses digital cameras.

Although analogue photographic imagery still has
its uses, this book is concerned with the processing of
image data collected by scanning systems that ultimately
generate digital image products. Analogue cameras
and non-imaging (profiling) instruments such as radar
altimeters are thereby excluded from direct considera-
tion, although hard copy products from these systems
can be converted into digital form by scanning and the
techniques described in later chapters can be applied.

The general characteristics of imaging remote sens-
ing instruments operating in the optical wavebands (with
wavelengths less than about 3 µm) – namely, their spa-
tial, spectral, temporal and radiometric resolution – are
the subject of Section 2.2. In Section 2.3, the proper-
ties of images collected in the optical, NIR and TIR
regions of the electromagnetic spectrum are described.
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The properties of microwave imaging sensors are out-
lined in Section 2.4.

Spatial, spectral, temporal and radiometric resolution
are properties of remote sensing instruments. A further
important property of the remote sensing system is the
temporal resolution of the system, that is the time that
elapses between successive dates of imagery acquisition
for a given point on the ground. This revisit time may
be measured in minutes if the satellite is effectively
stationary with respect to a fixed point on the Earth’s
surface (i.e. in geostationary orbit, but note that not all
geostationary orbits produce fixed observation points;
see Elachi, 1988) or in days or weeks if the orbit is such
that the satellite moves relative to the Earth’s surface.
The Meteosat satellite is an example of a geostationary
platform, from which imaging instruments view an
entire hemisphere of the Earth from a fixed position
above the equator (Figure 1.13). The National Oceanic
and Atmospheric Administration (NOAA) (Figure 1.12),
Landsat (Figures 1.10 and 1.11) and SPOT satellites are
polar orbiters, each having a specific repeat cycle time
(or temporal resolution) of the order of hours (NOAA) or
days/weeks (Landsat, SPOT). Both the Terra and Aqua
satellites are in an orbit similar to that of Landsat. Since
Terra’s equatorial crossing time is 10.30 and Aqua’s is
13.30, it is possible to measure short-term variations in
oceanic and terrestrial systems. The temporal resolution
of a polar orbiting satellite is determined by the choice
of orbit parameters (such as orbital altitude, shape (e.g.
circular or elliptic) and inclination), which are related
to the objectives of the particular mission. Satellites that
are used for Earth observing missions normally have
a near-circular polar orbit, though the Space Shuttle
flies in an equatorial orbit and some meteorological
satellites use a geostationary orbit. Bakker (2000) and
Elachi and van Zyl (2006, Appendix B) give details of
the mathematics of orbit determination. The relationship
between the orbit period T and the orbit radius r is
given by Elachi’s equation B-5:

T = 2πr

√
r

gsR2

in which g s is the acceleration due to gravity
(0.00981 km s−2), R is the Earth’s radius (approxi-
mately 6380 km) and h is the orbital altitude (note
that r = R + h). If, for example h = 705 km then
T ≈ 6052 s ≈ 98.82 min, or more than double the
time that Shakespeare’s Puck took in A Midsummer
Night’s Dream . These calculations refer to the orbits of
Landsat-4, -5 and -7 (Figure 2.1). Thus, by varying the
altitude of a satellite in a circular orbit the time taken for
a complete orbit is also altered; the greater the altitude
the longer the orbital period.

The angle between the orbital plane and the Earth’s
equatorial plane is termed the inclination of the orbit,
which is usually denoted by the letter i . Changes in
the orbit are due largely to precession, caused mainly
by the slightly non-spherical shape of the Earth. If the
orbital precession is the same as the Earth’s rotation
round the Sun then the relationship between the node
line and the Sun is always the same, and the satellite
will pass over a given point on the Earth’s surface at
the same Sun time each day. Landsat and SPOT have
this kind of orbit, which is said to be Sun-synchronous .
Figure 2.1 illustrates an example of a circular, near-polar,
Sun-synchronous orbit, that of the later Landsat satellites
(numbered 4–7). Many satellites carrying Earth-
observing instruments use a near-polar, Sun-synchronous
orbit because the fact that the Sun’s azimuth angle is the
same for each date of observation means that shadow
effects are reduced (the shadows are always in approx-
imately the same direction). However, the Sun’s zenith
angle (Figure 1.19) changes throughout the year, so that
seasonal differences do occur. Some applications, such
as geology, may benefit from a the use of an orbit that
is not Sun-synchronous, because different views of the
region of interest taken at different Sun azimuth positions
may reveal structural features on the ground that are not
visible at one particular Sun azimuth angle (Figure 1.19).

As noted earlier, not all Earth observing platforms are
in near-polar, Sun-synchronous orbits. The Space Shut-
tle has an equatorial orbit, which describes an S-shaped
curve on the Earth’s surface between the approximate
latitudes of 50◦N and 50◦S. The orbit of the Interna-
tional Space Station is similar. A map showing the posi-
tion and track of the ISS is maintained by NASA at
http://spaceflight.nasa.gov/realdata/tracking/.

Thus, the orbit selected for a particular satellite
determines not just the time taken to complete one
orbit (which is one of the factors influencing temporal
resolution) but also the nature of the relationship between
the satellite and the solar illumination direction. The
temporal resolution is also influenced by the swath width,
which is the length on the ground equivalent to one
scan line. Landsat TM and ETM+ have a swath width
of 185 km whereas the Advanced Very High Resolution
Radiometer (AVHRR) sensor carried by the NOAA
satellites has a swath width of approximately 3000 km.
The AVHRR can therefore provide much more frequent
images of a fixed point on the Earth’s surface than can
the TM, though the penalty is reduced spatial resolution
(1.1 km at nadir, compared with 30 m). A pointable sen-
sor such as the SPOT HRV can, in theory, provide much
more frequent temporal coverage than the orbital pattern
of the SPOT satellite and the swath width of the HRV
would indicate.
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Figure 2.1 Example of a Sun-synchronous orbit. This is the Landsat-4, -5 and -7 orbit, which has an equatorial crossing time of
09.45 (local Sun time) in the descending node. The satellite travels southwards over the illuminated side of the Earth. The Earth
rotates through 24.7◦ during a full satellite orbit. The satellite completes just over 14.5 orbits in a 24-hour period. The Earth is
imaged between 82◦N and S latitude over a 16-day period. Landsat-7 orbit is similar. Landsat-7 travels about 15 minutes ahead
of Terra, which is in the same orbit, so that sensors onboard Terra view the Earth under almost the same conditions as does the
Landsat-7 ETM+.Based on Figure 5.1, Landsat 7 Science Data Users Handbook, NASA Goddard Spaceflight Center, Greenbelt,
Maryland. http://landsathandbook.gsfc.nasa.gov/handbook/handbook_htmls/chapter5/chapter5.html (accessed 4 January 2009).

2.2 Characteristics of Imaging Remote
Sensing Instruments

The characteristics of imaging remote sensing instru-
ments operating in the visible and infrared spectral region
can be summarized in terms of their spatial, spectral
and radiometric resolutions. Other important features
are the manner of operation of the scanning device that
collects the image (electromechanical or electronic) and
the geometrical properties of the images produced by the
system. The interaction between the spatial resolution
of the sensor and the orbital period of the platform

determines the number of times that a given point on
the Earth will be viewed in any particular time period.

The fact that remote sensing imaging systems have
different resolutions (spatial, spectral, radiometric and
temporal) is related to the use that is made of the data
that are collected by these systems. For observations of
dynamic systems, such as the atmosphere and the oceans,
a high temporal resolution is required but, because such
systems are being observed at a continental or global
scale, a coarse spatial resolution is appropriate. Meteosat
images the Earth every 15 minutes at a resolution of 5 km
at nadir. These images are at a global scale. NOAA satel-
lites have a repeat cycle of 24 hours (almost the whole
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Earth is imaged in one day at a spatial resolution at nadir
of 1.1 km). The observations could be described as at
a continental scale. Medium-resolution systems such as
Landsat and SPOT have a repeat cycle of up to 26 days
but the pixel size of 20–30 m allows regional studies to
be carried out. High resolution systems can have a spa-
tial resolution of less than 1 m. Their most appropriate
use is in local studies. Spectral resolution, that is the
number and location of the spectral bands viewed by the
sensor, should be appropriately selected for the intended
target. As noted in Chapter 1, Earth surface materials
have different spectral reflectance characteristics and the
bands selected for oceanographic observation would dif-
fer from a satellite system primarily concerned with land
cover mapping. The number of bands is also important;
for example the Hyperion instrument carried by Earth
Observing-1 (EO-1) has 256 spectral bands. The mea-
surements in these bands would be useful if one’s aim
was to compare the spectrum of a given pixel with a
library spectrum such as those shown in Figure 1.21.
Finally, the radiometric resolution of a sensor determines
the level of detail that can be seen. It also allows for the
monitoring of extremes, for example snow and cloud tops
at one end of the range to deep clear water at the other. It
follows from this discussion that the different resolutions
of an Earth observing system should be selected with the
aims of the investigation in mind.

2.2.1 Spatial Resolution

The spatial resolution of an imaging system is not an
easy concept to define. It can be measured in a number
of different ways, depending on the user’s purpose. In a
comprehensive review of the subject, Townshend (1980)
uses four separate criteria on which to base a definition of
spatial resolution. These criteria are the geometrical prop-
erties of the imaging system, the ability to distinguish
between point targets, the ability to measure the peri-
odicity of repetitive targets, and the ability to measure
the spectral properties of small targets. These proper-
ties are considered briefly here; a fuller discussion can
be found in Billingsley (1983), Forshaw et al. (1983),
Simonett (1983) and Townshend (1980).

The most commonly used measure, based on the geo-
metric properties of the imaging system, is its instan-
taneous field of view (IFOV). The IFOV is defined as
the area on the ground that, in theory, is viewed by the
instrument from a given altitude at any given instant in
time. The IFOV can be measured in one of two ways,
as the angle α or as the equivalent distance XY on the
ground in Figure 2.2.

Note that Figure 2.2 is a cross-section, and that the line
XY is, in fact, the diameter of a circle. The actual, as dis-
tinct from the nominal, IFOV depends on a number of
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System
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Y

Figure 2.2 Angular instantaneous field of view (IFOV), α,
showing the projection XY on the ground. Note: XY is the
diameter of a circle.

factors. No satellite has a perfectly stable orbit; its height
above the Earth will vary, often by tens of kilometres.
For instance, Landsats-1 to -3 had a nominal altitude of
913 km, but the actual altitude of these satellites varied
between 880 and 940 km. The IFOV becomes smaller
at lower altitudes and increases as the altitude increases
so, although the spatial resolution of the Landsat-1 to -3
Multi-spectral Scanner (MSS) (Section 2.3.6.1) is gener-
ally specified as 79 m, the actual resolution (measured by
the IFOV) varied between 76 and 81 m.

The IFOV is the most frequently cited measure of res-
olution, though it is not necessarily the most useful. In
order to explain why this is so, we must consider the way
in which radiance from a point source is expressed on an
image. A highly reflective point source on the ground
does not produce a single bright point on the image but
is seen as a diffused circular region, due to the proper-
ties of the optics involved in imaging. A cross-section
of the recorded or imaged intensity distribution of a sin-
gle point source is shown in Figure 2.3, from which it
can be seen that the intensity of a point source corre-
sponds to a Gaussian-type distribution. The actual shape
will depend upon the properties of the optical compo-
nents of the system and the relative brightness of the point
source. The distribution function shown in Figure 2.3 is
called the point spread function or PSF (Moik, 1980;
Slater, 1980; Billingsley, 1983). Richter (1997) considers
the role of the PSF in calibrating high spatial resolution
imagery. Sensor calibration is considered in Chapter 4.
Huang, Davis and Townshend (2002) and Townshend
et al. (2000) discuss the effects of the PSF in deter-
mining the radiance from a given pixel. As Figure 2.3
shows, some of the radiance reaching the sensor from
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Figure 2.3 Point spread function. The area of the pixel being imaged runs from −0.5 ≤ x ≤ 0.5 and −0.5 ≤ y ≤ 0.5, that is
centred at (0, 0) but the energy collected by the sensor is non-zero outside this range. The ideal point spread function would be
a square box centred at (0, 0) with a side length of 1.0.

the pixel of side 1 centred at (0, 0) will come from
neighbouring pixels; this is called the adjacency effect.
Kavzoglu (2004) shows how the two-dimensional PSF of
Landsat’s ETM+ sensor is derived from the along-track
and across-track PSFs.

An alternative measure of IFOV is, in fact, based on
the PSF (Figure 2.4) and the 30 m spatial resolution of the
Landsat-4 and -5 TM (Section 2.3.6.2) is based upon the
PSF definition of the IFOV. The IFOV of the Landsat
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Figure 2.4 Instantaneous field of view defined by the ampli-
tude of the point spread function.

MSS using this same measure is 90 m rather than 79 m
(Townshend, 1980, p. 9). The presence of relatively
bright or dark objects within the IFOV of the sensor will
increase or decrease the amplitude of the PSF so as to
make the observed radiance either higher or lower than
that of the surrounding areas. This is why high-contrast
features such as narrow rivers and canals are frequently
visible on Landsat ETM+ images, even though their
width is less than the sensor’s spatial resolution of 30 m.
Conversely, targets with dimensions larger than the
Landsat ETM+ IFOV of 30 m may not be discernible if
they do not contrast with their surroundings. The blurring
effects of the PSF can be partially compensated for by
image processing involving the use of the Laplacian
function (Section 7.3.2). Other factors causing loss of
contrast on the image include atmospheric scattering and
absorption, which are discussed in Chapters 1 and 4.

The definition of spatial resolving power based on the
IFOV is therefore not a completely satisfactory one. As it
is a geometrical definition, it does not take into account
the spectral properties of the target. If remote sensing
is based upon the detection and recording of the radi-
ance of targets, the radiance being measured at a number
of discrete points, then a definition of spatial resolution
that takes into account the way in which this radiance is
generated might be reasonable. This is the basis of the
definition of the effective resolution element or ERE,
which is defined by Colvocoresses (cited by Simonett
(1983)) as

the size of an area for which a single radiance value can
be assigned with reasonable assurance that the response
is within 5% of the value representing the actual relative
radiance.
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Colvocoresses estimated the ERE for the Landsat MSS
system as 86 and 35 m for the TM. These values might
be more relevant than the IFOV for a user interested in
classification of multispectral images (Chapter 8).

Other methods of measuring the spatial resolving
power of an imaging device are based upon the ability of
the device to distinguish between specific targets. There
are two such measures in use, and both are perhaps
more easily defined for photographic sensors. The first
method uses the fact that the PSF of a point source is a
bright central disc with bright and dark rings around it.
The Rayleigh criterion assumes two equally-bright
point sources and specifies that the two sources will be
distinguishable on the image if the bright central disc of
the one falls on the first dark ring of the PSF of the other.
The minimum separation between the point sources to
achieve this degree of separation on the image is a
measure of the spatial resolving power of the imaging
system. The second method assumes that the targets are
not points but linear and parallel objects with a known
separation that is related to their spatial frequency. If the
objects contrast strongly with their background, then one
could consider moving them closer together until the
point is reached where they are no longer distinguishable.
The spatial frequency of the objects such that they are
just distinguishable is a measure of spatial resolving
power. This spatial frequency is expressed in terms of
line pairs per millimetre on the image or as cycles per
millimetre. In order to calculate the spatial resolving
power by this method it is usual to measure the contrast
of the targets and their background. The measure most
often used is modulation (M ), defined as:

M = Emax − Emin

Emax + Emin

Emax and Emin are the maximum and minimum radi-
ance values recorded over the area of the image. For
a nearly homogeneous image, M would have a value
close to zero while the maximum value of M is 1.0.
Note that a perfectly homogeneous image would have an
undefined modulation value since the calculation would
involve division by zero. Returning to the idea of the
parallel linear targets, we could find the ratio of the modu-
lation measured from the image (MI) to the modulation of
the objects themselves (MO) This ratio is the modulation
transfer factor. A graph of this factor against spatial fre-
quency shows the modulation transfer function or MTF.
The spatial frequency at which the MTF falls to a half of
its maximum value is termed the effective instantaneous
field of view or EIFOV. The EIFOV of Landsat MSS
imagery has been computed to be 66 m while the 30 m
resolution of the Landsat TM is computed from the spa-
tial frequency at the point where the MTF has 0.35 of its
maximum value (Townshend, 1980, p. 12), whereas the

IFOV measure gives resolutions of 79 and 45 m respec-
tively. The EIFOV measure is based on a theoretical
target rather than on real targets, and as such gives a result
that is likely to exceed the performance of the instrument
in actual applications. Townshend and Harrison (1984)
describe the calculation and use of the MTF in estimat-
ing the spatial resolving power of the Landsat-4 and -5
TM instrument (Section 2.3.6.2).

The IFOV, ERE and EIFOV should not be confused
with the pixel size. A digital image is an ordered set of
numeric values, each value being related to the radiance
from a ground area represented by a single cell or pixel.
The pixel dimensions need not be related to the IFOV,
the ERE or the EIFOV. For instance, the size of the
pixel in a Landsat MSS image is specified as 56 by 79 m.
The IFOV at the satellite’s nominal altitude of 913 km
is variously given as 79, 76.2 and 73.4 m while the
ERE is estimated as 87 m (Simonett, 1983, Table 1.2).
Furthermore, pixel values can be interpolated over the
cells of the digital image to represent any desired ground
spacing, using one of the resampling methods described
in Chapter 4. The ground area represented by a single
pixel of a Landsat MSS image is thus not necessarily
identical to the spatial resolution as measured by any of
the methods described above.

The discussion in the preceding paragraphs, together
with the description given below of the way in which
satellite-borne sensors operate, should make it clear that
the individual image pixel is not ‘sensed’ uniquely. This
would require a stop/start motion of the satellite and, in
the case of the electromechanical scanner, of the scan
mirror. The value recorded at the sensor corresponding
to a particular pixel position on the ground is therefore
not just a simple average of the radiance upwelling from
that pixel. There is likely to be a contribution from areas
outside the IFOV, which is termed the ‘environmental
radiance’ (Richter et al., 2006) (Section 4.4). Disre-
garding atmospheric effects (which are also discussed
in Section 4.4), the radiance attributable to a specific
pixel sensed over an area of terrestrial vegetation is
in reality the sum (perhaps the non-linear sum) of the
contributions of the different land cover components
within the pixel, plus the contribution from radiance
emanating from adjacent areas of the ground. Fisher
(1997) and Cracknell (1998) examine the concepts
underlying the idea of the pixel in some detail, and
readers should be aware of the nature of the image pixel
in remote sensing before attempting to interpret patterns
or features seen on images.

Spatial resolving power is an important attribute of
remote sensing systems because differing resolutions are
relevant to different problems; indeed, there is a hierarchy
of spatial problems that can use remotely-sensed data, and
there is a spatial resolution appropriate to each problem.
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To illustrate this point, consider the use of an image with
a spatial resolution (however defined) of 1 m. Each ele-
ment of the image, assuming its pixel size was 1 × 1 m,
might represent the crown of a tree, part of a grass verge
by the side of a suburban road, or the roof of a car. This
imagery would be useful in providing the basis for small-
scale mapping of urban patterns, analysis of vegetation
variations over a small area, or the monitoring of crops
in small plots. At this scale it would be difficult to assess
the boundaries of, or variation within, a larger spatial unit
such as a town; a spatial resolution of 10 m might be more
appropriate to this problem. A 10 m resolution would be
a distinct embarrassment if the exercise was concerned
with the mapping of sea-surface temperature patterns in
the Pacific Ocean, for which data from an instrument
with a spatial resolution of 500 m or larger could be used.
For continental or global-scale problems a spatial reso-
lution of 1 and 5 km respectively would produce data
that contained the information required (and no more)
and, in addition, was present in manageable quantities.
One point to consider concerns the statistical variance
of pixel values lying within objects of interest, such as
agricultural fields. The spatial resolution must be high
enough for the fields to be seen and characterized, but not
so high that the statistical variance of pixels within the
fields becomes larger than the variation between the mean
pixel values of different fields. In the east of England,
which has relatively large fields, a spatial resolution of
20–30 m is acceptable, whereas a spatial resolution of
1 m would be embarrassing if the aim was to classify the
land cover of the fields into categories such as wheat,
barley and pasture. Conversely, if the aim of the exercise
is operational precision farming then a resolution of 1 m
or less should be sufficient to determine the within-field
variability. These figures are illustrative only; the actual
values depend on average field size. Nevertheless, the
illusion that higher spatial resolution is necessarily better
is commonplace; one should always ask ‘better for what?’
See Atkinson and Curran (1997), Atkinson and Aplin
(2004), Hengl (2006), Quattrochi and Goodchild (1997),
Thomson (2009) and Wickham and Riitters (1995) for
further discussion of this point in a wider context.

The concept of spatial and temporal scale is funda-
mental to any remote sensing/geographical information
science (GIS) project. As noted earlier in this section,
the term ‘spatial resolution’ is open to several interpreta-
tions and there is a fundamental need to match the scale
of the relevant image to other GIS data layers and to
the scope of the problem being considered. Aplin (2006),
a special issue of International Journal of Remote Sens-
ing (2006), Atkinson and Aplin (2004) and Foody and
Curran (1994) consider the problem of spatial and tempo-
ral scales in remote sensing. The problem of scaling-up or
scaling-down (i.e. adjusting results or data at one spatial

scale to those at another scale) is considered by contrib-
utors to van Gardingen, Foody and Curran (1997), for
example Barnsley, Barr and Tsang (1997), and Foody
and Curran (1994).

2.2.2 Spectral Resolution

The second important property of an optical imaging
system is its spectral resolution . Microwave SAR
images collected by instruments onboard satellites
such as ERS-1 and -2, TeraSAR-X, Advanced Land
Observation Satellite (ALOS)/PALSAR and Radarsat-1
and -2 (Section 2.4) are generally recorded in a single
waveband, as are panchromatic images collected by
sensors such as WorldView, IKONOS, SPOT HRV
and Landsat-7 ETM+. A panchromatic (literally ‘all
colours’) image is a single band image that measures
upwelling radiance in the visible wavebands. In addition
to collecting a panchromatic image of the target area,
most medium spatial resolution sensors operating in
the visible and infrared bands collect multispectral or
multiband images, which are sets of individual images
that are separately recorded in discrete spectral bands, as
shown in Figures 1.10 and 1.11. High spatial resolution
satellites such as IKONOS and QuickBird have both
panchromatic (high resolution) and multispectral capa-
bilities. The term spectral resolution refers to the width
of these spectral bands measured in micrometres (µm)
or nanometres (nm). The following example illustrates
two important points, namely, that (i) the position in
the spectrum, width and number of spectral bands deter-
mines the degree to which individual targets (vegetation
species, crop or rock types) can be discriminated on
the multispectral image and (ii) the use of multispectral
imagery can lead to a higher degree of discriminating
power than any single band taken on its own.

The reflectance spectra of vegetation, soils, bare rock
and water are described in Section 1.3. Differences
between the reflectance spectra of various rocks, for
example might be very subtle and the rock types might
therefore be separable only if the recording device were
capable of detecting the spectral reflectance of the target
in a narrow waveband. A wide-band instrument would
simply average the differences. Figure 2.5a is a plot
of the reflection from a leaf from a deciduous tree
against wavelength (dotted line). Figure 2.5b shows the
reflectance spectra for the same target as recorded by a
broad-band sensor such as the Landsat-7 ETM+. Broad-
band sensors will, in general, be unable to distinguish
subtle differences in reflectance spectra, perhaps resulting
from disease or stress. To provide for the more reliable
identification of particular targets on a remotely-sensed
image the spectral resolution of the sensor must match
as closely as possible the spectral reflectance curve of
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Figure 2.5 (a) Spectral reflectance curve for a leaf from a deciduous tree. (b) The reflectance spectrum shown in Figure 2.5a
as it would be recorded in Landsat ETM+ bands 1–5 and 7. Data from the ASTER spectral library through the courtesy the Jet
Propulsion Laboratory, California Institute of Technology,Pasadena, California, c© California Institute of Technology. All rights
reserved.

the intended target. This principle is demonstrated by
the design of the Coastal Zone Colour Scanner (CZCS)
carried by the Nimbus-7 satellite, a design that is
common to most ocean-observing satellites, namely, the
width and positions of the spectral bands are determined
by the spectral reflectance curve of the target. Of course,
other considerations must be balanced, such as frequency
of coverage or temporal resolution and spatial resolution
(Section 2.2.1), as well as practical factors.

Only in an ideal world would it be possible to increase
the spectral resolution of a sensor simply to suit the user’s
needs. There is a price to pay for higher resolution. All

signals contain some noise or random error that is caused
by electronic noise from the sensor and from effects
introduced during transmission and recording. The signal-
to-noise ratio (SNR) is a measure of the purity of a signal.
Increasing the spectral resolution reduces the SNR of the
sensor output because the magnitude of the radiance (the
signal strength) in narrower spectral bands is less than
that of wider bands while the inherent noise level remains
constant. Smith and Curran (1996, 1999) provide details
of SNR calculations, and estimate values for the AVHRR,
Landsat TM and SPOT HRV as 38 : 1, 341 : 1 and 410 : 1
respectively. See also Atkinson et al. (2005, 2007).
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Figure 2.6 Hypothetical land cover types A and B measured on two spectral bands. (a) Shown as plots on separate bands; the
two cover types cannot be distinguished. (b) Shown as a plot on two bands jointly; now the two cover types can be separated in
feature space.

A compromise must be sought between the twin
requirements of narrow bandwidth (high spectral resolu-
tion) and a low SNR. The pushbroom type of sensor is a
linear array of individual detectors with one detector per
scan line element. The forward movement of the sensor
forms the image one scan line at a time (Figure 1.2b).
This arrangement provides for a longer ‘look’ at each
scan line element, so more photons reflected from the
target are collected, which results in a better SNR
than does an electromechanical scanner employing a
single detector which observes each scan line element
sequentially (Figure 1.2a). The time available to measure
the energy emanating from each point along the scan
line (termed the dwell time or integration time) is greater
for pushbroom scanners, because the individual detector
‘sees’ more photons coming from a given point than the
detector in an electromechanical scanner, which looks
at the point only for a short time. Hence, narrower
bandwidths and a larger number of quantization levels
are theoretically possible without decreasing the SNR to
unacceptable levels. Further discussion of different kinds
of sensors is contained in Section 2.3.

Justification for the use of multiple rather than sin-
gle measures of the characteristics of individual Earth
surface objects helps to discriminate between groups of
different objects. For example, Mather (1976, p. 421)
contends that:

. . . The prime justification of adopting a multivariate
approach [is] that significant differences (or similarities)
may well remain hidden if the variables are considered
one at a time and not simultaneously.

In Figure 2.6a the measurements of the spectral
reflectance values for individual members of two hypo-
thetical land-cover types are plotted separately for two
spectral bands, and there is an almost complete overlap

between them. If the measurements on the two spectral
bands are plotted together, as in Figure 2.6b, the differ-
ence between the types is clear, as there is no overlap.
The use of well-chosen and sufficiently numerous spectral
bands is a requirement, therefore, if different targets are
to be successfully identified on remotely-sensed images.

2.2.3 Radiometric Resolution

Radiometric resolution or radiometric sensitivity refers to
the number of digital quantization levels used to express
the data collected by the sensor. In general, the greater the
number of quantization levels the greater the detail in the
information collected by the sensor. At one extreme one
could consider a digital image composed of only two lev-
els (Figure 2.7a) in which level 0 is shown as black and
level 1 as white. As the number of levels increases to 16
(Figure 2.7b) so the amount of detail visible on the image
increases. With 256 levels of grey (Figure 2.7c) there is
no discernible difference, though readers should note that
this is as much a function of printing technology as of
their visual systems. Nevertheless, the eye is not as sen-
sitive to changes in intensity as it is to variations in hue.

The number of grey levels is commonly expressed
in terms of the number of binary (base 2) digits (bits)
needed to store the value of the maximum grey level.1

Just two binary digits, 0 and 1, are used in a base 2 num-
ber rather than the 10 digits (0–9) that are used in base 10
representation. Thus, for a two-level or black/white rep-
resentation, the number of bits (binary digits) required
per pixel is 1 (giving two states – 0 and 1), while for 4,
16, 64 and 256 levels the number of bits required is 2, 4,
6 and 8 respectively. Thus, ‘6-bit’ data has 64 possible

1Base 2 representation of numbers is considered at greater length in
Chapter 3.
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Figure 2.7 SPOT HRV panchromatic image of part of Orlando, FL, USA, displayed in (a) two grey levels, (b) 16 grey levels and
(c) 256 grey levels. Permission to use the data was kindly provided by SPOT image, 5 rue des Satellites, BP 4359, F 331030,
Toulouse, France.

quantization levels, represented by the whole number or
integer values 0–63 inclusive (000000–111111 in base
2 notation), with ‘0’ representing black, ‘63’ represent-
ing white, and ‘31’ indicating mid-grey. These ‘numbers’
are enclosed in quotation marks to show that they are not
indicating a direct measurement of ground-leaving radi-
ance. They are the steps or quanta into which a range
of physical values is divided, hence the term ‘quantiza-
tion’, which – in this context – means ‘breaking down a
continuous range into a discrete number of levels’. If,
for instance, a sensor can detect radiance in the range
0.0–10.0 W m−2 sr−1 µm−1 and the SNR of the instru-
ment is such that this range can be divided into 256 levels
(for reasons explained in the next paragraph) then level
‘0’ would represent 0.0 W m−2 sr−1 µm−1 and level ‘255’
would represent 10.0 W m−2 sr−1 µm−1. The intermediate

levels (‘1’–‘254’) represent equal steps of (10.0 − 0.0)/

255.0 = 0.00392 W m−2sr−1 µm−1.
Needless to say, the number of levels used to express

the signal received at a sensor cannot be increased sim-
ply to suit the user’s preferences. The SNR of the sensor,
described above, must be taken into consideration. The
step size from one level to the next cannot be less than the
noise level, or else it would be impossible to say whether
a change in level was due to a real change in the radiance
of the target or to a change in the magnitude of the noise.
A low-quality instrument with a high noise level would
necessarily, therefore, have a lower radiometric resolu-
tion compared with a high-quality, high SNR instrument.
Slater (1980) discusses this point in some detail.

Fourty and Baret (1998) note that estimates of
relationships between leaf properties and reflection



Remote Sensing Platforms and Sensors 39

and transmittance properties are quite sensitive to the
radiometric resolution of the instrument used. Bernstein
et al. (1984) used a measure known as entropy to
compare the amount of information (in terms of bits
per pixel) for 8-bit and 6-bit data for two images of the
Chesapeake Bay area collected by Landsat-4’s TM and
MSS sensors. The entropy measure, H , is given by:

H = −
k∑

i=0

p(i) log2 p(i)

where k is the number of grey levels (for example 64 or
256) and p(i) is the probability of level i , which can be
calculated from:

p(i) = F(i)

nm

In this formula, F(i) is the frequency of occurrence of
each grey level from 0 to k − 1, and nm is the num-
ber of pixels in the image. Moik (1980, p. 296) suggests
that the use of this estimate of p(i) will not be accu-
rate because adjacent pixel values will be correlated (the
phenomenon of spatial autocorrelation, as described by
Cliff and Ord 1973) and he recommends the use of the
frequencies of the first differences in pixel values; these
first differences are found by subtracting the value at a
given pixel position from the value at the pixel position
immediately to the left, with obvious precautions for the
leftmost column of the image. Bernstein et al. (1984) do
not indicate which method of estimating entropy they
use but, since the same measure was applied to both the
6-bit and 8-bit images, the results should be comparable.
The 8-bit resolution image added, on average, 1–1.5 bits
to the entropy measure compared with a 6-bit image of
the same scene. These results are shown in Table 2.1.
Moik (1980, Table 9.1) used both measures of entropy
given above; for the first measure (based on the levels

themselves) he found average entropy to be 4.4 bits for
Landsat MSS (6-bit) and, for the second measure (based
on first differences) he found average entropy to be 4.2
bits. This value is slightly higher than that reported by
Bernstein et al. (1984) but still less than the entropy val-
ues achieved by the 8-bit TM data. It is interesting to note
that, using data compression techniques, the 6-bit data
could be re-expressed in 4 or so bits without losing any
information, while the 8-bit data conveyed, on average,
approximately 5 bits of information. Given the enormous
amounts of data making up a multiband image (nearly
300 million pixel values for one Landsat TM image) such
measures as entropy are useful both for comparative pur-
poses and for indicating the degree of redundancy present
in a given dataset.

Entropy measures can also be used to compare the per-
formance of different sensors. For example, Kaufmann
et al. (1996) use entropy to compare the German MOMS
sensor performance with that of Landsat TM and the
SPOT HRV, and Masek et al. (2001) use the same mea-
sure to compare images of a test area acquired simul-
taneously by Landsat-5’s TM and Landsat-7’s ETM+
instruments.

The concepts of spatial, radiometric and temporal res-
olution are discussed concisely by Joseph (2000).

2.3 Optical, Near-infrared and Thermal
Imaging Sensors

The aim of this section is to provide brief details of
a number of sensor systems operating in the visible
and infrared regions of the electromagnetic spectrum,
together with sample images, in order to familiarize the
reader with the nature of digital image products and their
applications. Further details of the instruments described
in this section, as well as others that are planned for

Table 2.1 Entropy by band for Landsat TM and MSS sensors based on Landsat-4 image of
Chesapeake Bay area, 2 November 1982 (scene E-40109-15140). See text for explanation.

Band number Thematic mapper Multispectral scanner

Waveband (µm) Bits per pixel Waveband (µm) Bits per pixel

1 0.45–0.52 4.21 0.5–0.6 2.91

2 0.52–0.60 3.78 0.6–0.7 3.57

3 0.63–0.69 4.55 0.7–0.8 4.29

4 0.76–0.90 5.19 0.8–1.1 3.63

5 1.55–1.75 5.92 – –

6 10.5–12.5 3.53 – –

7 2.08–2.35 5.11 – –

Average – 4.61 – 3.60

Based on Table 1 of Bernstein et al. (1984).
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Example 2.1: Along-Track Scanning Radiometer (ATSR)

This image from the ATSR is a single-band greyscale image that has been processed by a technique called pseudo-
colour (Section 5.4.2). The image covers the 11.0 µm region in the TIR (see Figure 1.7). Cold areas are shown in
blue and purple while warmer areas are shown in yellow and red. Land is cooler than sea. The islands in the upper
area of the image are Ibiza, Mallorca and Menorca, and the land at the bottom of the image is Algeria. The image
shows a thermal eddy and an intricate pattern of temperature variations. The image was acquired on 9 May 1992
and it covers an area of 512 × 512 km2. Image source: http://www.atsr.rl.ac.uk/images/sample/atsr-1/index.shtml.

Example 2.1 Figure 1. ATSR image of the Mediterranean Sea between the Balearic Islands and the Algerian coast. This is
a thermal infrared image that has been processed by the pseudocolour transform. Image c© European Space Agency and
Rutherford Appleton Laboratory (RAL).

the next decade, are available from the CEOS via the
Internet. A comprehensive survey, now possibly only
of historical interest, is provided by Joseph (1996).
In this chapter, attention is focused on sensors that in
current use, especially the Landsat and SPOT systems,
which have generated large and widely used datasets
dating from 1972 and 1986, respectively. Sufficient
detail is provided for readers to inform themselves of the
main characteristics of each system. More information
is provided in the references cited. Readers can also
access the image files stored on the publisher’s website
at http://www.wiley.com/go/mather4. The test images
are bundled in with the MIPS software in a zip file
called mips.zip. When you have unzipped this file
then you should have a subfolder called mips/images

containing a set of small images that can be used to view
examples of remotely-sensed images acquired by sensors
operating in the visible, NIR and thermal regions of
the spectrum.

2.3.1 Along-Track Scanning Radiometer (ATSR)

The Along-Track Scanning Radiometer (ATSR) was
developed by a consortium of British universities and
research institutes led by the UK Rutherford-Appleton
Laboratory (RAL). It has three TIR channels centred
at 3.7 µm, 10.8 µm and 12 µm, plus a NIR channel
centred at 1.6 µm. These thermal channels correspond
to bands 3, 4 and 5 of the NOAA AVHRR. The pri-
mary purpose of this instrument is to make accurate
measurements of global sea surface temperatures for
climate research purposes. It was flown on the ERS-1
satellite, which was launched in July 1991. ATSR-2 is
a development of ATSR, and has additional channels
centred at wavelengths of 0.555, 0.659 and 0.865 µm
that are intended for land applications. It is carried by
the ERS-2 satellite, which was launched in April 1995.
ATSR is an interesting instrument (Harries et al., 1994)
as it provides two views of the target from different
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angles – one from nadir and one in the forward direction.
Each view includes an internal calibration system; hence,
the data can be corrected for atmospheric effects (which
can be estimated from the two views) and calibrated
more precisely. The thermal sensor has a nominal
accuracy of ±0.05 K. The sensor produces images with
a spatial resolution of 1 km for a 500 km swath width.
See Example 2.1 for more information on ATSR.

An extended version of ATSR-2, called the Advanced
Along Track Scanning Radiometer (AATSR), is carried
by the European Space Agency (ESA)’s ENVISAT-1
satellite, which was launched in 2002. The AATSR has
seven channels (0.55, 0.67, 0.86, 1.6, 3.7, 11 and 12 µm).
The spatial resolution of the visible and near-infrared
(VNIR) channels (bands 1–4) is 500 m (with a swath
width of 500 km). The infrared channels (bands 5–7)
have a spatial resolution of 1 km. An AATSR thermal
image is shown in Figure 1.28.

2.3.2 Advanced Very High Resolution Radiometer
(AVHRR) and NPOESS VIIRS

The AVHRR, which is carried by the American NOAA
series of satellites, was intended to be a meteorological
observing system. The imagery acquired by AVHRR has,
however, been widely used in land cover monitoring at
global and continental scales. Two NOAA satellites are in
orbit at any one time, giving morning, afternoon, evening
and night-time equatorial crossing times of approximately
07.30, 14.00, 19.30 and 02.00 respectively, though it
should be noted that the illumination and view geometry
is not the same for all of these overpasses. The NOAA
satellite orbit repeats exactly after 9 days. The orbital
height is 833–870 km with an inclination of 98.7◦ and
a period of 102 min. The AVHRR/3 instrument, intro-
duced in 1998, has six channels and a spatial resolution,
at nadir, of 1.1 km. Data with a 1.1 km nominal resolution
are known as local area coverage (LAC) data. A lower
resolution sample of the LAC data, called global area
coverage (GAC) data is recorded for the entire 102-min
orbit. About 11 min of LAC data can be tape-recorded
on each orbit, and so LAC data are generally down-
loaded to ground receiving stations such as that at the UK
Natural Environment Research Council (NERC) ground
station at Dundee University in Scotland, which provided
the image shown in Figure 1.12. The swath width of
the AVHRR is of the order of 3000 km, and so spa-
tial resolution at the edges of the image is considerably
greater than the nominal (nadir) figure of 1.1 km. Cor-
rection of the geometry of AVHRR is mentioned further
in Section 4.3. The effects of off-nadir viewing are not
only geometrical for, as noted in Chapter 1, the radiance
observed for a particular target depends on the angles

of illumination and view. Thus, bidirectional reflectance
factors should be taken into consideration when using
AVHRR imagery.

The TIR channels are used for sea-surface tempera-
ture determination and cloud mapping, whereas the VNIR
channels are used to monitor land surface processes, such
as snow and ice melt, as well as vegetation status using
vegetation indices such as the Normalized Difference
Vegetation Index (NDVI) (Section 6.2.4). Band 3B has
a shorter wavelength than bands 4 and 5; it can there-
fore be used to monitor hotter targets such as forest fires
(see Figure 1.15) (Chuvieco and Martin, 1994; Chuvieco
et al., 2004). An illustration of a sea-surface temperature
image can be seen in Figure 1.28 The definitive source of
information on the AVHRR sensor is Cracknell (1997).

NOAA-19, launched in February, 2009, is the last in
the Television Infrared Observation Satellite (TIROS)
series. It will carry the AVHRR/3 and the HIRS/4
instruments. HIRS/4 is used to collect atmospheric
profiles in 1 visible, 7 middle IR and 12 long-wave IR
bands, from which total atmospheric ozone levels, cloud
height and coverage and surface radiance can be derived
(Table 2.2). The TIROS programme is to be replaced by
the National Polar-orbiting Operational Environmental
Satellite System (NPOESS). Imaging capabilities are
provided by the Visible/Infrared Imager Radiometer
Suite (VIIRS), which has nine VNIR channels, eight
mid-infared bands and four TIR bands. The spatial
resolution of the instrument at nadir is 400 m., the swath
is 3000 km wide and the radiometric resolution is 11
bits. See Committee on Earth Studies, Space Studies
Board. Commission on Physical Sciences, Mathematics,
and Applications, National Research Council (2000),
Hutchison and Cracknell (2005), Qu et al. (2006),
Murphy et al. (2006) and Townshend and Justice (2002)

Table 2.2 The AVHRR/3 Instrument carried by the NOAA
satellites.

Channel Wavelengths Typical uses
number (µm)

1 0.58–0.68 Daytime cloud and surface
mapping

2 0.725–1.00 Land–water boundaries

3A 1.58–1.64 Snow and ice detection

3B 3.55–3.93 Night cloud mapping, sea
surface temperature

4 10.30–11.30 Night cloud mapping, sea
surface temperature

5 11.50–12.50 Sea surface temperature

Based on http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html.
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for more details of NPOESS and VIIRS. Once NPOESS
is operational, there will be three satellites in orbit, each
with a different overpass time, giving data suitable for
the study of diurnal variations. The VIIRS will replace
the AVHRR and the MODerate Resolution Imaging
Spectrometer (MODIS) instrument (see next section).

Other coarse resolution sensors with thermal
bands are the AATSR (Section 2.3.1) and MODIS
(Section 2.3.3). VEGETATION (Section 2.3.7.2) car-
ries coarse resolution visible and NIR bands for land
surface monitoring.

2.3.3 MODIS

MODIS is a wide field of view instrument that is carried
by both the US Terra and Aqua satellites. As noted ear-
lier, the Terra satellite has an equatorial crossing time of
10.30 while the Aqua satellite has an equatorial crossing
time of 13.30, so that two MODIS instruments can be
used to collect information relating to diurnal variations
in upwelling radiance that relate to the characteristics and
conditions of land surface, oceanic and atmospheric vari-
ables. It is a conventional radiometer, using a scanning
mirror, and measures in 36 spectral bands in the range
0.405–14.835 µm (Table 2.3; note that the bands are not
listed contiguously in terms of wavelength). Bands 1–19
are collected during the daytime segment of the orbit,
and bands 20–36 are collected during the night-time seg-
ment. The spatial resolution of bands 1 and 2 is 250 m.
Bands 3–7 have a spatial resolution of 500 m, while the
remaining bands (8–36) have a spatial resolution at nadir
of 1 km.

Estimates of land surface characteristics are derived
from the higher-resolution bands (1–7) and ocean/
atmosphere measurements are estimated from the coarser
resolution (1 km) bands. The swath width is 2330 km,
so that each point on the Earth’s surface is observed
at least once every two days. MODIS data are relayed
to White Sands, NM, USA, via the Tracking and Data
Relay Satellite (TDRS), and thence to the Goddard
Space Flight Centre for further processing.

MODIS data are available in standard form, as cal-
ibrated radiances. Forty-one further ‘products’ derived
from MODIS data are being made available. These prod-
ucts include surface reflectance, land surface temperature
and emissivity, land cover, leaf area index, sea ice cover,
suspended solids in ocean waters and sea surface temper-
ature, thus demonstrating the wide range of applications
(relating to terrestrial, atmospheric, oceanographic and
cryospheric systems). The processing steps required to
generate these products are described by Masuoka et al.
(1998). Example 2.2 shows a MODIS vegetation product
(showing the spatial distribution of two vegetation indices
(Section 6.2.4) over North and Central America. Lobser

and Cohen (2007) discuss the use of orthogonal trans-
formations (Chapter 6) of MODIS data to measure land
surface characteristics. Lunetta et al. (2006) use multi-
temporal MODIS data to measure change in land cover
types while Miller and McKee (2004) attempt to map
suspended sediment using MODIS 250 m resolution data.
Justice et al. (2006) discuss fire products obtained from
MODIS data (c.f. Section 2.3.2 – AVHRR). Salomonson
et al. (2002) provide an overview of MODIS’s perfor-
mance up to that date.

2.3.4 Ocean Observing Instruments

A number of dedicated ocean observing satellites have
been placed in orbit in the past 25 years. Measurements
from instruments carried by these satellites have been
used to study the marine food chain and the role of ocean
in biogeochemical cycles such as the carbon cycle (Esaias
et al., 1998). These measurements have to be very accu-
rate, as the radiance upwelling from the upper layers of
the oceans typically does not exceed 10% of the sig-
nal recorded at the sensor, the rest being contributed by
the atmosphere via scattering (Section 1.2.5). It is thus
essential that the procedures for atmospheric correction,
that is removal of atmospheric effects (Section 4.4), from
the measurements made by ocean observing instruments
should be of a high quality. The sensors that are described
briefly in this section are the CZCS, the Sea-viewing
Wide Field-of-view Sensor (SEAWiFS), Oceansat-2 and
MODIS. The last of these is described elsewhere (Section
2.3.3) in more detail.

The CZCS instrument was carried by the Nimbus-7
satellite between 1978 and 1986, and was primarily
designed to map the properties of the ocean surface, in
particular, chlorophyll concentration, suspended sedi-
ment distribution, gelbstoffe (yellow stuff) concentrations
as a measure of salinity and sea surface temperatures.
Chlorophyll, sediment and gelbstoffe were measured
by five channels in the optical region, four of which
were specifically chosen to target the absorption and
reflectance peaks for these materials at 0.433–0.453 µm,
0.510–0.530 µm, 0.540–0.560 µm and 0.660–0.680 µm.
The 0.7–0.8 µm band was used to detect terrestrial veg-
etation and sea-surface temperatures were derived from
the TIR band (10.5–12.5 µm). The spatial resolution of
CZCS was 825 m and the swath width was 1566 km.
The sensor could be tilted up to 20◦ to either side
of nadir in order to avoid glint, which is light that is
specularly reflected from the ocean surface. The Nimbus
satellite had a near-polar, Sun-synchronous orbit with
an altitude of 955 km. Its overpass time was 1200 local
time, and the satellite orbits repeated with a period of
6 days. The CZCS experiment was finally terminated in
December 1986.
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Table 2.3 MODIS wavebands and key uses. Bands 13 and 14 operate in high low gain mode. Bands 21
and 22 have the wavelength range but band 21 saturates at about 500 K, whereas band 22 saturates at
about 335 K.

Band number Range Primary use

1 0.620–0.670 Absolute land cover transformation, vegetation chlorophyll

2 0.841–0.876 Cloud amount, vegetation land cover transformation

3 0.459–0.479 Soil/vegetation differences

4 0.545–0.565 Green vegetation

5 1.230–1.250 Leaf/canopy differences

6 1.628–1.652 Snow/cloud differences

7 2.105–2.155 Cloud properties, land properties

8 0.405–0.420 Chlorophyll

9 0.438–0.448 Chlorophyll

10 0.483–0.493 Chlorophyll

11 0.526–0.536 Chlorophyll

12 0.546–0.556 Sediments

13h 0.662–0.672 Atmosphere, sediments

13l 0.662–0.672 Atmosphere, sediments

14h 0.673–0.683 Chlorophyll fluorescence

14l 0.673–0.683 Chlorophyll fluorescence

15 0.743–0.753 Aerosol properties

16 0.862–0.877 Aerosol properties, atmospheric properties

17 0.890–920 Atmospheric properties, cloud properties

18 0.931–0.941 Atmospheric properties, cloud properties

19 0.915–0.965 Atmospheric properties, cloud properties

20 3.660–3.840 Sea surface temperature

21 3.929–3.989 Forest fires and volcanoes

22 3.929–3.989 Cloud temperature, surface temperature

23 4.020–4.080 Cloud temperature, surface temperature

24 4.433–4.498 Cloud fraction, troposphere temperature

25 4.482–4.549 Cloud fraction, troposphere temperature

26 1.360–1.390 Cloud fraction (thin cirrus), troposphere temperature

27 6.535–6.895 Mid troposphere humidity

28 7.175–7.475 Upper troposphere humidity

29 8.400–8.700 Surface temperature

30 9.580–9.880 Total ozone

31 10.780–11.280 Cloud temperature, forest fires and volcanoes, surface temperature

32 11.770–12.270 Cloud height, forest fires and volcanoes, surface temperature

33 13.185–13.485 Cloud fraction, cloud height

34 13.485–13.785 Cloud fraction, cloud height

35 13.785–14.085 Cloud fraction, cloud height

36 14.085–14.385 Cloud fraction, cloud height

Derived from information obtained from http://www.sat.dundee.ac.uk/modis.html.
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Example 2.2: MODIS

These images of North and Central America were derived from MODIS data by the process of mosaicing, which
involves the fitting together of a set of adjacent images. In this case, the images have been transformed using the
NDVI (top), and the Enhanced Vegetation Index or EVI (bottom). The pixel values in Vegetation Index images are
correlated with properties of the vegetation cover, such as canopy architecture, density and vigour. Time sequences
of such images can be used to monitor changes in biomass and other vegetation-related factors at a regional,
continental or global scale. Methods of calculating vegetation indices are described in Section 6.2.4.

The images above represent the state of vegetation in North America during the period 5–20 March 2000. Black
areas represent water (for example the Great Lakes and the Atlantic and Pacific Oceans). Areas with low values of
NDVI and EVI are shown in white, and progressively browner and then greener colours over land indicate higher
values of the index, meaning that vegetation is more vigorous, or denser, or less stressed. Where the temporal
frequency of observations is sufficiently high, for example 24 hours, a single ‘cloud free’ image can be derived
weekly from seven individual images ‘cloud-free’ pixel at each position from the seven available.

Vegetation extent and health are both important inputs to climate models, which are used to predict changes in
the global climate. Image source: http://visibleearth.nasa.gov/cgi-bin/viewrecord?2091

Normalized Difference Vegetation Index (NDVI)

NDVI

(a)

(b)

0water 0.2 0.4 0.6 0.8 1.0

EVI

Enhanced Vegetation Index (EVI)

0water 0.2 0.4 0.6 0.8 1.0

Example 2.2 Figure 1. MODIS images of North and Central America showing Vegetation Index values. The top image
shows the Normalized Difference Vegetation Index (NDVI) while the bottom image shows the Enhanced Vegetation Index
(EVI). Images courtesy of NASA’s Earth Observatory. http://earthobservatory.nasa.gov/IOTD/view.php?id=696.
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A more recent ocean-observing instrument was the
Ocean Colour and Temperature Sensor (OCTS) that was
carried aboard the Japanese Advanced Earth Observing
Satellite (ADEOS). ADEOS was launched in August
1996 but lasted only until June 1997, when a catastrophic
failure occurred. Next, the SEAWiFS was launched in
1997 on a commercial satellite operated by Orbital
Sciences Corporation (Orbview). SEAWiFS provides
data in eight bands (centred at 412, 443, 490, 510, 555,
670, 705 and 865 nm). The bandwidth of channels 1–6
is 20 nm, and that of bands 7 and 8 is 40 nm. The sensor
can be tilted forward or backwards by up to 20◦ in order
to reduce glint. LAC is used to acquire data at a spatial
resolution of 1.1 km at nadir, whereas GAC data has a
spatial resolution of 4.5 km at nadir.

The Ocean Surface Topography Mission (OSTM)
traces its roots back to the TOPEX/Poseidon mission, a
joint French/United States altimetry system. Altimetry
uses a microwave beam to measure the height of the sea
surface to within about 3 cm and thus enable the global
study of ocean currents and anomalies such as the El Niño
phenomenon (Fu and Cazenava, 2000). The TOPEX/
Posiedon system was replaced by Jason-1 in 2001 and
Jason-2 in 2008. Jason-1 and -2 follow the same orbit
(height 1336 km, inclination 66◦) and are operated by a
consortium consisting of NASA, NOAA, Centre National
d’Etudes Spatiales (CNES) (the French Space Agency)
and EUMETSAT, the European Organisation for the
exploitation of Meteorological Satellites. Jason-1 and
2 fly in the same orbit, separated by a time interval of
approximately 1 min, to allow near-simultaneous obser-
vations and thus provide the means of calibrating the
datasets produced by the two systems. Once calibration
is accomplished the Jason satellites will occupy separate
orbits that will provide double the global coverage that
Jason-1 was able to provide.

The Indian Space Agency launched Oceansat-2 in
September, 2009. It replaces Oceansat-1, which was
launched in 1999 with a 5 year design life. Oceansat-2
carries an updated MSS called the Ocean Colour Monitor
(OCM) which operates in eight bands, between 412 and
867 nm, collecting data with a spatial resolution of 360 m
across a swath of 1420 km. The primary aim of the OCM
is to measure ocean colour, particularly phytoplankton
and chlorophyll concentrations. This information will be
used in a project to manage fisheries. Oceansat-2 also
carries a scatterometer, which is a microwave instrument
used to measure wind speed, and an Italian instrument
that uses global positioning system (GPS) to measure
atmospheric conditions. The OCM is tiltable by up to
20◦ along-track.

As noted in Section 2.3.3, two MODISs are carried
by the NASA Terra and Aqua satellites. MODIS has
36 bands in the visible and infrared spectral regions with

spatial resolution varying from 250 m for visible bands
to 1 km for TIR bands (Table 2.3). Bands 8–16 are
similar to the spectral wavebands used by CZCS, OCTS
and SEAWiFS. Esaias et al. (1998) provide an overview
of the capabilities of MODIS for scientific observations
of the oceans. They note that the MODIS sensors have
improved onboard calibration facilities, and that the
MODIS bands that are most similar to the SEAWiFS
bands are narrower than the corresponding SEAWiFS
bands, giving greater potential for better atmospheric
correction (Section 4.4).

A survey of remote sensing applications in biological
oceanography by Srokosz (2000) provides further details
of these and other sensors that collect data with applica-
tions in oceanography. Somewhat more recent surveys
are supplied by the texts by Martin (2004) and Robinson
(2004), and the ASPRS Manual edited by Gowe (2006).

2.3.5 IRS LISS

The Indian Government has an active and successful
remote sensing programme. The first Indian remote
sensing (IRS) satellite, called Bhaskara-1, was launched
in 1979. Later developments led to the IRS programme.
IRIS-1A (1988) and IRS-1B (1991) carried the LISS-1
and LISS-2 sensors. LISS is an acronym of Linear
Imaging Self-scanning Sensor. LISS-1 was a mul-
tispectral instrument with a 76 m resolution in four
wavebands. LISS-2 used the same four wavebands, in the
VNIR (0.45–0.52 µm, 0.52–0.59 µm, 0.62–0.68 µm and
0.77–0.86 µm), but collected data at a spatial resolution
of 36 m. IRS-1C (launched 1995) carried an improved
LISS, numbered 3, plus a 5 m resolution panchromatic
sensor. LISS-3 includes a mid-infrared band in place of
the blue–green band (channel 1 of LISS-1 and LISS-2).
The waveband ranges for LISS-3 are 0.52–0.59 µm,
0.62–0.68 µm, 0.77–0.86 µm and 1.55–1.70 µm. The
spatial resolution improves from 36 to 25 m in comparison
with LISS-2. The panchromatic sensor (0.50–0.75 µm)
provides imagery with a spatial resolution of 5 m.
IRS-1D carried a similar payload, but did not reach its
correct orbit. However, some useful imagery is being
obtained from its sensors. Figure 2.8 shows a false-colour
(infrared/red/green) composite IRS-1D LISS III image of
the Krishna delta on the east coast of India. The panchro-
matic sensor is, like the SPOT HRV instrument, pointable
so that oblique views can be obtained, and off-track
viewing provides the opportunity for image acquisition
every 5 days, rather than the 22 days for nadir viewing.

IRS-1C also carries the Wide Field Sensor, WIFS,
which produces images with a pixel size of 180 m in
two bands (0.62–0.68 µm and 0.77–0.86 µm). The swath
width is 774 km. Images of a fixed point are produced
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Figure 2.8 False-colour (infrared/red/green) composite
IRS1D LISS III image of the Krishna delta on the east coast
of India. Coastal features such as beach sand, shoals, mud-
flats, waterlogged areas and salt affected regions inclusive of
salt pans, marsh land, cropland, mangroves and suspended
sediments are all clearly discernible. LISS-3 (Section 2.3.5)
is a four band (0.52 − 0.59, 0.62 − 0.68, 0.77 − 0.86 and
1.55 − 1.70 µm) multispectral sensor that provide 23.5 m res-
olution coverage. The 23.5 m resolution imagery is resampled
to produce a 20 m pixel size. Reproduced with permission
from National Remote Sensing Centre of India.

every 24 days, though overlap of adjacent images will
produce a view of the same point every 5 days.

Resourcesat-1 (IRS-P6) was launched in 2003
(Seshadri et al., 2005). It carries a LISS-4 sensor,
capable of imaging in multispectral or panchromatic
mode with a spatial resolution of 5.8 m. The multi-
spectral bands are 0.52–0.59 µm, 0.62–0.68 µm and
0.76–0.86 µm.

Up to date details of the IRS and space programmes
is available at http://directory.eoportal.org/get_announce.
php?an_id=10251.

2.3.6 Landsat Instruments

2.3.6.1 Landsat Multispectral Scanner (MSS)

Landsat-1, originally called Earth Resources Technology
Satellite One (ERTS-1), was the first civilian land
observation satellite. It was launched into a 919 km
Sun-synchronous orbit on 23 July 1972 by NASA, and
operated successfully until January 1978. A second, sim-
ilar, satellite (Landsat-2) was placed into orbit in January
1975. Landsats-3, -4 and -5 followed in 1978, 1982 and
1984, respectively. A sixth was lost during the launch

stage. The Landsat-7 launch took place on 15 April
1999. Landsat-2 and -3 had orbits similar to Landsat-1,
but the later satellites use a lower, 705 km, orbit, with a
slightly different inclination of 98.2◦ compared with the
99.09◦ of Landsats 1–3. The Landsat orbit parameters
are such that its instruments are capable of imaging the
Earth between 82◦N and 82◦S latitudes. A special issue
of the journal Photogrammetric Engineering and Remote
Sensing (volume 63, number 7, 1997) is devoted to an
overview of the Landsat programme.

Landsat satellites numbered 1–5 inclusive carried the
MSS which is described here for historical reasons, as
is no longer operational, though a substantial archive of
imagery remains available. The MSS was a four-band
instrument, with two visible channels in the green and
red wavebands, respectively, and two NIR channels
(0.5–0.6 µm, 0.6–0.7 µm, 0.7–0.8 µm and 0.8–1.1 µm).
These channels were numbered 4–7 in Landsats 1–3
because the latter two satellites carried a second instru-
ment, the Return Beam Vidicon (RBV), which generated
channels 1–3. The RBV was a television-based system.
It operated by producing an instantaneous image of the
scene, and scanning the image, which was stored on
a photosensitive tube. Landsat-4 and -5 did not carry
the RBV and so the MSS channels were renumbered
1–4. Since Landsat-4 and -5 operate in a lower orbit
than Landsat-1 to -3, the optics of the MSS were altered
slightly to maintain the swath width of 185 km and a
pixel size of 79 m (along track) × 57 m (across track).

The MSS was an electromechanical scanner, using an
oscillating mirror to direct reflected radiation onto a set of
six detectors (one set for each waveband). The six detec-
tors each record the magnitude of the radiance from the
ground area being scanned, which represents six adja-
cent scan lines (Figure 2.9). The analogue signal from
the detectors is sampled at a time interval equivalent to

Field of view
11.56°

Active scan west to east
Six lines per band

X

Z

Y Swath width 185 km

Direction of flight

Figure 2.9 Landsat Multispectral Scanner (MSS) operation.
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Example 2.3: Landsat MSS

Example 2.3 Figure 1 shows three Landsat MSS images of Mount St Helens dating from 15 September 1973, 22 May
1983 and 31 August 1988. Image processing methods such as image subtraction (Section 6.2.2) are used to obtain a
digital representation of areas that have changed over time. The analyst must remember that quantitative measures of
change include all aspects of the differences between the images being compared: atmospheric differences (Sections
1.2.5 and 4.4), instrument calibration variations (Section 4.5), as well as other factors such as illumination differences
caused by seasonal variations (Section 4.6).When pointable sensors such as the SPOT HRV are the source of the
imagery, then viewing geometry effects should also be taken into account.

Landsat MSS Image

Setember 15, 1973

Landsat MSS Image

May 22, 1983

Landsat MSS Image

August 31, 1988

Example 2.3 Figure 1. Landsat MSS. Landsat MSS images of Mount St. Helens dating from 15 September 1973, 22 May
1983 and 31 August 1988. Source: http://www.gsfc.nasa.gov/gsfc/images/earth/landsat/helen.gif. Courtesy: NASA.

The analysis of the nature, direction and drivers of change is useful in many areas of environmental management.
Changes in land cover, for example can be both a response to and a factor contributing to climate change. Variations
in the termini of Alpine glaciers are an indication of local temperatures over a number of years. Change analysis
is also an important aspect of urban and regional planning. The long (almost 40 years) archive of Landsat MSS
images, together with the moderate spatial resolution and wide-area coverage of the MSS, make it one of the most
useful sources of data for decadal change analysis studies.

a distance of 57 m along-scan, and converted to digital
form before being relayed to a ground receiving station.
A distance of 57 m represents some over-sampling, as
the IFOV of the system is equivalent to 79 m on the
ground. The detectors are active only as the mirror scans
in the forward direction. Satellite velocity is such that it
moves forward by an amount equal to 6 × 79 m during
the reverse scan cycle, so that an image is built up in each
band in sets of six scan lines. The detectors deteriorate at
different rates, so MSS images may show a phenomenon
called six-line banding. Methods of removing this kind
of ‘striping’ effect are discussed further in Section 4.2.2.

Landsat MSS images were collected routinely for a
period of over 20 years, from the launch of ERTS-1 in
July 1972 to November 1997, when the Australian
ground receiving station acquired its last MSS image.
Although somewhat old-fashioned by today’s standards,

the MSS performed well and exceeded its design life.
The MSS archive provides a unique historical record,
and is used in studies of temporal change, for example
urban growth, land degradation and forestry, as illustrated
in Example 2.3, which looks at change in the Mount St
Helen’s area of Washington state over a period of 13 years.

As from April, 2008, Landsat MSS imagery has been
made available free of charge. Ordering details can be
found at http://landsat.usgs.gov/products_data_at_no_
charge.php.

2.3.6.2 Landsat Thematic Mapper (TM)

The TM instrument is the primary imaging sensor car-
ried by Landsat-4 and -5. Landsat-4 (launched 16 July
1982) was switched off in August 1993 after failure of the
data downlinking system. Landsat-5 continues to operate,
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though only a direct data downlink facility is available.
Like the MSS, the TM uses a fixed set of detectors for
each band and an oscillating mirror. TM has 16, rather
than 4, detectors per band (excluding the TIR channel)
and scans in both the forward and the reverse directions.
It has seven, rather than four, channels covering the visi-
ble, near- and mid-infrared and the TIR, and has a spatial
resolution of 30 m. The thermal channel uses four detec-
tors and has a spatial resolution of 120 m. The data are
quantized onto a 0–255 range. In terms of spectral and
radiometric resolution, therefore, the TM design repre-
sents a considerable advance on that of the MSS.

The TM wavebands are as follows: channels 1–3 cover
the visible spectrum (0.45–0.52 µm, 0.52–0.60 µm and
0.63–0.70 µm, representing visible blue–green, green
and red). Channel 4 has a wavelength range of
0.75–0.90 µm in the NIR. Channels 5 and 7 cover the
mid-infrared (1.55–1.75 µm and 2.08–2.35 µm), while
channel 6 is the TIR channel (10.4–12.5 µm). The rather
disorderly channel numbering is the result of the late
addition of the 2.08–2.35 µm band.

Data from the TM instruments carried by the Landsat-4
and -5 satellites and the ETM+ carried by Landsat-7 are
transmitted to a network of ground receiving stations.
The European stations are located near Fucino, Italy
and Kiruna, Sweden. Data are also transmitted via the
system of TDRS, which are in geostationary orbits.
At least one of the satellites making up the TDRS
constellation is in line of sight of Landsats-4, -5 and -7.
TDRS transmits the image data to a ground station at
White Sands, NM, USA, from where it is relayed to
the data processing facility at Norman, OK, USA, using
the US domestic communications satellite DOMSAT.
Following a problem with the ETM+ instrument in
mid-2003, Landsat-5 TM data are again being down-
linked to ground receiving stations, almost 20 years after
the satellite was launched. Examples of Landsat TM
imagery are provided in Figures 1.10 and 1.11.

2.3.6.3 Enhanced Thematic Mapper Plus (ETM+)

Landsat-6, which was lost on launch in October 1993,
was carrying a new version of the Landsat TM called the
ETM. Landsat-7, which was launched on 15 April 1999,
and which operated successfully until mid-2003 when
an imaging defect occurred, carries an improved version
of ETM, called the ETM+. This instrument measures
upwelling radiance in the same seven bands as the TM,
and has an additional 15 m resolution panchromatic
band. The spatial resolution of the TIR channel is
60 m rather than the 120 m of the TM thermal band. In
addition, an onboard calibration system allows accurate
(±5%) radiometric resolution (Section 2.2.3). Landsat-7
has substantially the same operational characteristics as

Landsat-4 and -5, namely, a Sun-synchronous orbit with
an altitude of 705 km and an inclination of 98.2◦, a swath
width of 185 km, and an equatorial crossing time of
10.00. The orbit is the same as that of Terra (equatorial
crossing time 10.30), Aqua (equatorial crossing time
13.30) and EO-1. EO-1 carries an Advanced Land
Imager (ALI) which is compared to the ETM+ by
Neuenschwander, Crawford and Ringrose (2005). See
also Ungar et al. (2003) and US Geological Survey
(2003) for details of the EO-1 mission.

A sketch of the main components of the Landsat-7
satellite is shown in Figure 2.10, and the orbital charac-
teristics are shown in Figure 2.1.

2.3.6.4 Landsat Data Continuity Mission

A Landsat follow-on satellite system, the Landsat Data
Continuity Mission or LDCM is in preparation, with a
planned launch date of December 2012. It will carry the
Operational Land Imager or OLI. This instrument has
nine bands, shown in Table 2.4. Currently, ETM+ data
are being provided by Landsat-5 and Landsat-7 though,
as noted above, the Landsat-7 ETM+ instrument has
developed a fault which affects data on the right and
left hand sides of the image. Powell et al. (2007) dis-
cuss alternative Landsat-like moderate resolution sensors
and their applications. Data from these alternative sensors
(such as SPOT High Resolution Geometric (HRG) and
Resourcesat LISS-4) can be used to patch up the Landsat
ETM+ data.

Given that Landsat-5 is 26 years old at the time of
writing, that Landsat-7 data suffer from severe problems,
and that the earliest launch date for a Landsat Follow-on
Mission is 2012, it seems inevitable that a data gap will
occur. Data from other sensors, mentioned at the end of
the previous paragraph, may be used to fill in the gap.

2.3.7 SPOT Sensors

2.3.7.1 SPOT HRV

The SPOT programme is funded by the governments
of France, Belgium and Sweden and is operated by
the French Space Agency, CNES, located in Toulouse,
France. SPOT-1 was launched on 22 February 1986.
It carried an imaging sensor called the HRV instru-
ment that is capable of measuring upwelling radiance
in three channels (0.50–0.59 µm, 0.61–0.68 µm and
0.79–0.89 µm) at a spatial resolution of 20 m, or in a
single panchromatic channel (0.51–0.73 µm) at a spatial
resolution of 10 m. All channels are quantized to a
0–255 scale. HRV does not use a scanning mirror like
Landsat MSS and TM. Instead, it uses a linear array
of charge-coupled devices, or CCDs, so that all the
pixels in an entire scan line are imaged at the same time
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Figure 2.10 Schematic diagram of the Landsat-7 spacecraft, showing the solar array that supplies power, and the ETM+
instrument. The spacecraft travels in the + Y direction, with the + X direction pointing towards the Earth’s centre. Attitude and
altitude are controlled from the ground using thruster motors (not shown). Based on Figure 2.2, Landsat 7 Science Data Users
Handbook, NASA Goddard Spaceflight Center, Greenbelt, MD, USA. http://landsathandbook.gsfc.nasa.gov/handbook.html
(accessed 10 April 2009).

Table 2.4 Landsat Data Continuity Mission: Operational
Land Imager bands.

Band Band name Min. lower Max. upper Ground
number band edge band edge sampling

(nm) (nm) distance
(m)

1 Coastal/
aerosol

433 453 28–30

2 Blue 450 515 28–30

3 Green 525 600 28–30

4 Red 630 680 28–30

5 NIR 845 885 28–30

6 SWIR 1 1560 1660 28–30

7 SWIR 2 2100 2300 28–30

8 Panchromatic 500 680 14–15

9 Cirrus 1360 1390 28–30

(Figure 1.2b). As it has no moving parts the CCD push-
broom system might be expected to last longer than the
electro-mechanical scanners carried by Landsats-1 to -7,
though all of the Landsat sensors except the ETM+ on
Landsat-7 have exceeded their design lives by substantial
amounts. A more important consideration is the fact that,
since all of the pixel data along a scan line are collected
simultaneously rather than sequentially, the individual

CCD detector has a longer ‘look’ at the pixel area on the
ground, and collects more ground-leaving photons per
pixel than an instrument based on an electromechanical
scanner such as ETM+. This increased dwell time
means that the signal is estimated more accurately and
the image has a higher SNR (Section 2.2.2).

The SPOT orbit is near polar and Sun-synchronous
at an altitude of 832 km, an inclination of 98.7◦, with a
period of 101.5 minutes. The field of view of the HRV
sensor is 4.13◦ and the resulting swath width is 60 km.
Two identical HRV instruments are carried, so when they
are working in tandem the total swath width is 117 km
(there is a 3 km overlap when both sensors point at nadir).
The orbital repeat period is 26 days with an equatorial
crossing time of 10:30. However, the system potentially
has a higher revisit capability because the HRV sensor is
pointable. It can be moved in steps of 0.6◦ to a maximum
of ±27◦ away from nadir. This feature allows HRV to
collect image data within a strip 475 km to either side of
nadir. Apart from improving the sensor’s revisit capabil-
ity, the collection of oblique views of a given area (from
the left and right sides respectively) provides the oppor-
tunity to generate digital elevation models (DEMs) of
the area, using photogrammetric methods. However, the
use of non-nadir views introduces problems when phys-
ical values are to be derived from the quantized counts
(Section 4.6).

SPOT-1 was retired at the end of 1990, following the
successful launch of SPOT-2 in January 1990. SPOT-3
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followed in September 1993. All three carry an identical
instrument pack. SPOT-3 was lost following a technical
error. SPOT-4 was successfully launched on 24 March
1998. The HRV instrument on SPOT-4 is extended to
provide an additional 20 m resolution channel in the mid-
infrared region (1.58–1.75 µm) and the new instrument
is called the High Resolution Visible Infrared (HRV-IR).
This sensor can be used in multi-spectral mode (X), or
panchromatic mode (M), or in a combination of X and M
modes. SPOT-4 carries an onboard tape recorder, which
provides the capacity to store 20 scenes for downloading
to a ground station.

The SPOT-5 satellite was launched in May 2002. It
carries a four-band multispectral imager called High Res-
olution Geometric (HRG) with an enhanced panchromatic
channel, and a new stereo instrument. Details of these
instruments are given in Table 2.5. The spatial resolu-
tion of HRG is 10 m (20 m in the short wave infrared
(SWIR) band), and panchromatic images can be obtained
at 5 or 2.5 m spatial resolution, compared with 10 m
for SPOT-1–4. A new instrument, called High Resolu-
tion Stereoscopic (HRS) simultaneously collects images
from two different angles. The first image looks for-
ward of nadir along the line of flight at an angle of 20◦
while the second image looks backwards at the same
angle. The spatial resolution of HRS is 10 m and its
field of view is 8◦. The HRV instrument on SPOT-1 to
SPOT-4 collected stereo imagery in two stages. At the
first stage the HRV sensor was tilted to one side or other
of the subsatellite track to capture an off-nadir view of
the area of interest. At the second, later, stage a sec-
ond image of the same area was collected from a later,
different, orbit again using the pointing capability of the
instrument. The disadvantage of this two-stage approach
is that surface conditions may change between the dates

Table 2.5 Spatial resolution and swath widths for the
SPOT-5 instruments HRG (High Resolution Geometric),
Vegetation-2 and HRS (High Resolution Stereoscopic)
instruments carried by SPOT-5. Note that 2.5 m
panchromatic imagery is obtained by processing the 5 m data
using a technique called ‘Supermode’ (see text for details).

Spectral band (µm) Spatial resolution (m)

HRG Vegetation-2 HRS

P 0.49–0.69 2.5 or 5 – 10

B0 0.43–0.47 – 1000 –

B1 0.50–0.59 10 –

B2 0.61–0.68 10 1000 –

B3 0.79–0.89 10 1000 –

SWIR 1.58–1.75 20 1000 –

Swath width (km) 60 2250 120

of acquisition of the two images, thus causing problems
with the coregistering process (Section 4.3.4) and reduc-
ing the quality of the DEM that is produced from the
stereo pair. HRS uses the along-track stereo principle
to collect two images from different angles at the same
time. The ASTER sensor (Section 2.3.8) uses a slightly
different system, collecting simultaneous backward and
nadir views in order to generate a stereo image pair. The
relative (within the image) accuracy of the elevation val-
ues derived from the HRS along-track stereo image pairs
is given as 5–10 m, with an absolute (compared with
ground observations) accuracy of 10–15 m, making pos-
sible the generation of DEM at a map scale of 1:50 000.
Cuartero, Felicisimo and Ariza (2005) compare DEMs
derived from SPOT and ASTER (Section 2.3.8) data.

This high level of geometric accuracy is due to some
extent to the employment of a system for accurate
orbit determination called Doppler orbitography and
radiopositioning integrated by satellite (DORIS), which
was designed and developed by the CNES, the Groupe
de Recherches de Géodésie Spatiale (Space Geodesy
Research Group) and the French mapping agency (Insti-
tut Géographique National or IGN). DORIS consists of
a network of transmitting stations, a receiver on board
the satellite and a control centre. A receiver on board the
satellite measures the Doppler shift of the signal emitted
by the transmitting stations at two frequencies (400 MHz
and 2 GHz). The use of two frequencies is needed to
estimate the delay in propagation of radio waves caused
by the ionosphere. The data are stored in the instru-
ment’s memory, downloaded to the ground each time the
satellite is within range of a receiving station and then
processed to determine the precise orbital trajectory. The
orbital position of the satellite can be calculated to an
accuracy of a few centimetres using this approach.

A development of DORIS, called Détermination
Immédiate d’Orbite par DORIS Embarqué (DIODE or
real-time orbit determination using onboard DORIS), is
carried by SPOT-4 and -5; this device can, as its name
suggests, provide immediate orbital information that
can be downloaded to a ground station together with
the image data. It is used to calculate the position of
each pixel on the ground surface, and to express these
results in terms of a map projection such as Universal
Transverse Mercator (UTM). This is the procedure of
geometric correction of remotely-sensed images, and
it is considered in more detail in Section 4.3. A good
guide to map projections is provided by Fenna (2006).

The HRG instrument produces panchromatic images at
a resolution of either 2.5 or 5 m. The physical resolution
of the instrument is 5 m, but 2.5 m data are generated by
a processing technique that the SPOT Image Company
calls ‘Supermode’. Supermode provides an interesting
example of the application of advanced image processing
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Example 2.4: Landsat ETM+

The TM and ETM+ instruments have seven spectral bands that cover the visible, NIR and the SWIR regions of the
electromagnetic spectrum. Rocks, minerals and surface crusts can be discriminated in these regions (Section 1.3.2.2)
and so the use of TM/ETM+ imagery for geological mapping and exploration is an important application area. Tech-
niques such as band ratioing (Section 6.2.4) and colour enhancement (e.g. the decorrelation stretch, Section 6.4.3)
are commonly used techniques. Since each of the 30 × 30 m pixels making up the image is unlikely to cover a
homogeneous area, techniques such as linear spectral unmixing (Section 8.5.1) can be used to try to identify the
proportions of different materials that are present within each pixel area.

Deposits of gold and silver (which are found in Tertiary volcanic complexes) have been exploited in the area
shown on Example 2.4 Figure 1 for many years, at places such as Tonopah, Rhyolite and Goldfield in Nevada,
United States. Associated with these mineral deposits are hydrothermally altered rocks, which contain iron oxide
and/or hydroxyl-bearing minerals. These minerals show absorption bands in the VNIR and SWIR region of the
spectrum. Both the TM and ETM+ sensors can detect radiance in these spectral regions (bands 5 and 7). The image
has been subjected to a hue-saturation-intensity (HSI) transformation to enhance its colour (Section 6.5).

Example 2.4 Figure 1. Landsat ETM+ image of the Goldfield/Cuprite area, NV, USA. The colours in this image are related
to variations in lithology over this semi-arid area. Image source: http://edcdaac.usgs.gov/samples/goldfield.html. Courtesy
United States Geological Survey/NASA. The image has been subjected to a hue-saturation-intensity colour transform
(Section 6.5).

Further reading : Abrams, M., Ashley, R., Rowan, L., Goetz, A., and Kahle, A. (1977) Mapping of hydrothermal
alteration in the Cuprite Mining District, Nevada, using aircraft scanner images for the spectral region 0.46 to
2.36 µm. Geology , 5, 713–718.

methods, some of which are described in later chapters
of this book. The procedure is described in Example 2.4
and Figure 2.11.

2.3.7.2 Vegetation

SPOT-4 and -5 carry a sensor, Vegetation or VGT,
developed jointly by the European Commission, Bel-
gium, Sweden, Italy and France. VGT operates in the

same wavebands as HRV-IR except that the swath width
is 2250 km, corresponding to a field of view of 101◦,
with a pixel size at nadir of 1 km. This is called the
‘direct’ or ‘regional’ mode. ‘Recording’ or ‘world-wide’
mode produces averaged data with a pixel size of around
4 km. In this mode, VGT generates datasets for the
region of the Earth lying between latitudes 60◦N and
40◦S (Arnaud, 1994). The 14 daily orbits will ensure that
regions of the Earth at latitudes greater than 35◦ will be
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Figure 2.11 Illustrating SPOT-5 ‘Supermode’. (a) Two images, each with a spatial resolution of 5 m, are offset by 2.5 m in the
x and y directions. (b) These two images (left side) are overlaid and interpolated to 2.5 m pixels (centre), then filtered (right) to
produce a Supermode image with a resolution of 2.5 m. See Example 2.5 for more details. Permission to use the data was kindly
provided by SPOT image, 5 rue des Satellites, BP 4359, F 331030, Toulouse, France.

imaged daily, whereas equatorial areas will be imaged
every other day. The combination of the Vegetation
and HRV-IR sensors on the same platform means that
datasets of significantly different spatial resolutions are
obtained simultaneously.

VGT data complement those produced by the NOAA
AVHRR, which is widely used to generate global datasets
(Townshend and Skole, 1994). VGT has the advantage –
for land applications – of three spectral bands in the opti-
cal region plus one in the infrared part of the spectrum.
VGT should also be compared to the MODIS sensor that
is carried by both the Terra and Aqua satellites.

2.3.7.3 SPOT Follow-on Programme

SPOT-5 is the last of the line. Its mission was planned
to last until 2007 but is still ongoing. Research and
development in small satellites and lightweight sen-
sors mean that it is now more cost-effective to use
small satellites as described in Section 2.3.9. The
attraction of low-cost small satellites has led the
French and Italian governments to agree to place a
constellation of small satellites into orbit. The French
contribution is the Pléiades2 programme, which will
produce two small satellites operating in the optical
wavebands. The Italian contribution consists of five
small SAR satellites called COSMO/Skymed. SAR

2Readers familiar with Greek mythology will be aware that the original
Pléiades were the seven daughters of Atlas who, on being pursued for
nefarious purposes by Orion, were turned into doves by Zeus and trans-
ported to heaven. Orion was later sent up to heaven, but the outcome of
their meeting in that place is not known.

sensors are described in Section 2.4. As of late 2009,
three of the COSMO/Skymed constellation are already
in orbit.

There will be two Pléiades satellites, if plans come to
fruition. The first is scheduled for a 2010 launch, and the
second in mid-2011. Like COSMO/Skymed, Pléiades will
be a joint military/civilian system. It will have a panchro-
matic sensors, with a nadir spatial resolution of 70 cm,
and a four-band multispectral system, operating in blue,
green, red and NIR wavebands at a resolution of 2.8 m.
The instrument will be very versatile, capable of looking
in any direction. A video is available at http://smsc.
cnes.fr/PLEIADES/GP_mission.htm, which illustrates
the impressive versatility of the optical system. Stereo
pairs will be generated from panchromatic imagery and
the geometric accuracy of the imagery collected by
Pléiades is estimated as sub-metre. The Pléiades home
page is at http://smsc.cnes.fr/PLEIADES/index.htm.

The ESA has plans for a Sentinel Programme, running
from 2011 to 2016, as part of the European GMES pro-
gramme. Sentinel-1 consists of a pair of satellites, the
first of which is expected to be launched in 2010. Both
will carry imaging SAR instruments. Details are provided
below (Section 2.4.1). Sentinel-2 (2012) also consists of a
pair of satellites, but carrying optical (visible and SWIR)
instruments called Multi-Spectral Imager (MSI). Spatial
resolution will range from 10 to 60 m in 13 bands. A
description is provided by Martimor et al. (2007). The
MSI could be considered to be a SPOT follow-on instru-
ment, as it provides data in the same spectral region at a
similar spatial resolution.
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2.3.8 Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER)

The Japanese-built ASTER is one of the imaging sensors
carried by the American Terra satellite. ASTER is a
moderate-resolution multispectral sensor, acquiring data
in three spectral regions using a separate radiometer
for each region. It also has a stereoscopic capability.
The spectral regions in which images are acquired are
the VNIR, the SWIR and the TIR (Table 2.6). Images
collected in the three spectral regions differ in terms
of their spatial resolution. For the VNIR sensor, spatial
resolution is 15 m. The SWIR bands have a spatial
resolution of 30 m, while TIR images have a 90 m
spatial resolution. The band numbers, spectral ranges
and absolute accuracies of the 14 bands are shown
in Table 2.6. Unfortunately, bands 5–9 are no longer
functioning, as of January 2009. The SWIR bands started
exhibiting anomalous data values in late April 2008 and
stopped functioning in January 2009. ASTER SWIR
data acquired since April 2008 are basically not useable,
and thus cannot replace Landsat-5’s TM data should that
satellite cease to function before the introduction of the
Landsat Follow-on Mission (Section 2.3.6.4).

The ASTER instrument has a number of interesting
features. First, the spatial resolution of the VNIR bands is
higher than that of either the Landsat ETM+ or the SPOT
HRV sensor. Like the HRV sensor, ASTER is ‘pointable’,
that is it can collect images of areas lying to either side
of the subsatellite track. The VNIR radiometer can scan
up to ±24◦ off-nadir, and the other two radiometers can
point up to ±8.55◦ off-nadir. The inclusion of several
bands in both the SWIR and TIR regions makes ASTER
a unique spaceborne instrument. The multiple bands in
these two spectral regions should prove to be valuable in
geological studies.

ASTER has two spectral bands covering the
0.78–0.86 µm region. One is labelled as band 3N and the
other is band 3B. Band 3N looks vertically down, while
band 3B looks backwards at an angle of 27.6◦. Images in
these two NIR bands can be used to generate stereo pairs,
which can be used for the production of DEMs. The fact
that the two images are captured simultaneously in ‘along
track’ mode reduces problems caused by changes in
surface reflectance that are associated with ‘across-track’
mode stereo images such as those produced by SPOT-1
to SPOT-4 HRV. In across-track mode the two images
making up the stereo pair are acquired on different orbits,
which may be separated in time by weeks or months,
depending on cloud cover and instrument availability.
Welch et al. (1998) and Lang and Welch (1996) discuss
the methods used to generate the ‘Standard Data Product
DEM ’ from ASTER band 3B and 3N data (Figure 2.12).
They cite results obtained from test sites in the United
States and Mexico to show that the root mean square

(RMS) error of the elevation measurements is between
±12 and ±30 m, provided that the two images can be
co-registered to an accuracy of ±0.5 to ±1.0 pixels using
image correlation procedures (Section 4.3.2). Toutin
(2002) provides details of an experiment to measure
the accuracy of an ASTER DEM, and also describes
the methods used by the NASA EOS Land Processes
DAAC to generate ASTER DEMs (which are distributed
via the United States Geological Survey (USGS) EROS
Data Centre in Sioux Falls, SD, USA). The same author
(Toutin, 2008) reviews the use of ASTER DEMs in the
earth sciences. Global ASTER DEMs (ASTER GDEM)
at 30 m resolution are now freely available for the entire
globe – see http://www.gdem.aster.ersdac.or.jp.

ASTER data products are available at different levels
of processing. Level 0 is full resolution unprocessed and
unreconstructed data. Level 1A is equivalent to Level 0
plus ancillary data (radiometric and geometric calibration
coefficients). Radiometric and geometric corrections are
applied to the Level 1B data, which are supplied in the
form of quantized counts. These counts can be converted
into apparent radiance using the calibration factors listed
in Table 2.7. Levels 2–4 include products such as DEM
derived from Band 3N/3B pairs, surface temperatures and
radiances and images derived from processing operations
such as decorrelation stretch (Section 6.4.3).

An account of ASTER data products is provided by
Abrams (2000). The sensor is described by Yamaguchi
et al. (1998). Cuartero, Felicisimo and Ariza (2005) com-
pare ASTER DEM accuracy with that of DEMs obtained
from the SPOT system (see above). Gao and Liu (2008)
compare and evaluate ASTER and Landsat ETM+ data in
a study of land degradation and find that ETM+ outper-
forms ASTER in a supervised classification (Chapter 8).
This result was attributed to the spectral resolution of
the six shortwave infrared bands, which overlap con-
siderably. IEEE Transactions on Geoscience and Remote
Sensing (2005) is a Special Issue on the ASTER Instru-
ment. Marçal et al. (2005) examine the use of ASTER
data in land cover classification (Chapter 8). Remote Sens-
ing of Environment (2005) is a special issue on scientific
results from ASTER.

2.3.9 High-Resolution Commercial and Small
Satellite Systems

The release of technology from the military to the
commercial sector in the United States during the
1990s allowed a number of American private-sector
companies to launch and service their own satellites,
for example GeoEye’s IKONOS satellite (see below).
These satellites each carry a single sensor that produces
either a panchromatic image at a spatial resolution
of 1 m or better, or a multispectral image, typically
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Example 2.5: SPOT-5 Supermode

The SPOT-5 satellite carries the HRG pointable imaging sensor, which produces panchromatic images
at a resolution of 5 m using a CCD array with 12 000 elements. In fact, there are two such arrays.
Each is programmed to collect a separate image of the area being viewed, with the second image being
offset by half a pixel in the horizontal and vertical directions, as depicted in Figure 2.11(a). A new
image, with a spatial resolution of 2.5 m, is derived from these overlapped cells. Example 2.5 Figure 1

Example 2.5 Figure 1. Left-hand SPOT HRG
image with spatial resolution of 5 m. Reproduced
with permission of SPOT Image, Toulouse.

Example 2.5 Figure 2. Right-hand SPOT HRG
image with spatial resolution of 5 m. Reproduced
with permission of SPOT Image, Toulouse.

with four spectral bands and a spatial resolution of
4 m. Images from these sensors have brought digital
photogrammetry and digital image processing much
closer together. The data from the panchromatic band
for two adjacent IKONOS orbits can be used to generate
DEMs (ISPRS Journal of Photogrammetry and Remote
Sensing , 2006) as well as for topographic mapping. At
the same time, the use of small and relatively cheap
satellites to carry a single remote sensing instrument
has been pioneered by, among others, Surrey Space
Technology Ltd (SSTL), a spin-off company associated
with the University of Surrey, United Kingdom, and
now owned by EADS/Astrium. The SSTL Disaster
Monitoring Constellation or DMC is an example of a
group of satellites operating synergistically. A second
example is the RapidEye constellation, operated by
the German company, RapidEye AG. In this section a

brief summary of (i) small independent satellites and
(ii) constellations of small satellites is provided. The pace
of change is considerable, so to keep up to date readers
should visit the Internet and search for ‘small satellites’.
Recent surveys of small satellites and their applications
include Kramer and Cracknell (2008), Sandau, Röser
and Valenzuela (2008) and Xue et al. (2008).

The first high-resolution commercial optical remote
sensing system was IKONOS. The first IKONOS launch
failed, but in late 1999 a successful launch placed
IKONOS into orbit. (The word ‘ikon’ means ‘image’
or ‘likeness’ in Greek.) High resolution is the main
distinguishing characteristic of the imagery produced
by IKONOS for, in panchromatic mode, it can acquire
imagery at a spatial resolution of 1 m and multispectral
imagery in four channels with a spatial resolution of
4 m. The sensor can be tilted both along and across
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shows one view of the target area taken by the first HRG sensor. Example 2.5 Figure 2 is the second 5 m resolution
panchromatic image from the HRG sensor that is used in the Supermode process. This image is displaced horizon-
tally and vertically by half a pixel with respect to the first image. This displacement produces four pixels measuring
2.5 × 2.5 m nesting within the original 5 × 5 m pixel. Interpolation (resampling) is used to compute values to be
placed in the 2.5 m pixels. Resampling is described in section 4.3.3. The third stage of the Supermode process uses
a filtering procedure (chapter 7) called deconvolution. SPOT Image uses a method based on the discrete wavelet
transform, which is described in section 6.7. Example 2.5 Figure 3 shows the end product.

Example 2.5 Figure 3. Composite of Example 2.5 figures 1 and 2. The images in Example 2.5 figure 1 and 2 have a spatial
resolution of 5 m, but the latter image is offset by 2.5 m. This Supermode image has been resampled and filtered to produce
an image with an apparent spatial resolution of 2.5 m. Reproduced with permission of SPOT Image, Toulouse.

track, and the spatial resolutions cited are valid for
off-nadir pointing angles of less than 26◦. The panchro-
matic band covers the spectral region 0.45–0.90 µm,
while the four multispectral channels collect data in
the blue (0.45–0.53 µm), green (0.52–0.61 µm), red
(0.64–0.72 µm) and NIR (0.77–0.88 µm) bands. The
satellite flies in a near-circular, Sun-synchronous, polar
orbit at a nominal altitude of 681 km and with an
inclination angle of 98.1◦. The descending nodal time
(when the satellite crosses the equator on a north-south
transect) is 1030. Data from the IKONOS system are
quantized using an 11-bit (0–2047) scale (Section 3.2.1)
and are available in a variety of forms ranging from
standard system-corrected to geometrically corrected
(Section 4.3) and stereo, for the production of DEM. The
precision geocorrected imagery is claimed to have a map
scale equivalent of 1 : 2400. The use of high-resolution
data in updating topographic maps is described by

Holland, Boyd and Marshall (2006). A special issue of
ISPRS Journal of Photogrammetry and Remote Sensing
(volume 60, number 3, pages 131–224) is devoted to
topographic mapping from high-resolution instruments.

Because of their high spatial resolution, IKONOS
images are used for small-area investigations, where
they can replace high-altitude air photography to some
extent. The fact that the sensor is pointable means that
geocorrection involves more complex processing than is
required for medium and low-resolution imagery from
sensors such as the Landsat ETM+ and NOAA AVHRR.
Expert photogrammetric knowledge is needed for these
operations. An IKONOS panchromatic image of central
London is shown in Figure 2.13. The detail even in this
reproduction is clear, and applications in urban planning
and change detection, as well as military reconnaissance,
are apparent. Dial et al. (2003) review applications of
IKONOS data.
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Table 2.6 ASTER spectral bands. The ASTER dataset is subdivided into three parts VNIR (Visible and Near
Infra-Red), SWIR (Short Wave Infra-Red) and TIR (Thermal Infra-Red). The spatial resolution of each subset is:
VNIR 15 m, SWIR 30 m and TIR 90 m. The swath width is 60 km. Data in bands 1–9 are quantized using 256
levels (8 bits). The TIR bands use 12 bit quantization.

Spectral region Band number Spectral range (µm) Absolute accuracy Cross-track pointing (◦)

VNIR 1 0.52–0.60 ≤ ±4% ±24

2 0.63–0.69

3N 0.78–0.86

3B 0.78–0.86

SWIR 4 1.600–1.700 ≤ ±4% ±8.55

5 2.145–2.185

6 2.185–2.225

7 2.235–2.285

8 2.295–2.365

9 2.360–2.430

TIR 11 8.475–8.825 ≤ ±3 K (200–240 K)

12 8.925–9.275 ≤ ±2 K (240–270 K)

13 10.25–10.95 ≤ ±1 K (270–340 K)

14 10.95–11.65 ≤ ±2 K (340–380 K)

Source: ASTER Users’ Guide, Part 1 (General), Version 3.1, March 2001, ERSDAC, Japan, and Abrams (2000).

Figure 2.12 Digital elevation model derived from ASTER
data. The area shown covers a part of Southern India for
which more conventional digital mapping is unavailable. The
ASTER DEM image has been processed using a procedure
called density slicing (Section 5.2.1). Low to high elevations
are shown by the colours green through brown to blue and
white. Original data courtesy NASA/USGS.

Table 2.7 Maximum radiance for different gain settings for
the ASTER VNIR and SWIR spectral bands.

Maximum radiance (W m−2 sr−1 µm−1)

Band no. High gain Normal gain Low gain 1 Low gain 2

1 170.8 427 569 N/A

2 179.0 358 477

3N 106.8 218 290

3B 106.8 218 290

4 27.5 55.0 73.3 73.3

5 8.8 17.6 23.4 103.5

6 7.9 15.8 21.0 98.7

7 7.55 15.1 20.1 83.8

8 5.27 10.55 14.06 62.0

9 4.02 8.04 10.72 67.0

QuickBird was launched in October 2001, and is
owned and operated by the American DigitalGlobe
company. Like IKONOS, it carries a single instrument
capable of producing panchromatic images with a spatial
resolution of between 0.61 and 0.73 m, plus multispectral
imagery with a spatial resolution of 2.44 and 2.88 m,
depending on the angle of tilt of the sensor (which ranges
up to 25◦ off-nadir). The sensor can be tilted along or
across track, to produce stereo imagery and to ensure a
revisit capability of between one and three and a half
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Figure 2.13 IKONOS panchromatic image of central Lon-
don, showing bridges across the River Thames, the London
Eye Ferris wheel (lower centre) and Waterloo railway station
(bottom centre). The image has a spatial resolution of 1 m.
IKONOS satellite imagery courtesy of GeoEye. Reproduced
with permission from DigitalGlobe.

days. Imagery is available in basic (system corrected),
standard (geometrically corrected to a map projection;
Section 4.3) and orthorectified forms. Orthorectification
is a form of geometric correction that takes into account
the relief of the terrain. Figure 2.14 shows a QuickBird
panchromatic image of the gardens of the Palace of
Versailles, near Paris.

Other commercial high resolution satellite sensors
include WorldView (launched 2007) which has the
highest resolution of any panchromatic sensor (0.5 m) in
orbit. In fact, US Government regulations prevent the
sale to non-US citizens of imagery with a resolution
of less than 50 cm. Like IKONOS, the radiometric
resolution is 11 bits. The spectral response curves for the
WorldView-1 and -2 panchromatic instruments are given
in Anon (undated). Unlike Worldview-1, WorldView-2,
launched in October 2009, carries a multispectral sensor
with eight bands (blue, green, red, NIR, red edge, coastal,
yellow and NIR-2). These multispectral data have a
spatial resolution of 1.8 m at nadir. The panchromatic
sensor has a resolution of 0.46 m. All bands have a
radiometric resolution of 11 bits and a swath width of
16.4 km. Geolocation of Worldview-2 imagery is assisted
by the fact that the platform is very stable; the operators
claim that the use of attitude sensors and GPS will make
the imagery accurate to 6.5 m (or 2.0 m if ground control
points are used). These figures exclude the effects of
terrain and of off-nadir viewing.

Figure 2.14 QuickBird panchromatic image of the gardens of
the Palace of Versailles, near Paris, France. The proclamation
of Kaiser Wilhelm I as emperor of Germany was made in the
great Hall of Mirrors in the Palace of Versailles following the
defeat of France in the Franco-Prussian War of 1871. Image
courtesy of DigitalGlobe. c© Copyright. All rights reserved.

A British satellite, Topsat, was launched in 2005.
It was built by QinetiQ Ltd (the camera system was
supplied by the RAL) and funded by the British National
Space Centre (BNSC). It carries a multispectral sensor
with a spatial resolution of 2.5 m at nadir. Topsat is
small – it was built as a technology demonstrator to
show that Earth observation can be successful even from
a box-sized spacecraft (0.8 m side length). Figure 2.15
shows a TopSat image of the London orbital motorway
(M25) where it crosses the Thames Estuary, downstream
from London.

Other high-resolution satellite systems that are worth
further consideration are FORMOSAT-2, KOMPSAT-2
and Compact High Resolution Imaging Spectrometer
(CHRIS). Data from the first two of these satellites is
marketed by SPOT Image, and details can be found
on their web site. Both produce panchromatic stereo
at a resolution of 1 m (KOMPSAT) and 2 m (FOR-
MOSAT) as well as multispectral (4 m KOMPSAT,
8 m FORMOSAT). CHRIS is an ESA experimental
project that has produced a good deal of scientific data.
It collects data at five different viewing angles – two
backwards, two forwards and nadir. The spectral range
is 410–1050 nm, and the number of spectral bands
is variable. It is one of two spaceborne hyperspectral
sensors (the other is NASA’s Hyperion). Hyperspectral
sensors are considered in more detail in Section 9.3.

So far in this section we have considered single high-
resolution dedicated satellites operating in the optical
region of the spectrum. One of the problems of optical
remote sensing in many areas of the world is that of cloud
cover. One solution is to use several satellites spaced out
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Figure 2.15 TopSat multispectral image of the Thames near
Dartford. The inset shows an enlargement of the area around
and including the high-level Queen Elizabeth II bridge taking
the M25 (strictly speaking, the A282) over the Thames. Imagery
courtesy of TopSat consortium, copyright QinetiQ.

around the same orbit. The UK company SSTL builds
relatively cheap but effective satellites using commercial
off the shelf (COTS) technology. The company operates
the DMC, which currently has six member countries
(Algeria, Nigeria, Spain, Turkey, the United Kingdom
and China). Each DMC satellite carries a MSS capable
of a spatial resolution of 32 m in three spectral bands
(NIR, red, green). The latest version of the imaging
instrument (DMC-2) has an improved spatial resolution
of 22 m. The United Kingdom and Spain currently
operate these 22 m resolution systems. The wide ground
swath of 600 km enables a revisit of the same area almost
anywhere in the world at least every 4 days with just a
single satellite. Figure 2.16b shows a 1024 × 1024-pixel
extract from a DMC 30 m resolution multispectral image
of a part of the south-west United States. The SSTL
web site at http://www.dmcii.com/products_sensor.htm
contains a review of the sensor, called Surrey Linear
Imager-6 (SLIM-6). See also Chander et al. (2009b), who
assess SLIM-6 data quality and compare the character-
istics of the instrument with those of Landsat-7 ETM+.
They conclude that

Indications are that the SSTL UK-DMC SLIM-6 data
have few artifacts and calibration challenges, and these
can be adjusted or corrected via calibration and processing
algorithms.

A second example of a constellation of small satellites
is RapidEye, operated by a German company of the same

name. The system was built by a consortium of public and
private agencies, including the German Space Agency,
DLR. Five satellites follow a similar orbital path, so that
each point on the Earth’s surface between 75◦N and S is
imaged once per day. The satellites were built by SSTL,
and each carries a multispectral sensor which records five
bands: blue, green, red, red edge and NIR. (The concept
of the red edge is discussed in Section 9.3.2.3.)

2.4 Microwave Imaging Sensors

As noted in Section 1.2.3, the microwave region of
the electromagnetic spectrum includes radiation with
wavelengths longer than 1 mm. Solar irradiance in this
region is negligible, although the Earth itself emits some
microwave radiation. Imaging microwave instruments do
not, however, rely on the detection of solar or terrestrial
emissions (though passive microwave radiometers do
detect terrestrial emissions). Instead, they generate their
own source of energy, and are thus examples of active
sensing devices. In this section, the properties of SAR
imaging systems carried by the ERS-1/2, ENVISAT,
TerraSAR-X, COSMO/Skymed and Radarsat satellites
are presented. General details of imaging radar systems
are described in Sections 1.2.3 and 9.2.

SAR instruments are more complex than those operat-
ing in the optical and TIR regions of the spectrum. In this
context, an aperture is an aerial or antenna such as the
ones that the reader may have seen above the air traffic

Figure 2.16 Extract from an image acquired by the Alge-
rian AlSAT satellite of the Colorado River in Arizona. This
is a 1024 × 1024 pixel (33 × 33 km) extract from the full
600 × 600 km scene. AlSat is a member of SSTL.s Disaster
Monitoring Constellation (DMC). Reproduced with premis-
sion from AlSAT-1 Image of the Colorado River (DMC Con-
sortium).
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A Brief History of Radar
The history of the development of radar makes a fascinating story. The detection of distant targets by radio waves is
an idea that dates back to the early twentieth century, when a German scientist, Huelsmayer, patented the concept.
Two Americans, Taylor and Young, rediscovered Huelsmayer’s idea in 1922, but nothing came of it. By the early
1930s, the British Government was becoming concerned by the prospect of aerial bombardment of cities by the
Luftwaffe, and the UK Air Ministry started to investigate ways of locating incoming bombers. Some rather odd
ideas emerged, such as that of the Death Ray. The UK Air Ministry offered a prize of £1000 in 1934 for the first
person to kill a sheep at 180 m using a Death Ray. The prize was never awarded; unfortunately, the number of sheep
that fell in the cause of science (and patriotism) was never recorded. TIR and acoustic devices were considered,
but it was Watson-Watt who, in 1935, demonstrated that he could locate an aircraft using the BBC radio transmitter
near Daventry in the English Midlands. The Americans had the same idea and did, in fact, detect an aircraft using
radar a month before Watson-Watt’s success. Watson-Watt became a victim of his own invention when, after the
Second World War, he was caught by a radar speed trap.

Early radars such as those used in the ‘Battle of Britain’ in August/September 1940 operated at long wavelengths
(13 m) and were hampered by radio interference. A major breakthrough came in 1939–1940 with the invention of
the cavity magnetron by Randall and Boot at Birmingham University. Although the United States was still neutral
in 1940, the British Prime Minister, Winston Churchill, authorized the transfer of a cavity magnetron to the United
States, where – in response – the Rad Lab was established at MIT, attracting scientists such as Luis Alvarez (who
was later to become even more famous for his theory that dinosaurs were annihilated by a meteorite impact at
about 65 Ma). One American scientist described the cavity magnetron as the most valuable cargo ever to reach
America’s shores.

The MIT Rad Lab and the British radar research laboratories used the cavity magnetron to develop shorter-
wavelength radars. The British developed the H2S radar, which operated at a 10 cm wavelength and which was
fitted to bombers. This targeting radar was the first terrain-scanning radar in the world. Its effectiveness was
demonstrated on 1 November 1941, when a 10 cm radar fitted to a Blenheim bomber was able to locate a town at
a distance of 50 km.

Radar research and development proceeded rapidly during the Second World War, with naval and airborne radar
being widely used by the British and American navies for detection of enemy vessels and surfaced submarines,
and for gunnery control. Radars were also carried by aircraft. By 1945, radar was an essential element of the air
defence system, targeting and naval operations.

control centre at an airport, or at a military base such as
Fylingdales in North Yorkshire. The first airborne radar
systems carried radars that were similar in principle to
these ground-based radars. The antenna was mounted on
the side or on the top of the aircraft, and was pointed
to one side of the aircraft at 90◦ to the direction of for-
ward travel. A pulse of microwave energy was emitted by
the antenna and the reflected backscatter from the target
was detected by the same antenna, with the result being
displayed on a cathode ray tube. This kind of radar is
known as a side-looking airborne radar or SLAR. The
text box ‘Radar History’ provides a brief summary of the
historical development of radar.

The spatial resolution achieved by a SLAR is propor-
tional to the length of the antenna. For satellite-borne
radars, this relationship results in a practical difficulty. In
order to achieve a spatial resolution of, say, 30 m from
an orbital height of 700 km the antenna length would be
several kilometres. If, on the other hand, it were possible
to move a 10 m antenna along the orbital path, record-
ing the backscatter from a given target at each position,

then it would be possible to simulate an antenna length
of several kilometres and achieve an acceptable level of
spatial resolution.

One obvious difficulty in understanding how a SAR
works is summarized by the question: ‘How does the sen-
sor record whether it is approaching, passing or moving
away from the target?’ The answer is: it doesn’t. Instead
of recording positions relative to every possible target,
which would be difficult, the SAR records the amplitude
and the phase of the return signal (Figures 1.8 and 9.1).
From these two properties of the return signals, it is pos-
sible to calculate the position of the object relative to the
antenna. This calculation is based on a concept that is
well within our everyday experience, namely the Doppler
principle. We can tell whether a police car or an ambu-
lance is approaching us or moving away from us by com-
paring the tone of the siren at one instant with that at the
next instant. If the vehicle is approaching, then the siren’s
note appears to rise in pitch. If it is moving away from
us, then the note seems to drop. The same idea is used in
a SAR (the calculations are, however, quite formidable).
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Figure 2.17 The ‘synthetic aperture’ is generated by the
forward motion of the platform through positions 1–5 respec-
tively. The Doppler principle is used to determine whether
the antenna is looking at the target from behind or ahead.

The Doppler principle can thus be used to increase
the spatial resolution of a satellite or airborne imaging
radar by allowing the calculation of the motion of the
satellite platform relative to a target (Figure 2.17). In
addition, the absolute distance between the antenna and
the target can be calculated. This distance is called the
range. Microwave energy travels at the speed of light and
so, if the time taken between the transmission of a pulse
and the reception of the return is known, then the distance
is ct/2 where c is the speed of light, and t is the time
taken from transmission of a pulse to the reception of its
return. Division by two is undertaken as the pulse travels
from the antenna to the target and back again. Radar
is called a ranging instrument because it can measure
distance from the sensor to the target. Lidar (Section 9.4)
is another example of a ranging instrument. However,
lidar measures only the distance from the sensor to the
target. Radar can also measure some characteristics of the
target as well.

We saw in Chapter 1, and in some of the examples
presented earlier in this chapter, that optical sensors
measure electromagnetic radiation that is reflected by
the target. The chemical composition of the target (for
example chlorophyll in leaves or minerals in a soil)
affects the nature of the reflected radiation in the optical
region because each chemical element, or mixture
of elements, absorbs some of the incoming radiation
at specific wavelengths. The return signal estimates
the reflectance spectrum of the target. Techniques for
the identification of targets by remote sensing using
optical wavelengths assume that similar targets (such as
specific vegetation types) have similar reflectance spectra
(Chapter 8). The interaction between electromagnetic
radiation and a target in the microwave region does
not generate information about the types of chemical

element or mixtures of elements that are present in
the target, but is related to the geometry and surface
roughness of that target (relative to the wavelength of
the microwave energy pulse) and what are known as the
‘ dielectric properties’ of the target, which generally are
closely correlated with its moisture status.

Radar wavelength bands are described by codes such
as ‘L-band’ or ‘C-band’ that came into use during the
Second World War for security purposes. Unfortunately,
several versions of the code were used, which confused
the Allies as much as the opposition. Table 2.8 shows the
commonly accepted delimitation of radar wavelengths.
Radar wavelength also has a bearing on the degree of
penetration of the surface material that is achieved by
the microwave pulses. At L-band wavelengths (approx-
imately 23 cm), microwave radiation can penetrate the
foliage of trees and, depending on the height of the tree,
may reach the ground. Backscatter occurs from the
leaves, branches, trunks and the ground surface. In areas
of dry alluvial or sandy soils, L-band radar can penetrate
the ground for several metres. The same is true for glacier
ice. Shorter-wavelength C-band radiation can penetrate
the canopies of trees, and the upper layers of soil and ice.
Even shorter wavelength X-band SAR mainly ‘sees’ the
top of the vegetation canopy and the soil and ice surface.

Properties of the microwave radiation used by a SAR,
other than wavelength, are important. The polarization
of the signal has an effect on the nature and magnitude
of the backscatter. Figure 1.3 illustrates the concept of
polarization of an electromagnetic wave. In a polarized
radar, the antenna can transmit and receive signals in
either horizontal (H) or vertical (V) mode. If it both
transmits and receives in horizontal polarization mode
it is designated as ‘HH’. If both transmit and receive
modes are vertical then the radar system is designated
‘VV’. HV and VH modes are also used. HH and VV
modes are said to be ‘like polarized’, whereas VH and
HV modes are ‘cross-polarized’. The SIR-C SAR carried
by the Space Shuttle in 1994 provided polarimetric

Table 2.8 Radar wavebands and nomenclature.

Band designation Frequency (MHz) Wavelength (cm)

P 300–1000 30–100

L 1000–2000 15–30

S 2000–4000 7.5–15

C 4000–8000 3.75–7.5

X 8000–12 000 2.5–3.75

Ku 12 000–18 000 1.667–2.5

K 18 000–27 000 1.111–1.667

Ka 27 000–40 000 0.75–1.111
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radar images in the C and L bands, plus an X-band
image. The Advanced Synthetic Aperture Radar (ASAR)
instrument on the European ENVISAT can transmit
and receive in combinations of H and V polarizations.
The Canadian Radarsat-2 also carries a fully polari-
metric SAR, as does the Advanced Land Observation
Satellite (ALOS) PALSAR and the recently-launched
TerraSAR-X (Germany) and COSMO-Skymed (Italy).
Freeman et al. (1994) discuss the use of multifrequency
and polarimetric radar for the identification and classi-
fication of agricultural crops (Chapter 8). Mott (2007)
is devoted to the analysis of polarimetric radar. Lee and
Pottier (2009) is another substantial guide to the use of
polarimetric SAR.

Another important property of an imaging radar is
the instrument’s depression angle, which is the angle
between the direction of observation and the horizontal
(Figure 2.18). The angle between the direction of obser-
vation and the surface normal (a line at right angles to
the slope of the Earth’s surface) is the incidence angle,
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Nadir point

Nadir point
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Figure 2.18 (a) Angles in imaging radar: θD is the depression
angle (with respect to the horizontal), θL is the look angle,
which is the complement of the depression angle and θI is the
incidence angle. θL depends on local topography and is equal
to the look angle only when the ground surface is horizontal.
In (b) the ground slope at P is θT and the local incidence angle
is θI . The normal to the land surface is the line through P that
is perpendicular to the tangent to the land surface slope at P.

which is also shown on Figure 2.18. The local incidence
angle depends on the slope of the ground surface at the
point being imaged (Figure 2.18b). Generally, the degree
of backscatter increases as the incidence angle decreases.
Different depression angles are suited to different tasks;
for example ocean and ice monitoring SAR systems
use lower depression angles than do SAR systems for
land monitoring.

The view direction of a radar sensor is also impor-
tant in detecting geological features with particular
orientations, so that radar images of the same terrain
with different ‘look angles’ will show different features
(Blom, 1988; Gauthier et al., 1998; Koch and Mather,
1997; Lowman, 1994).

Imaging radars are side-looking rather than nadir-
looking instruments, and their geometry is complicated
by foreshortening (the top of a mountain appearing
closer to the sensor than does the foot of the mountain)
and shadow, caused by the ‘far side’ of a mountain
or hill being invisible to the side-looking radar sensor
(see Schreier, 1993a, for a thorough description of the
workings of a SAR) (Figure 2.19a,b). Furthermore, the
interaction between microwave radiation and the ground
surface generates a phenomenon called speckle, which
is the result of interference resulting from the coherent
integration of the contributions of all the scatterers in
the pixel area (Quegan and Rhodes, 1994). Speckle
magnitude is proportional to the magnitude of the back-
scattered signal, and is rather more difficult to remove
from the image than is additive noise. Filtering, which is
used to remove unwanted features such as speckle noise,
is the topic of Chapter 7. A recent development is the
use of wavelets (Section 6.7) to remove speckle filter
noise; see, for example Xie, Pierce and Ulaby (2002).
See also Section 1.2.3 for an introduction to imaging
radar principles, and Section 4.6 for a brief summary of
calibration issues. Other basic sources are Leberl (1990),
Lewis, Henderson and Holcomb (1998), Rees (2001),
Ulaby, Moore and Fung (1981–1986) and Ulaby and
Elachi (1990). The textbooks by Kingsley and Quegan
(1992), Oliver and Quegan (2004) and Woodhouse
(2006) provide a sound introduction to radar systems in
remote sensing. Lu, Kwoun and Rhykus (2007) provides
a retrospect and prospect. A number of web-based
tutorials are recommended – these are listed in Table 2.9.

Software for processing ESA SAR imagery is provided
by the Next European Space Agency Synthetic Aperture
Radar Toolbox (NEST), which is described as an open
source toolbox for reading, post-processing, analysing
and visualising the large archive of data (from Level 1)
from ESA SAR missions including ERS-1 and -2,
ENVISAT and in the future Sentinel-1. In addition, han-
dling of products from third party missions like JERS-1,
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Sensor

Radar sensor

Range direction

A

A

B

B
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Shadow
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Figure 2.19 (a) The area on the ground between points A
and B cannot reflect any of the microwave energy that is
transmitted by the sensor, and so appears as ‘radar shadow’.
Also note that, although the right-hand hill is fairly symmetric,
the distance from hill foot to crest for the illuminated side is
seen by the sensor as being considerably less than the hill foot
to crest distance (AB) of the right-hand side of the hill. This
effect is known as ‘foreshortening’. (b) Layover is the result
of the distance from the top of the building at A or the hill
at B appearing to be closer to the sensor than the base of
the building or the foot of the hill. This distance is called the
‘slant range’.

ALOS PALSAR, TerraSAR-X, Radarsat-1 and -2 and
COSMO-Skymed will be supported. Further details can
be found on the Internet at http://www.array.ca/nest/
tiki-index.php. Polsar Pro is another ESA software toolkit
for polarimetric SAR processing (http://earth.esa.int/
polsarpro/). Polarimetric SAR software is also available
from the Alaska Satellite Facility at http://www.asf.alaska.
edu/sardatacenter/softwaretools. The same MapReady
software can be downloaded from NASA’s web site at
http://gcmd.nasa.gov/records/ASF_MapReady.html.

Table 2.9 Synthetic Aperture Radar tutorial resources on
the Internet.

Sponsor Web site Description

ESA www.tiger.esa.int/
training/SAR_LA1_
th.pdf

ESA’s NEST
SAR
Processor

National
Resources
Canada
(NRC)

http://ccrs.nrcan.gc.ca/
resource/index_e.
php#tutor

NRC tutorials
on a range of
SAR-related
subjects

Canada Centre
for Remote
Sensing

http://ccrs.nrcan.gc.ca/
resource/tutor/gsarcd/
index_e.php

SAR tutorial

Canada Centre
for Remote
Sensing

http://ccrs.nrcan.gc.ca/
resource/tutor/polarim/
index_e.php

Polarimetric
SAR tutorial

2.4.1 European Space Agency Synthetic Aperture
Spaceborne Radars

The first spaceborne imaging radar was carried by the US
Seasat satellite, launched in 1978. It carried an L-band
SAR, but operated for only 100 days. Thirteen years
later, on 17 July 1991, the first European Remote Sens-
ing Satellite, ERS-1, was launched into an 800 km near-
polar orbit by the ESA. ERS-1 carried the ATSR (Section
2.3.1), which is a low-resolution optical/infrared sensor,
as well as a SAR. ERS-1 is now out of commission. A
second identical ERS satellite (ERS-2) was launched in
1994, providing opportunities for ‘tandem mode’ oper-
ation as the two satellites orbited one behind the other
to generate SAR images of the same area over a period
of a few days. Such datasets are used in interferometric
studies to derive DEMs and to measurements of small
movements on the Earth’s surface (Section 9.2).

The ERS SAR operates at a wavelength of 5.6 cm in the
C band (Table 2.8) and images an area 100 km wide to the
right-hand side of the satellite track (facing the direction
of motion). Microwave energy pulses are both transmit-
ted and received in vertical polarization mode. As noted
above, radar is a side-looking sensor, transmitting pulses
of electromagnetic energy in a direction to one side of the
spacecraft. The depression angle of this beam in the case
of the ERS radar is 20◦ for near range and 26◦ at the far
range (Figure 2.20). Related to the radar depression angle
is the incidence angle, which is the angle between the line
connecting the SAR antenna and the target and the line
perpendicular the Earth’s surface to the Earth’s surface
at the target (the surface normal). Lillesand et al. (2008);
see also NASA, 1988, p.113) note that topographic slope
effects are greater than radar backscatter effects where
the local incidence angle is less than 30◦ whereas, for
incidence angles greater than 70◦, topographic shadow is



Remote Sensing Platforms and Sensors 63

SAR sensor

Ground surface

Near range

θD

Far range

Figure 2.20 The distance from the sensor to the closest edge
of the swath parallel to the azimuth direction (i.e. the flight
direction) is called the near range. The distance from the
sensor to the furthest part of the swath is the far range. The
depression angle for the far range is shown as θD. Clearly, the
depression angle for the near range will be greater.

dominant. Between these two limits, surface roughness
effects are predominant. The ERS SAR depression angle
facilitates ocean and ice sheet observation, and is also
good for observing some terrestrial features such as agri-
cultural fields.

As noted earlier, the advantages of microwave radar is
that it is an all-weather sensor operating independently
of solar illumination. Figure 2.21 shows an ERS SAR
image of the south-east coast of England from Kent to
Suffolk. Areas of low radar backscatter are dark. The
brighter areas are those with a high surface roughness.
Bright points over the land may be features that exhibit
sharp angles, such as the walls of buildings, walls around
fields or steep slopes.

A second ESA imaging SAR instrument is carried
on board ENVISAT. Its name is ASAR. Like ERS-1
and -2, it operates in C band. Unlike the ERS, the
ASAR is capable of operating in different polarization
modes, and has an active antenna array, which means
that different antennae configurations can be used, with
different spatial resolutions and swath widths (Desnos
et al., 2000a, 2000b). ASAR applications include soil
moisture estimation (Baghdadi, Holah and Zribi, 2006),
flood monitoring (Grings et al., 2006), interferometry
(Section 9.2; Stramondo et al., 2005), snow-covered
area retrieval (Storvold and Malnes, 2004) and leaf area
index retrieval (Manninen et al., 2005).

Following on from ENVISAT’s ASAR and the
ERS SAR will be a two-satellite constellation called
Sentinel-1. Both satellites will have a C-band (∼6 cm
wavelength, Table 2.8) SAR with a spatial resolution
of between 5 and 25 m, dependent on the mode used.
Sentinel-1 satellites will have an active antenna, which

Figure 2.21 ERS SAR image of south-east England. Dark
regions over the Thames estuary are areas of calm water.
Bright areas over the land are strong reflections from buildings
and other structures, which act as corner reflectors. Image
acquired on 7 August 1991. c© 1991 European Space Agency

can be directed at several targets at once without
the antenna itself physically moving. This allows, for
example wide-swath/ low resolution, parallel swaths
or narrow-swath/high resolution. ESA’s Sentinel pro-
gramme includes five missions up to 2017. Sentinel-1 is
scheduled for a 2011 launch. Sentinel-2, an optical remote
sensing system, is mentioned elsewhere (Section 2.3.7) as
a possible follow-on to SPOT. A summary of the Sentinel
programme is provided by Schreier and Dech (2005).
Attema et al. (2007) give a detailed account of Sentinel-1.

2.4.2 Radarsat

The Canadian Radarsat system is a major source of SAR
imagery. The Radarsat-1 programme was funded through
the Canadian Space Agency, with NASA and NOAA
cooperation. Radarsat-2 is again funded by the Canadian
Space Agency in cooperation with MacDonald Det-
tweiler Associates. Radarsat-1 is in a Sun-synchronous
orbit at an altitude of 798 km, at an inclination of 98.6◦
to the equatorial plane. The orbit is such that the satellite
should always be in light, and hence power from the
solar arrays is continuously available. Radarsat-2 is in
a similar orbit to that of Radarsat-1, trailing the older
satellite by 30 minutes and thus providing suitable pairs
of SAR images for interferometry (Section 9.2) to be
performed. The SAR sensor carried by both Radarsats
can steer its beam so as to collect images at incidence
angles in the range 20–50◦, with swath widths of
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between 35 and 500 km, using resolutions ranging from
10 to 100 m. The radar operates in the C band and is HH
polarized. Radarsat is able to collect data in a number
of modes, giving fine to coarse resolution and variable
inclination angles. Figure 2.22 is an image of south
central Alaska in low-resolution (ScanSAR) mode. The
data are recorded on board the satellite and downlinked
to ground receiving stations, of which there are three in
North America, three in South America, one in South
Africa, two in Australia and seven in Asia. Radarsat-2
also offers spatial resolutions of 3, 28 and 100 m in
ultra-fine, normal and wide image modes (Table 2.10).
The swath widths in these three modes are 20, 100 and
500 km. In addition, Radarsat-2 will be able to collect
HH-, HV- and VV-polarized images (Ulaby and Elachi,
1990). For further details of Radarsat-1 and -2 see
http://directory.eoportal.org/get_announce.php?an_id=
7388 and http://directory.eoportal.org/get_announce.
php?an_id=7384. A special issue of Canadian Journal
of Remote Sensing (2004) contains a comprehensive
review of Radarsat-2.

Figure 2.22 Radarsat image of south-central Alaska using
low resolution (ScanSAR) mode, covering an area of 460 km
by 512 km. Kodiak Island is in the lower left of the image. The
Kenai Peninsula and Prince William Sound can also be seen.
This is a reduced resolution, unqualified and un-calibrated
image. A ScanSAR image covers approximately 24 times
the area of a standard Radarsat SAR image. c© 1996 Cana-
dian Space Agency/Agence spatiale canadienne. Received by
the Alaska SAR Facilty, distributed under licence by MDA
Geospatail Services Inc.

Table 2.10 Radarsat-2 modes, spatial resolutions and orbit
characteristics.

Radarsat-2 specifications

Ultra-fine Standard Wide

Spatial resolution 3 m 28 m 100 m

Swath width 20 km 100 km 500 km

Revisit time 3 d

Orbital altitude 798 km

Nodal crossing 18.00

System life 7 yr

Orbit Sun-synchronous

Altitude 798 km

Inclination 98.6◦

Period 100.7 min

Repeat cycle 24 days

Coverage access north
of 70◦ using largest
swath

Daily

Coverage access at
equator using largest
swath

Every 2–3 d

2.4.3 TerraSAR-X and COSMO/Skymed

TerraSAR-X and COSMO/Skymed are German and
Italian imaging SAR satellites respectively. TerraSAR-X
was launched on 15 June 2007 and became operational
on 9 January 2008. As its name implies, it carries a
SAR operating in the X band (3.1 cm wavelength).
The system was funded by the German Space Agency
and the EADS/Astrium company in a public–private
partnership. The SAR has three imaging modes: spotlight
(1 m spatial resolution), stripmap (3 m spatial resolution)
and scanSAR (18 m spatial resolution) in one or other
of three polarizations (single, dual and quad). The orbit
is near-polar and Sun synchronous, and has a repeat
cycle of 11 days. TerraSAR-X will be joined in orbit
in 20103 by TandDEM-X, a second SAR satellite. The
two X-band SARs will be used to generate DEMs of
the Earth’s land surface with a precision of 2 m using
the process of interferometry, which is discussed in
Chapter 9. Figure 2.23 is a TerraSAR image of the
lower Severn valley in England, showing the extent
of flooding in July, 2007. The value of SAR in flood
disaster monitoring is enhanced by the SAR’s ability to
‘see’ through clouds, with flooded areas showing up as
black. Colour renditions of single-band polarized SAR
images can be derived by superimposing three polarized

3TanDEM-X was launched successfully on 21 June, 2010.
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Figure 2.23 TerraSAR X image of the lower Severn valley
of England, following the major floods of 25 July 2007. The
flooded areas appear dark. Towns and field boundaries appear
bright because the radar return bounces off sharp edges such
as hedges and walls (see Figure 1.4). Gloucester is located in
the lower left centre and Cheltenham is in the upper right cen-
tre of the image. The fact that radar sensors can ‘see’ through
clouds is a distinct advantage for flood mapping applications.
Courtesy: German Space Agency/EADS Astrium. Source:
http://www.dlr.de/en/DesktopDefault.aspx/tabid-4313/6950_
read-10126/gallery-1/gallery_read-Image.1.3749/ (accessed
10 April 2009) c© Infoterra GmbH/DLR.

images (e.g. HH, VV and HV) or by superimposing
multitemporal and registered imagery.

COSMO/Skymed is an Italian dual-use (civilian/
military) SAR constellation funded by the Italian
Ministry of Education, Universities and Research
and Ministry of Defence. It is complementary to the
French Pléiades satellites, which carry optical imagers.
COSMO, incidentally, stands for Constellation of S mall
Satellites for Mediterranean Basin Observation. Three
of the planned four satellites are already in orbit as
of January 2009, and the fourth is to be launched in
2010. An advanced X-band SAR is carried in a 620 km
near-circular Sun-synchronous orbit. The repeat cycle is
16 days, though the four satellites will be in the same
orbital plane at a separation angle of 90◦. Interferometric
data (Section 9.2) will be available in along-track
mode, that is with one image taken by satellite A and
a second from a slightly different angle by satellite B.
Alternatively, satellites A and B can be steered into
parallel orbits and simultaneous images acquired. The
interferometric capability allows the derivation of DEMs,
unrestricted by cloud or by ambient light conditions. The
COSMO/Skymed SAR is quad polarized (HH, VV, VH
and HV) and, like TerraSAR-X, can acquire imagery
at different resolutions. The higher the resolution, the
smaller in area is the resulting image. In Spotlight
mode, resolutions of <1 m can be obtained. Stripmap
gives between 3 and 15 m, depending on the swath
width, and ScanSAR mode provides spatial resolutions
of 30–100 m. Figure 1.14 shows a COSMO/Skymed
image of the Richat structure in Mauretania, West

Figure 2.24 Pivot irrigation along the Columbia river, Ore-
gon, USA is shown in this multitemporal COSMO-SkyMed
image. The red component is SAR amplitude on 23/08/2008;
the green component is amplitude on 2/10/2008 and the
blue component is coherence. Agricultural activities are lim-
ited to the areas irrigated using the ‘pivot’ system. Shades of
red, yellow, orange and green show different stages of plant
growth. The surrounding terrain remains very stable as shown
by the bluish colour due to a high value of coherence. The
concept of coherence is explained in Section 9.2, Figure
9.8. Source: http://www.telespazio.it/GalleryMatera.html.
COSMO-SkyMed Product c© ASI-Agence Spatiale Italiana
(YEAR) – All Rights Reserved.

Africa. The geological structure is about 60 km in width.
Pivot irrigation along the Columbia river, OR, USA
is shown in a multitemporal COSMO-SkyMed image
(Figure 2.24). The COSMO/Skymed home page is
at http://www.cosmo-skymed.it/en/index.htm and the
TerraSAR-X home page is at http://www.terrasar.de/.
Free TerraSAR-X datasets are available – the relevant
link is on the home page.

2.4.4 ALOS PALSAR

ALOS is the Japanese Advanced Land Observation Satel-
lite (‘Daichi’), launched in 2006. It carries three main
instruments – the PRISM (Panchromatic Remote Sensing
Instrument for Stereo Mapping), which uses three instru-
ments pointing backwards, forwards and downwards to
generate DEMs. AVNIR-2, which is an Advanced Visible
and Near-Infrared Radiometer, and PALSAR. PALSAR
is a Phased Array L Band SAR, with full polarimetric
capacity. Daichi was launched in 2006 to continue the
L-band SAR observations made by J-ERS1, More details
are given by Rosenqvist et al. (2007). A false-colour
composite image of an area west of London from PAL-
SAR is provided in Figure 2.25. The image is made up of
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Figure 2.25 ALOS PALSAR image of an area of central/
eastLondon captured on 25 April 2007. The red channel
is HH polarized, the green is HV and the blue is VV.
Research would be needed to determine the meaning of the
colours in the image. Source: http://www.palsar.ersdac.or.jp/
e/palsarimage/index.html. Image data c© METI and JAXA.
Processed by ERSDAC.

three channels: red, green and blue. These are assigned
to the HH. HV and VV polarizations respectively. The
polarization properties of SAR data are discussed earlier
in this section.

2.5 Summary

A variety of information is available from sensors carried
by both satellite and aircraft platforms. Those operating
in the VNIR region of the electromagnetic spectrum pro-
vide measurements that correlate with an object’s colour,
which is often related to the chemical or mineralogical
properties of that object. Data from TIR sensors is related
to the temperature and thermal properties of a target,
while information about surface roughness and (over the
land) moisture content can be derived from data collected
in the microwave (radar) wavelengths. The spectral range
of remotely-sensed data available in the early twenty-first
century from orbiting satellites covers the full range from
optical to microwave with a large variety of spatial and
spectral resolutions. Given the number of different remote
sensing programmes around the world, it is rather difficult
to keep up to date and surveys such as the one provided
in this chapter are only partial, and soon become out-
dated. Books such as those by Kramer (2002) provide a
starting point, but the only way to keep informed is to
join a remote sensing society and read its newsletter.

Satellite remote sensing platforms that are currently
providing image data include Landsat-7, Terra, Aqua,
ENVISAT, SPOT, NOAA, ERS-2, Radarsat-1 and -2,
Resourcesat, Meteosat and other geostationary meteoro-
logical satellite systems, and high-resolution commercial
systems such as IKONOS and QuickBird, with 1 m or
less spatial resolution. In addition, NASA’s Earth Observ-
ing 1 carries an imaging spectrometer, Hyperion, capable
of resolving 220 spectral bands (from 0.4 to 2.5 µm)
with a 30 m spatial resolution. The instrument images
a 7.5 km by 100 km land area per image. Experience
gained with airborne imaging spectrometers (Chapter 9)
helps researchers to understand the problems of handling
such large data volumes. Potential technical problems
include the development of methods of combining mul-
tisource (multisensor) data, handling large volumes of
high-resolution data, and selecting the optimum combina-
tion of bands to use for a particular application. Clearly,
there will be a greater need than ever in the future for
research and development in the areas covered by later
chapters of this book.



3 Hardware and Software Aspects of Digital
Image Processing

There are 10 kinds of people in the world – those who
understand the binary system and those who don’t.

Jeremy Paxman (attrib.)

3.1 Introduction

This short chapter contains three sections, excluding this
introduction. The first Section 3.2 describes and sum-
marizes the properties of digital remotely sensed image
data and the relationship between these properties and
those of computer hardware, especially display and mass
storage subsystems. The subjects of system processing
of remotely sensed images and the various formats of
image data sets on distributable computer media such as
CDs and DVDs are also summarized in the first section.
Nowadays, the speed of broadband internet connections
is high enough for data to be delivered in real time.

The second Section 3.3 deals with the topic of accu-
racy in data analysis. This topic is rarely considered in
books written for non-mathematicians, yet it can have dis-
astrous results in real life. For example, on 4 June 1996,
the first test flight of the Ariane-5 launcher took place.
At 37 seconds after launch its guidance system failed and
the rocket was destroyed by an explosion. The alleged
reason for this was that the on-board software had to
convert a numeric value from 64-bit real format to 16-bit
signed integer format (Nataraj, undated). As we will see,
the largest signed (plus or minus) integer value that can
be held in 16 bit representation is +32 767. Real numbers
can hold positive values that are larger than 32 767, so the
possibility exists of attempts being made to place a real
value that exceeds 32 767 into a 16-bit signed integer
store location. The result is unexpected (in my experi-
ence, trying to store the number 32 768 in a 16-bit word
results in an answer of −1!). The consequence was that
the Ariane guidance system failed and the simple mistake
proved to be rather expensive. The kinds of computa-
tional error that are considered in Section 3.3 are perhaps
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not quite so spectacular as in the example just given, but
are nevertheless of considerable importance.

The third section is devoted to a short discussion of
the importance of sample size and data dimensionality
in the processing of large volumes of satellite data. It is
important that readers have some concept of the nature
of the foundations of the image-processing edifices that
they build from relatively small amounts of sample data.
Data mining, or the use of pattern recognition methods
(Chapter 8) in the search for regularities in large data sets,
cannot solve the problem of sample dataset size (Witten
and Frank, 2005).

3.2 Properties of Digital Remote
Sensing Data

3.2.1 Digital Data

Digital images are arrays of numbers, that is an image is
represented logically as a matrix of rows and columns.
These image data arrays are included in the general class
of ‘raster data’, which means that the individual data
value is not explicitly associated with a particular loca-
tion on the ground. The location of each data value (or
picture element, collapsed into ‘pixel’) is implied by its
position in the array (Figure 3.1). Thus, if we know the
Universal Transverse Mercator (UTM) coordinates of the
top left cell in the array or raster and the cell spacing in
metres then we can calculate the position of any cell in the
raster. The values of the numbers stored in the array ele-
ments lie in a specified range, commonly 0–255, which
corresponds to the brightness range of the primary colour
associated with that image array. The primary colours of
light are red, green and blue (RGB). The value 0 indicates
lack of the associated colour, and the value 255 is the
brightest level at which that colour is displayed. As we
will see, the two numbers at the extremities of the range
(0 and 255 in this case) may be used for other purposes.
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Origin of raster grid (1,1) Horizontal pixel spacing

Vertical
pixel
spacing

Pixel (5,6)

Figure 3.1 Raster data concepts. The origin of the (row,
column) coordinate system is the upper left corner of the grid,
at cell (row 1, column 1). The grid cell (pixel) size is usually
expressed in units of ground distance such as metres. The
position of any pixel can be calculated if the horizontal and
vertical pixel spacing is known, and the map coordinates of
a pixel can be derived if the map coordinates of pixel (1, 1)
are known. Note that pixels are referenced in terms of (row,
column) coordinates, so that pixel (5, 6) lies at the junction of
row 5 and column 6. The horizontal and vertical pixel spacing
is equal for most, but not all, remote sensing images.

Figure 3.2 shows a digital (raster) image of an eye,
together with a section of the array of numbers (pixel
values) corresponding to the part of the image outlined
by the white rectangle. The array of pixel values is held in
a special area of the computer’s random-access memory
(RAM) known as the graphics memory . Graphics mem-
ory is normally located on the graphics card and is not
a part of the computer’s RAM. Figure 3.2 is a greyscale
image, and so only one array of numbers is required to
hold the pixel values, each of which can take on one of
256 brightness levels ranging from 0 (black) through 127
(mid-grey) to 255 (white). A greyscale image has only
one component – the levels of grey – whereas a colour
image has three components, these being the levels of
the primary colours of light (RGB) at each pixel position.
The structure of the digital image in terms of individual
square pixels is apparent at this scale. The correspon-
dence between the grey levels in the image and the pixel
values in the raster is also clear.

As already noted, a colour image is produced by
using three raster arrays, which hold pixel values that
represent the levels of the three primary colours of light
(Figure 3.3). Levels 0–255 represent the range of each
primary colour from 0 (black) to 255 (maximum intensity
of RGB). Different combinations of R, G and B produce
the colours of the spectrum, as demonstrated by Sir Isaac
Newton’s famous prism experiment. The primary colours
of light are ‘additive’ – for example red + green =
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Figure 3.2 Digital image of a human eye, showing the cor-
respondence between the grey levels of the pixels making up
the image and the numerical representation of the pixel grey
level in the computer’s graphics memory.

Table 3.1 Combinations of the primary colours
of light (red, green and blue) combine to produce
intermediate colours such as purple and orange.
Where the values of the three primary colours
are equal, the result is a shade of grey between
black and white. The intensities shown assume
8-bit representation, that is a 0–255 scale.

Red Green Blue Colour
intensity intensity intensity name

255 255 0 Yellow

0 255 255 Cyan

255 0 255 Magenta

127 0 0 Mid-red

127 127 127 Mid-grey

0 0 0 Black

255 255 255 White

241 0 171 Purple

255 155 50 Orange

yellow. In contrast, colours used in printing are sub-
tractive. That is why an ink jet or laser colour printer
uses cyan, magenta and yellow ink. Table 3.1 lists
some examples of colours generated by adding different
proportions of R, G and B. Note that RGB combinations
in which the levels of RGB are equal produce shades
of grey.
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Figure 3.3 A colour image is generated on the screen using three arrays held in graphics memory. The top array holds numbers
in the range 0–255 that show up to 256 shades of red (top). The centre array shows the distribution of shades of green, and
the bottom array holds the numbers corresponding to shades of blue. Each array holds integer (whole) numbers in the range
0 (black, or lack of colour) to 255 (the brightest shade of red, green or blue). The numbers in the graphics memory arrays are
represented as integers (whole numbers) on a 0–255 scale. These values are converted from digital to analogue form by one of
three Digital to Analogue Converters (DACs) (centre) before being displayed on the screen (right).

Not all remotely sensed images have pixel values
that lie in the range 0–255. For example, AVHRR data
(Section 2.3.2) use a 0–1023 range. IKONOS pixels
(Section 2.3.9). lie in the range 0–2048, and the thermal
infrared bands of ASTER images (Section 2.3.8) are
measured on a 0–4095 scale. Specific use can be made
of the lowest and highest counts. ASTER data, for
example uses the values ‘0’ and ‘4095’ to indicate ‘bad
data’ and ‘saturated pixel’, respectively (Figure 3.4).

The values stored in the cells making up a digital image
(the ‘pixel values’ or ‘pixel intensities’) are represented
electronically by a set of binary (base 2) digits that can
be thought of as ‘on/off’ switches, or dots and dashes
in Morse code. In base 2 form, the decimal numbers 0,
1, 2, 3, are written as 0, 1, 10, 11, . . . with each col-
umn to the left representing a successively higher power
of 2, rather than of 10 as in the everyday decimal sys-
tem (e.g. the number 329 is interpreted as 3 × 102 + 2 ×
101 + 9 × 100). If 8 binary digits (bits) are used to record
the colour value stored in each pixel, then 0 and 255 – the
minimum and maximum values that can be stored in
8 bits – are written as 00000000 and 11111111. Thus,
a total of 8 bits is needed to represent the 256 num-
bers in the range 0–255. The range of pixel intensities is

termed the dynamic range of the image. Because 8 bits
are needed in the graphics memory of the computer to
represent the range of each of the three primary colours,
the image resulting from the addition of these three pri-
mary colour images is called a ‘24-bit image’. Other ways
of representing image pixel data are shown in Table 3.2.
For example, a 10-bit single-band image provides 1024
levels of grey, while a 16-bit image can represent either
positive and negative data in the range 32 767 to −32 768
(this is signed 16-bit integer data) or solely positive data
in the range 0–65 535, which is unsigned integer data
16 bit. Real-valued data (i.e. numbers with a decimal
point as distinct from the integers or counting numbers)
are commonly used to store physical values rather than
quantized counts. For example, the amplitude and phase
components of a SAR image are stored as a pair of 32-bit
real numbers, and principal component images (Chapter
6) are made up of real numbers. Most computer mon-
itors require an analogue (continuously varying) input
signal, so the digital (discrete) values held in the graph-
ics memory are converted to analogue form, as voltages,
by a digital to analogue converter (DAC), as shown in
Figure 3.4. The output from the DAC is fed to the display
monitor input.
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Figure 3.4 (a) ASTER VNIR and SWIR bands: a scale of 0–255 (8 bits) is used. Quantisation level 1 is equivalent to
the minimum observable radiance. Level 254 is assigned to the maximum recordable radiance level for that band and
gain setting. Level 0 indicates a dummy pixel. Level 255 indicates a saturated pixel. (b) ASTER TIR bands: the principle
is the same except that the number of quantisation levels is 4096 (12 bits). Maximum radiance is the radiance of a
blackbody at 370 K in the 10–14 µm waveband. Based on Figure 5.5 of ASTER Users’ Guide, Part II, Level 1 Data Products,
(http://www.science.aster.ersdac.or.jp/en/documnts/users_guide/index2.html). Courtesy ERSDAC, Japan.

Table 3.2 Different dynamic ranges used to represent remotely sensed image data.

Number of bits Base 10 maximum/range Base 2 maximum

10 (integer) 1024 1111111111

16 (signed integer) −32 768 to +32 767 ±111111111111111

16 (unsigned integer) 0–65 535 1111111111111111

32 (signed integer) 2 147 483 647 ±11111111 . . . 1111111

32 (real) ±3.4 × 1038 See table caption

The number of binary digits used in the representation is proportional to the number of levels of grey or primary
colour (RGB) that can be stored in the image array. Note that integer data can be signed (+ or –) or unsigned, that
is assumed to be non-negative. Integers are represented in base 2 by a string of binary digits (bits), whereas real
numbers are stored in computer memory as a mantissa (m) and exponent (e) in the form ‘real_number = m × 2e’.
The range of a real number depends on the particular computer, whereas integer representation is common to all
computers. Unfortunately, there are two ways of storing integers – one puts the most significant digit first while the
other puts the least significant digit first. Thus, an Intel-based PC stores its integers the other way round compared
to Sun and Mac machines. The two modes of integer representation are called little-endian and big-endian (readers
of Gulliver’s Travels will recall the war over which end of the egg to crack open). Most software can tell whether
the big- or little-endian method is used, and will take appropriate action.

It is important to remember that the number of bits per
pixel in the display memory is fixed at eight by the hard-
ware. However, remotely sensed images are provided
in 10-, 12-, 16- or 32-bit as well as 8 bit integer form,
plus 32-bit or even 64-bit real representation. Where
a pixel value is represented by more than 8-bits then
a conversion process has to be carried out. The user’s
choice of ‘mapping’ to 8 bits affects the appearance of
the image (Figure 3.5). The first of the two methods
takes the numerical range of the data for each of the three
colours in turn, and performs a linear mapping between
input and output, using the following relationship:

output = (input − inmin)

(inmax − inmin)
× 255 (3.1)

where output is an 8-bit integer value between 0 and 255,
inmax and inmin are the maximum and minimum input
pixel intensity values, respectively, in the input image,
and input is the value of the image pixel to be converted.
The values input , output , inmin and inmax all exceed the
storage capacity of the display memory, which is 255.

Digital image
represented
on 0–1023

scale

Pixel values in
graphics memory
on 0–255 scale

A
lg

or
ith

m
 to

 m
ap

 fr
om

 0
–1

02
3 

to
 0

–2
55

Figure 3.5 Digital images in which pixels are represented
on a scale of more than 8 bits (left) must be transformed
onto a 0–255 scale before being transferred to the computer’s
graphics memory. The initial image in this example uses
10-bit representation, but it could equally well use 16 or 32
bit, or real number representation. The choice of algorithm is
discussed in the text.

For example, assume that the input image uses 32-bit
real number representation and the minimum and max-
imum pixel values in the image (inmin and inmax) are
139.76 and 2409.77 respectively. If the pixel value to be
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converted to the 0–255 range (input in Equation 3.1) is
9210.6 then the value placed in the 8-bit graphics memory
(output in Equation 3.1) is equal to:

output = 9210.6 − 139.76

2409.77 − 139.76
× 255

output = 9070.75

22700.01
× 255

output = 101.89

This expression reduces to 102 (to 3 significant
figures). Thus, the value 9210.6 in the input image is
recorded as 102 in the graphics memory. A range of
32-bit real input values, including 9210.6, will map
to graphics memory value 102. Most other graphics
memory values in the 0–255 display range will represent
a range of real input values.

Outlying values can have a substantial effect on the
range of the input data and can cause this method to
produce a result that lacks contrast. For example, 99%
of the pixel values in an input image may lie in the
range 1290–1879, with the lowest value being 5 and
the highest 2009. The use of the simple procedure just
outlined will result in a lot of empty output values at
the lower end of the 0–255 range and a number of out-
put values taking the value 255. The resulting image will
appear dull and lacking in contrast. For example, the input
value 1290 transforms to an output value of 164 using
Equation 3.1, given the inmin and inmax values of 1290
and 1879 mentioned above. Equally, an input value 1879
is mapped to an output value of 238. Hence, 99% of the
input image pixels are mapped onto the 164–238 part
of the full 0–255 output brightness range, so the result-
ing image will look over-exposed in photographic terms,
but there will be only a low contrast between the darker
(164) pixels and the brighter (238) pixels. Much of the
0–255 range is left unused. However, this transform is
reversible, but only approximately, as only the integer
part of the output value is retained. The procedure uses
two passes through the data – one to ascertain the val-
ues of the minimum and maximum input data values and
a second to apply the transformation. For an on-screen
image of 1024 × 1024 in size, this computational burden
is quite acceptable.

An alternative method to map an input image with a
dynamic range greater than 8 bits onto the 0–255 range
is called equalization. The input pixel values are grouped
into 256 sets by amalgamating the 1024 levels into 256
classes that contain approximately equal numbers of pix-
els. The 256 output classes have equal frequencies rather
than equal range (Figure 3.6a.,c.,e). This method is very
similar to that of the method of histogram equalization
used in contrast enhancement and which is described
in detail in Section 5.3.2. In comparison to the linear

mapping approach, equalization generally produces an
output image that has greater contrast (Figure 3.6b–e).
However, since several input values can map to the
same output value, the transformation is not reversible,
and it is also non-linear, because the steps between the
individual contiguous output classes do not correspond
to equal ranges of the input values. Thus, using the
figures from the example of linear mapping (above), the
input values 5–1295 may correspond to output class
0, while the range 1296–1309 may correspond to the
output class 1 and 1309–1311 to output class 2.

The importance of understanding the way in which the
pixel brightness values that are stored in the graphics
memory are generated can be illustrated by a simple
example. Since the values in the graphics memory are
not linearly related to the pixel values in the image being
displayed when the equalization approach is used then
differences and ratios calculated from the values held in
the graphics memory will not be proportional to the corre-
sponding differences and ratios computed from the actual
input image pixel values. In the previous paragraph it
was shown that different ranges of image pixel brightness
values are mapped to the 0–255 range by the equalization
procedure. If we take the difference between input image
pixel brightness values of 1311 and 1296 we get 15. The
difference between input image pixel brightness values of
1309 and 1308 is 1. However, input image pixel bright-
ness values of 1311 and 1309 are both represented in the
graphics memory by the value 2 (on the 0–255 range),
and the input image pixel brightness values of 1296 and
1308 are placed in class 1, so in both cases the differ-
ence is calculated as 1 from the values held in graphics
memory. If the linear mapping method is used then dif-
ferences and ratios of the input image pixel brightness
values are approximately proportional to the same com-
putations performed on the corresponding values held in
graphics memory. They are approximately proportional
because only the integer part of the computation shown
in Equation 3.1 is stored. The choice of algorithm can
make a substantial difference to the appearance of the
image and to its usefulness as a background image map
in a GIS.

Generally speaking, three different kinds of images can
be stored in display memory and viewed on-screen. These
types are: colour images, greyscale images and labelled
or classified images. Colour images can be one of three
types. The first, called natural colour, is made up of three
components representing the ‘real-world’ colours of visi-
ble red, visible green and visible blue bands (for example
Landsat ETM+ bands 3, 2 and 1) in the RGB memory
banks of the display memory. Natural colour images are
like ordinary colour photographs. They show colours as
we see them. If the three bands selected for display do
not represent actual RGB as we would see them, then
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Figure 3.6 (a) Two common methods of converting image data onto the 0–255 scale required by graphics memory. The upper
part of the diagram shows that equal intervals on the 0–1024 scale map to equal intervals on the 0–255 scale. The lower part of
the diagram shows how the values on the 0–1024 scale are grouped into classes of equal frequency, which map proportionally
on to the 0–255 scale. (b) Landsat-7 ETM+ image, using principal components 1, 2 and 3 as R, G and B inputs. The 32-bit
principal components image is reduced to 8 bits using the equal class intervals approach. (c) The same image as (b) but using the
equal class frequencies approach. (d) and (e) are the histograms (0–255 scale) of the images shown in (b) and (c) respectively.
The technique of principal components analysis is covered in detail in Chapter 6; essentially it is an image transform that
concentrates information in a multispectral data set into a smaller number of principal components that are expressed in terms
of 32-bit real numbers.

the result is a false-colour image. For example, Landsat
ETM+ bands 4, 3 and 2 (NIR, red and green) could be
stored in the RGB memory banks, and displayed in RGB,
respectively. The image seen on the screen would display
variations in near-infrared reflectance (band 4) as shades
of red, with variations in red (band 3) and blue (band 2)
reflectance being seen on-screen as variations in shades
of green and blue. Any three bands can be stored in the
RGB memory banks. The third kind of colour image is
referred to as a pseudocolour image, as it is based on
data that occupy a single memory bank, rather than three
memory banks. This implies that the pixel values in a
pseudocolour image range in value from 0 to 255. These

256 levels are associated with colours via the use of a
lookup table. For example, level 0 in the display memory
may be ‘mapped’ to the colour maximum red (with RGB
components of row 0 of the lookup table set to 255, 0 and
0 respectively). The lookup table entry for level 1 may
be set to brightest yellow (levels 255, 255 and 0), and
so on. In this representation, the single value at a given
pixel position in the image is sent to all three DACs via
the lookup table. In the first example given above, the
red DAC converts the input ‘0’ to the output ‘255’ while
the green and blue DACs convert the input ‘0’ to output
‘0’. In the second example, the input value ‘1’ is con-
verted to the output value ‘255’ by both the red and the
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green DACs (to produce yellow), while the blue DAC
outputs ‘0’ for an input value of ‘1’. Many image file
formats such as BMP and Tagged Image File (TIF) spec-
ify that, for a 256-level image, an array of colour values
(256 × 3, i.e. 256 levels × RGB) is specified and stored
with the image. This array is known as either a palette or
a look-up table. The distinction between natural colour,
false colour and pseudocolour is shown in Figure 3.7.
Refer also to Figure 3.3.

The second kind of image that can be stored in graphics
memory and displayed on-screen is called a greyscale
image. Like the pseudocolour image, the greyscale image
has only a single input (representing a single waveband
or channel). Unlike the pseudocolour image, for which
the three colour DACs are manipulated so as to produce
independent levels of RGB, the greyscale image produces
exactly the same output from the RGB DACs for each of
the 256 levels. The lookup table associated with the three
DACs is set to {0, 0, 0} for entry 0, {1, 1, 1} for entry
1, up to {255, 255, 255} for entry 255. Recall that equal
intensity values of RGB combine together to form shades

of grey. Thus, a greyscale pixel with a value of 127 is
converted by the lookup table associated with the colour
DACs as an RGB triplet with values {127, 127, 127}.

A labelled or classified image is composed of pixels
whose value represents a tag that indicates a property of
some kind. The label itself has no numerical meaning.
Chapter 8 contains a description of methods of image
classification. These methods allow each pixel in an
image set to be identified as belonging to a specific
category, such as a specific type of land cover. These
categories are described by labels such as ‘1’, ‘2’, ‘3’,
and so on, that indicate ‘water’, ‘broadleaved forest’
or ‘bare soil’. To display such an image on-screen, the
labelled image is placed in graphics memory and the
lookup table associated with the three DACs (R, G and
B) are programmed to assign RGB values to the individ-
ual labels such as 1, 2 and 3 (just as in the case of the
pseudocolour image). For example, the lookup table val-
ues for label ‘1’ (‘water’) could be {0, 0, 255} meaning
‘no red, no green, maximum blue’. All pixels allocated
label 1 (water) will then appear in brightest blue.

Red

Green

Band A

Band A

Band B

Band C

Blue

Input DAC Screen

Natural colour image

False colour image

Pseudocolour image

Figure 3.7 A natural colour image (top) is generated when the input pixel RGB values correspond to red, green and blue
reflectance from the target. If the three input pixel values represent reflectance, emittance or backscatter in three independent
wavebands A, B and C that are not actually red, green and blue in nature then a false colour image is generated – for example
the RGB values might represent thermal infrared, shortwave infrared and green (middle). If the input consists of a single band A
(bottom) then the DAC can be programmed so that the red, green and blue graphics memory cells receive inputs corresponding
to a colour (so that, for example the single input image pixel value is 197 then the RGB input to graphics memory might be 255,
255 and 0, respectively, giving the colour yellow, thus producing a pseudocolour image). If the same value is sent to the red,
green and blue inputs of the monitor, (e.g. the input image A value is 135 and the input RGB DACs receive the values 127, 127
and 127 respectively) then a greyscale image is generated.
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3.2.2 Data Formats

One problem that the human race has consistently failed
to resolve (and, sometimes, even to acknowledge) is that
of standardization. For example, car drivers in the United
Kingdom, Ireland, South Africa and Japan are supposed
to keep to the left, while drivers in most of the rest of the
world keep to the right. Electricity is supplied at 240 V
(nominal) AC in the United Kingdom, and at 110 V AC
in the United States, while US gallons and UK gallons
are not the same thing at all, and the rest of the world
uses litres (or even liters). As British visitors learn to
their dismay, a US pint is only 80% of the volume of a
British pint. It does not come as a surprise, therefore, to
find that suppliers of remote sensing data provide their
products in different formats. A data format describes the
way in which data are written to a storage medium, such
as CD or DVD. A seven-band dataset, such as Landsat
ETM+, may be stored in one format as:

1. One file containing set of numerical and textual
descriptions of the data (such as the number of
scan lines and pixels per line in the image, the map
projection used, and the latitude and longitude of
the image centre),

2. A second file containing the pixel values in ETM+
bands 1–7, arranged band by band. For each band,
the pixel values for the first scan line are written in
left to right order as a single group or record, with

record 2 containing the pixel values for scan line 2,
and so on (Figure 3.8a).

The first of these two files contains descriptions of data
held in the second file. These descriptions are known as
metadata. An alternative and equally valid format may
include the metadata file as before but may store the
image data as sets of scan lines for all bands (thus, if
the number of bands was seven, the file would hold scan
line 1 for all seven bands, followed by scan line 2 for
all seven bands, and so on (Figure 3.8b). The first for-
mat in which the bands making up the image are stored
in sequential order is described as ‘band sequential’ or
BSQ format, while the second format is known as ‘band
interleaved by line’ or BIL format.

Both of the format descriptions described above show
data sets consisting of (i) metadata and (ii) image data. A
number of generic data and metadata formats are in exis-
tence, as well as several proprietary formats. A generic
format is one that is not restricted to a particular product
or vendor, while a proprietary format is owned by a spe-
cific company or organization. Thus, the term ‘chocolate
bar’ is generic while ‘Cadbury’s Dairy Milk’ or ‘Hershey
Bar’ are proprietary, though they are both chocolate bars.
For example, SPOT Image provides data in a propri-
etary format called ‘CAP’. Landsat-7 ETM+ data can
be obtained in any of the ‘GeoTIFF’ (generic), hierarchi-
cal data format (HDF) (proprietary) or Fast Landsat 7A
(proprietary) formats, which are described below. Data
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Figure 3.8 Illustrating (a) band sequential (BSQ) and (b) band interleaved by line (BIL) formats for the storage of remotely
sensed image data. The layout in (b) assumes a seven band image.
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from other instruments are provided in a range of formats,
though the efforts of the Committee on Earth Observation
Satellites (CEOS) to develop standardized formats are
meeting with success. It should be noted that the format
adopted by NASA for the Earth Observing System (EOS)
programme is the HDF, which can store all of the header
and image information in a single file. For example, data
from the Japanese ASTER sensor (carried by the Terra
satellite) is stored in a single HDF file that contains both
metadata and image data.

The format in which remotely-sensed data is provided
can be considered to be ‘external’ in the sense that
everyone purchasing data from a particular company is
provided with data in the same format. Image processing
software producers also define their own ‘internal’
data formats. For example, the ENVI image processing
system requires two files per image data set. The first is
a metadata file (with the suffix .hdr), while the image
data are held in a single file in BSQ format (with the
suffix .bsq) or in a single file in BIL format, with the
suffix .bil. The ENVI software reads image data in an
external format, such as CAP or GeoTIFF and converts
from the external format to the ENVI internal format.
Just to confuse matters, some agencies, such as the
German Space Agency, DLR, provided DAIS imaging
spectrometer data (Section 9.3) in ENVI internal format.

As noted above, the ground receiving station provides
two kinds of data. Image data may be thought to be the
more important, but the metadata (or ‘ancillary’ data)
describing the image data gives details of the instrument
that collected the image, including calibration informa-
tion, and also include information about the date and time
that the image was collected, the geographical location
of the image corners and centre, the size of the image
in terms of rows, columns and bands, and other infor-
mation such as solar azimuth and zenith angles. In later
chapters, we will see how image data can be standardized
for variations in solar zenith angle, and converted to radi-
ance units, using information provided in the metadata
records. An example of the metadata that accompanies a
remotely-sensed image data set is shown in Table 3.3.

This table contains an extract of the metadata asso-
ciated with an ASTER image set. This extract was
generated by MIPS from an ASTER dataset covering the
La Mancha area of central Spain between −3.916 651◦W
and −2.931 887◦E longitude, and between 39.922 905◦N
and 39.246 303◦S latitude. The image was collected on
2 June 2002. Example 3.1 shows how Landsat ETM+
image data and metadata are read from CD-ROM, and
the program output is explained.

The topic of image file formats is too large for it to be
considered here in any detail. Readers should, however,
be aware that some widely used file formats involve com-
pression of the image data, which may result in some

loss of detail. The Joint Photographers Expert Group
(JPEG) format, for example first separates image intensity
information from colour information. These two compo-
nents are then compressed separately in order to maintain
the intensity (brightness) information. This is because
human colour vision can deal more easily with loss of
colour information than with loss of intensity informa-
tion. The two components for each of a number of image
subregions are compressed by the use of a transforma-
tion similar to the two-dimensional Fourier transform
that is discussed in Section 6.6. This transform expresses
the image data in terms of a sequence of components
of decreasing importance. The JPEG compression keeps
only the first few components and discards the rest, hence
losing some of the detail. Finally, repeating values such
as 2, 2, 2, are replaced by counts (such as 3 × 2). JPEG
2000 uses a wavelet transform (Section 6.7) to compress
the image data. The JPEG scheme can achieve compres-
sion ratios of around 10 : 1, which is worthwhile when
dealing with large images. For instance, a 1024 × 1024
image represented in RGB bands, and expressed on an
8-bit scale requires 3 Mb of disk storage. A compression
ratio of 10 : 1 means that the image takes up only 314
573 bytes (314 kb) on the disk. The cost is the loss of
some colour information.

Other image formats are PICT (used by the Apple
Macintosh), tagged image file format (TIFF), GIF and
BMP. The BMP type is the Microsoft Windows Bitmap,
which is widely used by applications programs running
under the Microsoft Windows operating system. MIPS
can write image files in the form of bitmaps, and these
can be read by other image processing and display soft-
ware (for example to add annotation to and print the
image). Users of the BMP format (referred to as a device-
independent bitmap or DIB) can choose whether or not
to use compression. The uncompressed DIB contains a
header, giving information about the size of the image
and the number of bits per pixel, for example. If the image
consists of a single, 8-bit, component then a colour table
or palette follows. This palette maps pixel values on the
0–255 scale on to screen colours. Finally, the image pix-
els are listed in RGB order (24-bit DIB) or in row order
(8-bit DIB), with the last scan line being stored first.

TIFF has been widely used for many years. As its
name implies, the TIF format attaches information about
the image data (metadata) to tags or labels. A recent
development is the introduction of tags that can record
specifically geographical data, such as latitude and lon-
gitude. This extension to TIFF is known as the Geo-
TIF format. Images stored in TIFF or GeoTIFF can be
compressed or uncompressed. Normally, remotely sensed
images supplied in GeoTIFF format (such as Landsat-7
ETM+ images) are uncompressed.
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Example 3.1: Reading a Landsat ETM+ Image from CD

The MIPS File|Import Image Set menu provides access to a number of modules that allow you to read
remotely-sensed data in one of a variety of formats. The USGS provides Landsat ETM+ data in HDF, GeoTIFF
and Fast L7A formats. This example illustrates the use of Fast L7A format.

The data for Fast L7A format occupies two CDs, one of which contains the header files, which have filenames
that end with HPN.FST, HRM.FST and HTM.FST and which refer to the panchromatic band (numbered 8), the visible
and short-wave bands (number 1–5 and 7), and the thermal band (6). Two versions of the thermal band are provided,
using low and high gain respectively. The data for bands 1–7 are stored on the same CD as the header files, and
band 8 data is stored on the second CD. Fuller details of the use of the module can be accessed from the MIPS
Help function. The selected image data are written to a band-sequential file, and the header information (shown
below) is appended to the MIPS log file.

The header information (usually called metadata) provides details of the path and row number, the date of data
acquisition, the type of resampling (CC means ‘cubic convolution’, which is explained in Chapter 4), the image
size in terms of scan lines and numbers of pixels per scan line, and the number of bits per pixel. A value of 8 bits
per pixel means that the pixel values lie in the range 0–255.

The gain and bias values are used in radiometric calibration, which is covered in Chapter 4. The geometric data
provide the latitude and longitude values of the image centre and corners, the map projection (UTM) and datum
(WGS84). Finally, solar elevation and azimuth angles for the image centre are listed. Again, these values are used
in radiometric calibration (Chapter 4).

Example Metadata Listing-Fast L7A

READ FAST-LANDSAT 7 CD MODULE
*****************************
FILE OPENED
F:\L71201023_02320000619_HRF.FST
Header File opened. Type is Visible/Near IR
Administrative record for VNIR/SWIR Bands
=========================================
REQ ID =0750008030112_0001 LOC =201/0230000 ACQUISITION DATE =20000619
SATELLITE =LANDSAT7 SENSOR =ETM+
SENSOR MODE =NORMAL LOOK ANGLE =0.00
LOCATION = ACQUISITION DATE =
SATELLITE = SENSOR = SENSOR MODE = LOOK ANGLE =
LOCATION = ACQUISITION DATE =
SATELLITE = SENSOR = SENSOR MODE = LOOK ANGLE =
LOCATION =ACQUISITION DATE =
SATELLITE =SENSOR =SENSOR MODE =LOOK ANGLE =
PRODUCT TYPE =MAP ORIENTED PRODUCT SIZE =FULL SCENE
TYPE OF PROCESSING =SYSTEMATIC RESAMPLING =CC
VOLUME #/# IN SET = 1/ 2
PIXELS PER LINE = 8311 LINES PER BAND = 7621/ 7621
START LINE # = BLOCKING FACTOR =
REC SIZE =63338131 PIXEL SIZE =30.00
OUTPUT BITS PER PIXEL =8 ACQUIRED BITS PER PIXEL =8
BANDS PRESENT =123457 (Continues on next page)

Data compression is a useful way of reducing image
size before transmission across a network, for example.
However, care should be taken when choosing a
compression method. It was mentioned above, in the
discussion of the JPEG image format, that this method
involved loss of information. It is therefore called a
‘lossy’ compression procedure. Compression methods

that preserve all of the data are called ‘lossless’. While
lossy compressions may be suitable for transmission
of digital TV pictures (because the human eye can
tolerate some loss of colour information), in general
one would choose a lossless compression scheme to
encode remotely sensed data because it is impossi-
ble to predict in advance which information can be
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FILENAME =L71201023_02320000619_B10.FSTFILENAME =L71201023_02320000619_B20.FST
FILENAME =L71201023_02320000619_B30.FSTFILENAME =L71201023_02320000619_B40.FST
FILENAME =L71201023_02320000619_B50.FSTFILENAME =L72201023_02320000619_B70.FST
L71201023_02320000619_B10.FST
L71201023_02320000619_B20.FST
L71201023_02320000619_B30.FST
L71201023_02320000619_B40.FST
L71201023_02320000619_B50.FST
L72201023_02320000619_B70.FST
REV L7A
Number of bands referenced in the header is 6
Band identifiers are 1 2 3 4 5 7
Image filenames for VNIR/SWIR
Band 1 Filename: L71201023_02320000619_B10.FST
Band 2 Filename: L71201023_02320000619_B20.FST
Band 3 Filename: L71201023_02320000619_B30.FST
Band 4 Filename: L71201023_02320000619_B40.FST
Band 5 Filename: L71201023_02320000619_B50.FST
Band 6 Filename: L72201023_02320000619_B70.FST
Images in this file set:
Width: 8311
Depth 7621
Radiometric record
==================
GAINS AND BIASES IN ASCENDING BAND NUMBER ORDER
-6.199999809265137 0.775686297697179
-6.400000095367432 0.795686274883794
-5.000000000000000 0.619215662339154
-5.099999904632568 0.965490219639797
-1.000000000000000 0.125725488101735
-0.349999994039536 0.043725490920684
Geometric record
================
GEOMETRIC DATA MAP PROJECTION =UTM ELLIPSOID =WGS84 DATUM =WGS84
USGS PROJECTION PARAMETERS = 0.000000000000000
0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000
USGS MAP ZONE =31
UL = 0005136.6558W 540441.0389N 247500.000 5999100.000
UR = 0025703.6628E 540824.0187N 496800.000 5999100.000
LR = 0025711.8748E 520506.2184N 496800.000 5770500.000
LL = 0004051.3183W 520139.1763N 247500.000 5770500.000
CENTER = 0010525.9263E 530550.3352N 372150.000 5884800.000 4156 3811
OFFSET =-3391 ORIENTATION ANGLE =0.00
SUN ELEVATION ANGLE =57.2 SUN AZIMUTH ANGLE =147.8

lost without any cost being incurred. Some image
transform methods, including principal components
analysis (PCA) (Section 6.4), the discrete Fourier
transform (Section 6.6) and the discrete wavelet trans-
form (Section 6.7) can be used to compress images.
These methods exploit the fact that some redundancy
exists in a multispectral image set, and they re-express

the data in such a way that large reductions in the
volume of transformed data represent only small losses
of information.

Other methods are run length encoding and Huffman
coding . Run length encoding involves the re-writing of
the records of image pixels in terms of expressions of the
form (li , gi) where li is the number of pixels of value gi
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that occur sequentially. Thus, a sequence of pixel values
along a scan line might be 1 1 1 2 2 2 2. This sequence
could be encoded as (3, 1) (4, 2) without losing any infor-
mation. A special character indicates the end of a scan
line. Obviously the degree of compression that results
from this type of encoding depends on the existence of
homogeneous sections of image – in other words, if there
are no sequences of equal values then there will be no
compression; in fact, if there are no sequences of equal
values then there will be expansion rather than compres-
sion. Run length encoding is used in fax transmission and
may be useful in compressing classified images (Chapter
8) in which individual pixel values are replaced by labels.
The quadtree, which is described next, may be a better
choice, as it is a two-dimensional compression scheme.

A quadtree is a form of two-dimensional data struc-
ture or organization that is used in some raster GIS
(Figure 3.9). Its major limitation is that the image to be
encoded must be square and the side length must be a
power of 2. However, the image can be padded with
zeros to ensure that this condition is met. The square
image is firstly subdivided into four component square
subimages of size 2n−1 × 2n−1. If any of these subimages
is homogeneous (meaning that all of the pixels within the
sub-image have the same value) then it is not ‘quartered’

Figure 3.9 Quadtree decomposition of a raster image. The
full image, each dimension of which must be a power of
2, is divided into four equal parts (quads). Each quad is the
subdivided into four equal parts in a recursive way. The
subdivision process terminates when the pixel values in each
sub-(sub- . . . ) quadrant are all equal. The procedure works
best for images containing large, homogeneous patches. The
illustration shows a three-level decomposition; usually, the
number of levels of decomposition is substantially higher
than this.

any further. Conversely, those sub-images that are not
homogeneous are again divided into four equal parts and
the process repeated (in computing terms, the procedure
is recursive). When the quadtree operation is completed
the individual components, which may be of differing
sizes, are given identifying numbers called Morton
numbers, and these Morton numbers are stored in
ascending order of magnitude to form a linear quadtree.
For images such as classified images, which generally
contain significantly large homogeneous regions, the use
of quadtree encoding will result in a substantial saving
of storage space. If the image is inhomogeneous then
the amount of storage required to store the quadtree may
be greater than that required for the raw, uncompressed
image. Kess, Steinwand and Reichenbach (1996) use
quadtrees to compress the non-land areas of the Global
Land 1-km AVHRR data set. They find that the quadtree
representation produces a reduction in data volume to
6.72% of the original data size, which is better than that
achieved by JPEG, GZIP or LZW compress methods.
More details of quadtree-based calculations can be
found in Mather (1991), while the definitive reference is
Samet (1990).

3.2.3 System Processing

Data collected by remote sensing instruments carried by
Earth-orbiting satellites are transmitted to ground receiv-
ing stations using high-bandwidth radio. These transmit-
ted data are in raw format. They must be processed before
delivery to a user. If we use the Landsat-7 ETM+ instru-
ment as an example, we note that the image data are
collected by an optomechanical scanner (Figure 1.2). This
scanner uses a mirror to direct radiance upwelling from
the ground to a set of 16 detectors, each of which records
radiance values for a single scan line (recall from Section
2.3.6.2 that the Landsat TM scanner collects data for
16 scan lines simultaneously). Each of the 16 detec-
tors has seven components, one for each spectral band.
The system operates in both forward and reverse mir-
ror directions, so the raw format data has sets of 16
scan lines stored alternately in opposite directions. With-
out any preprocessing, these data would be difficult to
use. Raw format data has other undesirable characteris-
tics. The pixels forming each scan line are not properly
aligned geometrically, and artefacts caused by electronic
noise in the system may be present. Nor are the data cali-
brated to radiance units. Most remote sensing image data
are delivered to the user in the form of quantized counts,
often – but not always – on a scale requiring 8 bits of
storage (i.e. levels 0–255). For some applications, it is
necessary to convert from quantized counts to radiance
units and so this radiometric correction is a vital stage of
pre-processing (Section 4.6).
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The first level of Landsat ETM+ system processing is
called Level 1R. It involves removal of coherent noise, of
banding effects caused by the use of 16 detectors (which
can generate patterns with a period of 16 scan lines
down the image) and calibration of the pixel values to
radiance units. The calibration coefficients are provided
in the header records of Level 1R data. However, Level
1R data are not corrected for pixel misalignments, so
they must undergo a process called geometric correction

(Section 4.3) before they are usable. Level 1G Landsat
ETM+ data are radiometrically corrected (Section 4.6),
like Level 1R, and the pixels are relocated or resampled
(Section 4.3.3) so that the image conforms to a map
projection. At Level 1G, the image geometry is corrected
using system information, such as orbital height of
the satellite, the direction of its forward motion, and
its attitude (in terms of pitch, roll and yaw). There is
no geometric calibration against known ground points.

Table 3.3 Edited extract from ASTER metadata file, generated by MIPS.

GROUP VNIRBAND1DATA

IMAGEDATAINFORMATION1 (4980, 4200, 1)

GROUP IMAGESTATISTICS1

MINANDMAX1 (60, 255)

MEANANDSTD1 (129.753067,

25.771908)

MODEANDMEDIAN1 (121, 157)

GROUP DATAQUALITY1

NUMBEROFBADPIXELS1 (0, 0)

GROUP PROCESSINGPARAMETERS1

CORINTEL1 "N/A"

CORPARA1 "N/A"

RESMETHOD1 "NN"

MPMETHOD1 "UTM"

PROJECTIONPARAMETERS1 (6378137.000000,

6356752.300000, 0.999600, 0.000000, −0.052360, 0.000000,

500000.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000)

UTMZONECODE1 30

GROUP UNITCONVERSIONCOEFF1

INCL1 0.676000

OFFSET1 −0.676000
CONUNIT1 "W/m2/sr/um"

The definitions of the parameters are given in ASTER Level 1 Data Products Specifications (GDS Version)
Version 1.3 produced by the Japanese Earth Remote Sensing Data Centre, dated 25 June 2001. Each of
the metadata entities is described as a group, and each group may contain descriptive fields plus values.
The portion of the metadata contained in this table refers to the visible and near infrared (VNIR) band
1. The first group, VNIRBAND1DATA, contains one field, which tells us that the image consists of 4980
scan lines each containing 4200 pixels, represented as 1 byte (8 bits) per pixel. Group IMAGESTATISTICS1
provides the minimum, maximum, mean, standard deviation, mode and median of the image pixel values.
Group DATAQUALITY tells us that there are no bad pixels. The PROCESSINGPARAMETERS1 group contains
details of the method of relocating (resampling) the pixels during system corrections (NN indicates the
Nearest Neighbour method, described in Section 4.3.3), the map projection (UTM) and UTM zone (30).
The projection parameters for the UTM projection are in the following order: (i) semi-major axis of the
ellipsoid, (ii) semi-minor axis of the ellipsoid, (iii) scale factor at the central meridian, (iv) not used – zero, (v)
longitude of the central meridian, (vi) latitude of the projection origin, (vii) false easting in the same units as
the semimajor axis and (viii) false northing in the same units as the semiminor axis. The remaining fields are
set to zero. The final group shown here is UNITCONVERSIONCOEFF1. The two values in this group are the
calibration coefficients that are used to convert pixel values to radiance units. The third field of this group
indicates that, after conversion, the radiance values are expressed in units of W m−2 sr−1 µm−1.
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However, the pixel positions are said to be accurate
to within 250 m for flat areas near sea level. Level 1G
data are the standard Landsat-7 ETM+ product. Images
derived from higher-level processing (involving the use
of ground control points and digital elevation models
to refine the image geometry) are offered as ‘value-
added’ products by data providers and by third-party
commercial companies. Details of Landsat system data
processing can be found in the Landsat Science Users’
Data Handbook (Irish, 2008).

The processing chain for SPOT HRV data is similar to
that described for Landsat-7 ETM+ images. SPOT Image
defines three levels of ‘system corrections’, beginning
with Level 1A (which provides radiometric corrections
to equalize detector responses), and proceeding to Level
1B, which provides a similar geometric correction to that
offered by Landsat ETM+ Level 1G, in addition to radio-
metric equalization of the detectors. SPOT Image also
provides Level 2A pre-processing, which transforms the
image data onto a cartographic projection. Like Landsat-
7 ETM+ Level 1B data, neither Level 1B nor Level
2A SPOT HRV processing involves any ground control,
so the accuracy of the resulting correction depends on
the level of error in the determination of the satellite’s
orbital parameters (see Section 2.3.7.1 for a description
of DORIS, used to obtain accurate orbit parameters for
the SPOT-5 satellite). None of these corrections includes
the effects of the land surface topography, so the geomet-
ric accuracies cited by the data providers refer only to flat
areas near sea level. Location errors in mountainous areas
will be considerably greater.

3.3 Numerical Analysis and Software
Accuracy

Mention was made in the introduction to this chapter
of the software error that caused the failure of the first
Ariane-5 launch in 1997. A Google Scholar search for
the term ‘software accuracy’ will reveal that this failure
is not an isolated case, and that many innocent-looking
computer routines contain within themselves the seeds of
their own destruction. The study of the design of com-
puter algorithms and the evaluation of potential errors in
numerical algorithms is called numerical analysis. Typ-
ically, these algorithms involve the use of real values
rather than integers, although the conversion from real
to integer form is not without its problems, as we have
already seen. Operations carried out on remotely-sensed
images may involve the use of unsigned integers (using 8,
16 or 32-bit representation). An example is the transfor-
mation of raw data values to lookup table entries, which
is discussed above in the context of pseudocolour images
(illustrated in Figure 3.7). There is no rounding error

here, nor is it possible for the lookup table entry to lie
outside the range 0–255. However, some transformation
and classification methods, dealt with in Chapters 6 and 8
respectively, do involve the conversion of integer image
pixel values to real or floating point form. Table 3.2 illus-
trates the properties of integer and real numbers.

There are two principal sources of error in real (float-
ing point) operations on a computer, assuming that the
program is correctly coded. One is due to the inherent
properties of the computer. The other is in the choice
of algorithm used to implement a specific operation. For
example, the correlation coefficient can be computed in
at least three different ways. One is almost certain to
produce severe errors. Before this topic is pursued, how-
ever, we will consider numerical error caused by the
way that computers store real numbers. These numbers
are stored (on Intel-based machines) as a sign bit, a
7-bit exponent and a 24-bit mantissa, giving 32-bits in
total. In base 10 notation, we could write 12 345.0 as the
mantissa and 2 as the exponent to deconstruct the num-
ber 0.1 234 500 × 102. A 24-bit mantissa gives approxi-
mately seven decimal digits of accuracy. The range of
a 32-bit real number is of the order of ±3.4 × 1038,
which would seem to be enough for most purposes. How-
ever, attempts may be made – particularly with huge GIS
datasets – to store numbers bigger than this. The result
is called overflow, and may not be detected by the com-
puter operating system. The converse is underflow which
is attempting to store a number that is not detectably dif-
ferent from zero. Overflow and underflow are usually, but
not always, treated by programmers and program design-
ers so that their occurrence is minimized. Another source
of error is the representation, in base 2 form, of a base
10 number. Thus, the base 10 number 0.1 cannot be accu-
rately represented in base 2 (McCullough, 1998). Asking
a computer ‘is 0.05 + 0.05 equal to 0.1?’ should produce
the (un)expected answer ‘No’.

If overflow/underflow and representational errors
do not entrap the unwary, then subtraction of large,
nearly-equal real numbers may well do so. A Fortran
program using single-precision (32-bit) real numbers to
perform the subtraction operation 100 000.1 – 100 000
gave the answer 0.101 563 rather than 0.100 000. This
may sound like an insignificant difference, but imagine
how error could build up if the data set contains millions
of pixel values and each recorded a small discrepancy
from its true value.

The subtraction of large nearly-equal real numbers
links into the second main cause of numerical error
in computing, namely, that due to the poor choice of
algorithm. Consider one of the most commonly used
statistical measures – the variance, s2. The classical
definition of s2 (the definitional formula) is given by
s2 = 1

n

∑
(x − x)2. This formula is inconvenient as
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it requires two passes through what might be a very
large data set. The mean is computed during the first
pass and the variance at the second pass. A one-pass
formula, which is logically equivalent to the definitional
formula, is often used. In this one-pass formula, s2 is
defined as s2 = 1

n2

[
n
∑

x2 − (
∑

x)2
]
, so that

∑
x and∑

x2 can be calculated simultaneously during one pass
through the data. Recall that subtracting near-equal and
large quantities can lead to significant error, and it will
become apparent that this one-pass formula should not
be used to calculate the variance of a remotely-sensed
image. Some published algorithms, for example Alley
(1995), explicitly use this second method.

Other quantities such as the covariance and correlation
matrices can be calculated using the one-pass method
but this is not recommended. An alternative one-pass
algorithm, known as Welford’s method, gives a result
that is of similar accuracy to the two-pass method. It
is an example of an algorithm that is designed with
the properties of floating-point arithmetic in mind, and
reveals the truth of the old saying that methods useful for
hand calculators should not be transferred to the digital
computer without some thought. Welford’s method is
described in Knuth (1998, p. 232). The original paper is
Welford (1962).

So far, we have considered underflow, overflow and
the subtraction of large but nearly equal values as
sources of error. There is one other major source of
potential error and that is the analysis of problems that
are inherently unstable or ill conditioned. Several of
the techniques described in Chapters 6 and 8 make use
of an inverse matrix, therefore methods of determining
the inverse matrix are considered here. A square matrix
generally possesses an inverse. The inverse of matrix X
is written as X−1 and these two matrices are related by
the expression XX−1= I, where I is the identity matrix
which has the same number of rows and columns as X
and X−1 and contains zeros everywhere except along the
principal diagonal (which runs from the top left cell (1, 1)
to the bottom right cell (n , n)). The principal diagonal of
the identity matrix contains 1s. Techniques such as PCA
(Chapter 6), spectral unmixing and maximum likelihood
classification (Chapter 8) require the computation of the
matrix of interband covariances. Computational error
will result in inaccuracy in the results, so care should be
taken to ensure that a ‘good’ algorithm is used, such as
the Welford approach that is discussed above.

Even a ‘good’ algorithm will perform poorly if the
input matrix does not possess certain properties. Firstly,
individual subsets of columns (bands) of the original data
from which the covariance matrix is calculated should
have low correlations. Orthogonal matrices (which have
a zero correlation between their columns) are best from
a numerical analysis point of view. The visible bands of

the Landsat TM sensor are certainly intercorrelated, as
visual inspection of Figure 1.10 shows. The level of inter-
correlation may be such that the number of independent
sources of information is less than the number of bands.
As an example, think of six children as sources of infor-
mation. If all six speak different languages then we have
six different sources of information. If two speak English,
two speak German and two speak Russian then the num-
ber of independent sources is three. Because the Landsat
TM bands are intercorrelated they do not each contribute
one unit of information, and this can lead to difficul-
ties in calculating the inverse of the covariance matrix.
Matrices based on intercorrelated data sets are said to be
ill-conditioned. Small changes in the covariance values
lead to disproportionate changes in the inverse covari-
ance matrix. Table 3.4 illustrates this point. A 4 × 4 data
matrix X whose elements are whole numbers is input to a
Gauss–Jordan matrix inversion function and the inverse
is computed. A check is performed by calculating XX−1,
which should produce a 4 × 4 identity matrix, I. Inspec-
tion of Table 3.4 shows that the diagonal elements of
the matrix XX−1 are close in value to 1.0 and the off-
diagonal elements are almost zero, so the inverse matrix
X−1 seems to be a reliable estimate of the true inverse
matrix. Next, one element of X is changed, that is the
element at the intersection of row 3 and column 3 of X
(written x (3, 3)). The value 10 is changed to 9.99. We
might reasonably expect that the inverse matrix changes
only slightly, but it does not. The first element of the
first column has changed from 67.9 996 to 71.0 418 and
most of the other elements have changed by about 5%.
When large-scale changes in output values result from
slight perturbations in the input matrix X then the matrix
X is said to be ill-conditioned. This problem cannot be
detected by simply looking at the data matrix. There are
two methods that can be used to check on the condition
of a matrix. One uses the determinant and the second
uses the ratio of the largest to the smallest eigenvalue.

All square matrices have a positive number associated
with them. This number is called the determinant of the
matrix and it ranges upwards from zero. We need not
concern ourselves with how the determinant is derived
from the matrix; all we need at this stage is to know that
the closer the determinant gets to zero the more likely
the matrix is to be ill-conditioned. A warning or error
message could be delivered to the user if the determinant
approaches zero.

The widely used method of PCA is dealt with in
Chapter 6. PCA attempts to discover how many indepen-
dent sources of information or dimensions of variability
exist within the data (recall the example used earlier of
six children speaking three or six languages). To achieve
this aim, PCA makes use of what is called the eigenvalue
transform, which generates a set of numbers (one for
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Table 3.4 Example of computational error in matrix inversion. The element (3,3) of the Initial Data Matrix is changed from
10.0 to 9.99 and the solution (Inverse Matrix) changes considerably (by more than 5%) as a result. In the two cases, the result of
multiplying the input matrix (Initial Data Matrix or the Perturbed Data Matrix) by the computed inverse is shown. The resulting
matrix (listed as Initial Data Matrix × Inverse or Perturbed Matrix × Inverse) should approximate to the Identity Matrix
(consisting of values of 1.0 along the principal diagonal and 0.0 elsewhere).

Initial Data Matrix

5.00000 7.00000 6.00000 5.00000

7.00000 10.0000 8.00000 7.00000

6.00000 8.00000 10.0000 9.00000

5.00000 7.00000 9.00000 10.0000

Inverse Matrix

67.9 996 −40.9 998 −16.9 999 9.99994

−40.9 998 24.9 999 9.99 994 −5.99997

−16.9 999 9.99994 4.99 998 −2.99999

9.99994 −5.99997 −2.99999 1.99999

Initial Data Matrix × Inverse

0.999 996 −3.433 228E–05 −1.907 349E–05 −7.629 395E-06

−1.907 349E–06 0.999 977 −3.814 697E–06 0.00000

9.536 743E–07 8.583 069E–06 1.00000 1.907 349E-06

−2.861 023E–06 9.536 743E–07 −2.861 023E–06 0.999 998

Perturbed Matrix

5.00000 7.00000 6.00000 5.00000

7.00000 10.0000 8.00000 7.00000

6.00000 8.00000 9.99000 9.00000

5.00000 7.00000 9.00000 10.0000

Inverse Matrix

71.0 418 −42.7 893 −17.8 947 10.5 368

−42.7 893 26.0 525 10.5 263 −6.31 576

−17.8 947 10.5 263 5.26 314 −3.15 788

10.5 368 −6.31 576 −3.15 788 2.09 473

Perturbed Matrix × Inverse

0.999 990 1.335 144E–05 1.716 614E–05 −1.144 409E–05

−4.291 534E–06 0.999 974 −8.106 232E–06 −4.768 372E–06

−4.529 953E–06 −4.053 116E–06 1.00000 −5.245 209E–06

−2.861 023E–06 1.907 349E–06 −9.536 743E–07 0.999 996

Source of Initial Data Matrix: Kennedy and Gentle (1980, pp. 34–35). The results in this table were calculated using a Gauss–Jordan Fortran routine, operating in
single-precision mode, taken from Mather (1976, p. 498).

each row/column so that a 4 × 4 matrix would have
four numbers, called eigenvalues. If the eigenvalues of
the correlation matrix (which is simply the standardized
covariance matrix) are all equal and sum to the matrix
size (four in this example) then the matrix is perfectly
conditioned and has four independent sources of informa-
tion. Generally, this happy state rarely prevails, and there
are some large eigenvalues and some small eigenvalues.
If any of the eigenvalues is equal to zero then the

correlation matrix is said to be singular – it does not
have an inverse. The ratio of the largest to the smallest
eigenvalue can give a value, called the condition number,
that could tell us how badly conditioned the covari-
ance/correlation matrix actually is. When all eigenvalues
are equal, then the condition number is 1.0 and we have
an orthogonal matrix which has mutually independent
columns. If the first eigenvalue is very large relative to
the other eigenvalues and the smallest eigenvalue has a
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very small value then the condition number is very large
and results derived from the use of the covariance matrix
are thus suspect. There is no general agreement on what
constitutes a large condition number, unfortunately.

Where the covariance matrix is computed from a
sample of data, as is the case with the maximum
likelihood classifier (Chapter 8), then the condition
number of the covariance matrix may be improved by
increasing the size of the sample. Other techniques, such
as PCA (Chapter 6), compute covariance/correlation
matrixes from the whole data set so increasing sample
size is not an option.

In summary, we must take care when carrying out
digital image processing operations on remotely sensed
images. Software such as ERDAS, ENVI and MATLAB
could help by place greater emphasis on ensuring the
accuracy of results by building-in checks on potential
sources of error, as outlined above. It would be inter-
esting to speculate how results based on ill-conditioned
matrices would vary from one software product to
another. Comparative analyses of spreadsheets such as
EXCEL abound on the Internet, and a similar operation
on remotely sensed software packages might prove
enlightening. Non-mathematical readers may feel that
the danger is exaggerated, whereas computer scientists
worry unduly about error. Readers need to be aware
of the possibility of errors in numerical computing but
few, I expect, will follow the example of Alston S.
Householder, a famous computer scientist, who allegedly
refused to fly because aircraft are designed using floating
point arithmetic.

Further reading on the fascinating subject of com-
puter error includes Nataraj (undated), Higham (2002),
Kennedy and Gentle (1980) and McCullough (1998,
1999). For a general introduction to mathematics in
remote sensing, see Milman (1999). Most computer
science undergraduate texts contain chapters on errors of
the kinds discussed above, and a search of the Internet
will bring up numerous and fascinating documents.

3.4 Some Remarks on Statistics

Many students dislike statistics, largely because they do
not see the point of testing rather badly chosen examples
comprising the specification and examination of null
hypotheses and the checking of assumptions such as that
of normality. However, to use some of the techniques of
mixture modelling and classification (Chapter 8), some
idea of sampling theory and confidence limits may be
found to be useful. For example, the application of the
maximum likelihood classifier to determine the class to
which a test pixel belongs requires the calculation of
a measure that is related to the likelihood of that pixel

being a member of a given class, say pasture or forest.
If the maximum likelihood value for any class for the
test pixel is computed to be 0.25, for example we could
very well ask the question ‘given a sample of size n and
a p- dimensional set of pixel values (such as the p = 6
reflective Landsat ETM+ bands), what is the probability
that one or more of the test pixels will generate a value
as high as 0.25 from random sampling alone?’ In other
words, how reliable is the likelihood value estimated
from the sample? Thus, if we took repeated and different
random samples of pixels representing pasture, and if the
probability of the test pixel was computed for all random
samples, then it is extremely unlikely that the test pixel
values would produce a likelihood of 0.25 every time.
If the pasture was homogeneous (i.e. if the standard
deviation of the values of pixels representing pasture was
small) then we would expect some variation around 0.25,
with the variation increasing as the standard deviation of
the pasture pixels increased. A value of 0.25 might occur
(or be exceeded) more than 95% of the time in cases
of low standard deviation but may occur or be exceeded
only 65% in the case of high standard deviations. The
values associated with these percentages are known
as confidence limits. Clearly we should have more
confidence in the former result rather than in the latter.
This is an example of classic inferential statistics which
is based on various assumptions. Very few researchers
report the confidence levels of their classified images.

It is usually the case that the statistical population(s) of
interest is normally distributed (or multivariate normal in
the case in which there is more than one variable of inter-
est). The test described above on the single test pixel is
based on the assumption that (a) the pixel values for each
land cover class (wheat, barley, turnips, pasture, decidu-
ous woodland, coniferous woodland, bare soil, etc.) are
each multivariate-normally distributed. The multivariate
normal distribution is used to work out the probabil-
ity that the test pixel belongs to each class in turn. If
the classes are not multivariate–normally distributed then
the calculation of probabilities will be incorrect and the
wrong conclusion may be drawn. We can wriggle out of
this one by saying that we aren’t too concerned about get-
ting the correct value as long as the resulting rank order
of the class membership probabilities is correct. This is
probably the case if each class has a unimodal distribution
but if the distribution is bimodal or multimodal then we
cannot be assured that the probabilities (or, more accu-
rately, the pseudo-probabilities) are in the correct rank
order and misclassification will occur. Nor can we use
pseudo-probabilities to compute the confidence limits (as
described earlier in this section). It is, therefore, danger-
ous to use traditional statistical methods like maximum
likelihood or discriminant analysis on data sets that are
not normally distributed.
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A second aspect of statistics that should be given some
thought is that of sample size. Again, this largely applies
to studies involving statistical methods of classification
but it has some importance in other areas of image
processing. A sample should be representative of the
population that it purports to represent, and usually a
random or stratified random sampling scheme is adopted.
Collecting ground reference data for calibration and vali-
dation purposes is time-consuming and costly, especially
if there are many land cover classes in the study area, and
the temptation is to take sample elements in rectangular
clusters. This temptation should be avoided because n
sample pixels that are close together do not provide
n separate sources of information; the phenomenon of
spatial autocorrelation sees to that. So we need a well-
distributed set of reference data (Plourde and Congalton,
2003). How many sample elements do we need? This is
a question that has occupied more than one mind over
several decades. In classical statistics I was taught that
statistical theory assumed a large sample size and that the
value 30 was generally adopted as the minimum sample
size for a univariate test. If we have p dimensions then
the sample size should be 30p in order to sample each
dimension (spectral band) properly. Some researchers
have queried this figure (e.g. Van Niel, McVicar and Datt,
2005, who suggest a figure nearer 2p or 4p). Others have
suggested that some classification algorithms can work
with smaller sample sizes (e.g. Pal and Mather, 2005,
2006). See also Foody, McCullagh and Yates (1995),
Foody and Mathur (2004a), Foody et al. (2006). The
so-called Hughes phenomenon claims that, for a fixed
sample size m and for p dimensions, the accuracy of a
classifier rises initially and then diminishes as p increases.
The point at which this ‘curse of dimensionality’ comes
into play seems to depend on sample size. However,
some non-statistical techniques, such as decision trees
and support vector machines, are apparently more
tolerant to small sample sizes than are methods based
on statistics such as the maximum likelihood classifier.

In the preceding paragraph, the number of dimensions
(spectral bands) was seen to have an important effect
on the outcome of certain classification operations. It is
equally true to say that high dimensionality plays a role
in those image transforms (Chapter 8) that are based on
the covariance matrix. There is little guidance in the lit-
erature on the sample size needed for various statistical
calculations, but it is clear that the number of parame-
ters to be estimated from the data increases nonlinearly
with p. Assume that we are computing the correlation or
covariance matrix. If p = 2 then we need to estimate
three parameters −r11, r22 and r12. If we are comput-
ing the variance-covariance matrix of hyperspectral data
(Chapter 9) then p could be as large as 256, giving 32 896

parameters to be estimated from the sample data. Differ-
ent computational approaches may have to be adopted
for hyperspectral data. Techniques such as PCA (Chapter
6), which uses the variance–covariance matrix, may well
need to be reviewed as the many arithmetic computa-
tions required for techniques such as PCA may lead to
unacceptable rounding errors. For example, some have
implemented artificial neural network (ANN, Chapter 8)
approaches to the computations of PCA as a result of the
very large number of error-prone computations required
when p becomes large.

Where a mean vector or covariance matrix is estimated
from a sample of reference data (either training data or
test data), one must always be aware of the dispropor-
tionate effect that outliers in an impure sample have on
the estimates. A procedure for down-weighting estimates
is described in Section 8.4.1 (in the context of estimat-
ing statistical parameters from a sample of data) and in
Sections 7.2.1 and 7.2.2, where the moving average filter
is compared to the median.

Further reading includes Milman (1999) and
Landgrebe (2003). The latter includes useful material
on the properties of high-dimensional space associated
with hyperspectral data, which is discussed in Chapter 9,
while the former is more concerned with the computa-
tional aspects of remote sensing data processing. Oliveira
and Stewart (2006) and Ralston and Rabinowitz (2000)
provide a useful computer science perspective on error in
digital computing and on choice of suitable algorithms.

3.5 Summary

Appearances can be misleading, according to folk
wisdom. This is nowhere more true than in the case
of the manipulation and display of images. In the case
of remotely-sensed images it is unlikely that deception
would be employed or condoned, though anyone who is
unfamiliar with the procedures used to transform image
data that is represented by more than 8 bits per pixel onto
the 0–255 range may well be misled. The differences
between false colour, true colour and pseudocolour
images should also be recognized. One pitfall to be
avoided by the aware reader is the use of data that has
been transformed, perhaps non-linearly, onto an 8-bit
scale in subsequent calculations such as band ratios and
vegetation indices (Section 6.2.4). A band ratio such as
the Normalized Difference Vegetation Index should be
computed from the image data themselves, and not from
scaled values stored in a display memory.

The topic of data formats is also discussed in this
chapter. Extraction of data from a storage medium
such as a CD-ROM or DVD is often the first problems
faced by a potential user of remotely sensed data.
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Again, it is important that the user understands the
characteristics of different formats and the properties of
the metadata that are provided together with the image
data. Differences between levels of processing must
always be recognized, as should the properties of ‘lossy’
and ‘lossless’ data compression.

The subject of error in digital computing is one that
has fascinated me since the mid-1960s when computing
as we know it today was in its infancy. Mathematics
becomes something else when it is turned into com-
puter algorithms. The work of computer scientist Donald
Knuth has always been of interest to me and has led
me to a position of scepticism rather than innate trust.
Many advanced topics such as PCA and maximum like-
lihood classification cannot be taught in a satisfactory
way without a discussion of the errors involved in the
eigenvalue transformation or the inverse matrix problem.
Remote sensing software needs to be more rigorously
tested – as things stand, there is no reason to lack faith
in the various packages that are available but a more
open attitude towards computational error needs to be
promulgated before results are to be trusted implicitly.

There is an equal amount of interest in statistical top-
ics, such as sampling strategy, sample size, parameter
estimation and accuracy assessment. Attention needs to
be paid to these topics because an entire analysis may be
based on faulty data, for example the presence of out-
liers in the sample data. One of the aims of this chapter
is to ensure that readers are aware of the pitfalls that
lie ahead and take due notice of them when selecting
computer processing techniques, particularly with high-
dimensional data.

Readers interested in computational aspects of remote
sensing and image processing might take a look at Plaza
and Chang (2008), which contains contributions on topics
such as high-performance computing, GRID computing
and real-time processing of hyperspectral data (i.e. data
in many tens or even hundreds of spectral bands – see
Section 9.3). Qu et al. (2007) has chapters on data prod-
ucts from various sensors such as MODIS, calibration
issues and data formats, specifically HDF. Nachtegael
et al. (2007) is oriented towards image processing in gen-
eral but contains a section on remote sensing problems.
Ghosh and Pal (2002) is similar.





4 Preprocessing of Remotely-Sensed Data

4.1 Introduction

In their raw form, as received from imaging sensors
mounted on satellite platforms, remotely-sensed data
generally contain flaws or deficiencies with respect to
a particular application. The correction of deficiencies
and the removal of flaws present in the data is termed
preprocessing because, quite logically, such operations
are carried out before the data are used for a particular
purpose. Despite the fact that some corrections are car-
ried out at the ground receiving station (Section 3.2.3),
there is often still a need on the user’s part for some
further preprocessing. The subject is thus considered
here before methods of image display and analysis are
examined in later chapters.

It is difficult to decide what should be included under
the heading of ‘preprocessing’, since the definition of
what is, or is not, a deficiency in the data depends to a
considerable extent on the use to which those data are to
be put. If, for instance, a detailed map of the distribution
of particular vegetation types or a bathymetric chart is
required then the geometrical distortion present in an
uncorrected remotely-sensed image will be considered to
be a significant deficiency. On the other hand, if the pur-
pose of the study is to establish the presence or absence
of a particular class of land use (such as irrigated areas
in an arid region) then a visual analysis of a suitably
processed false-colour image will suffice and, because
the study is concerned with determining the presence
or absence of a particular land-use type rather than
its precise location, the geometrical distortions in the
image will be seen as being of secondary importance. A
second example will show the nature of the problem. An
attempt to estimate reflectance of a specific target from
remotely-sensed data will be hindered, if not completely
prevented, by the effects of interactions between the
incoming and outgoing electromagnetic radiation and
the constituents of the atmosphere. Correction of the
imagery for atmospheric effects will, in this instance, be
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considered to be an essential part of data preprocessing
whereas, in some other case (for example discrimination
between land-cover types in an area at a particular point
in time), the investigator will be interested in relative,
rather than absolute, pixel values and thus atmospheric
correction would be unnecessary. Measurements of
change over time using multitemporal image sets will,
in the case of optical imagery, require correction for
atmospheric variability, and it will also be necessary to
register the images forming the multitemporal sequence
to a common geographical coordinate system. In addi-
tion, corrections for changes in sensor calibrations will
be needed to ensure that like is compared with like.

Because of the difficulty of deciding what should be
included under the heading of preprocessing methods,
an arbitrary choice has been made. Correction for geo-
metric, radiometric and atmospheric deficiencies, and the
removal of data errors or flaws, is covered here despite
the fact that not all of these operations will necessarily be
applied in all cases. This point should be borne in mind
by the reader. It should not be assumed that the list of
topics covered in this chapter constitutes a menu to be
followed in each and every application. The preprocess-
ing techniques discussed in the following sections should,
rather, be seen as being applicable in certain circum-
stances and in particular cases. The investigator should
decide which preprocessing techniques are relevant on
the basis of the nature of the information to be extracted
from the remotely-sensed data.

The preprocessing techniques described in Section 4.2
are concerned with the removal of data errors and of
unwanted or distracting elements of the image. In reality,
of course, data errors such as missing scan lines cannot be
removed; the data in error are simply replaced with some
other data that are felt to be better estimates of the true
but unknown values. Similarly, unwanted or distracting
elements of the image (such as the banding present on
Landsat TM and enhanced thematic mapper plus (ETM+)
images, as discussed in Sections 2.3.6 and 4.2.2) can
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only be eliminated or reduced by modifying all the data
values in the image. These errors are caused by detector
imbalance.

Many actual and potential uses of remotely-sensed
data require that these data conform to a particular map
projection so that information on image and map can
be correlated, for example within a geographical infor-
mation system (GIS). Two examples will demonstrate
the importance of this requirement. In Chapter 8 we
see that the classification of a remotely-sensed image is
best achieved by establishing the nature of ground cover
categories by field work and/or by air-photo and map
analysis. In order that the information so derived can
be related to the remotely-sensed image, some method
of transforming from the scan-line/pixel coordinate
reference system of the image to the easting/northing
coordinate system of the map is required. Second,
if remotely-sensed data are to be used in association
with other data within the context of a GIS then the
remotely-sensed data and products derived from such
data (for example a set of classified images) will need
to be expressed with reference to the geographical coor-
dinates to which the rest of the data in the information
system conform. In both these cases, there is a need
for data preprocessing of a kind known as geometric
correction. The same arguments can be put forward
if the study involves measurements made on images
produced on different dates; if information extracted
from the two images is to be correlated then they must
be registered, that is, expressed in terms of the same
geographical coordinate system. Where an image is
geometrically corrected so as to have the coordinate and
scale properties of a map, it is said to be georeferenced .
Geometric correction and registration of images is the
topic of Section 4.3.

Atmospheric effects on electromagnetic radiation (due
primarily to scattering and absorption) are described in
Section 1.2.5. These effects add to or reduce the true
ground-leaving radiance, and act differentially across the
spectrum. If estimates of radiance or reflectance values
are to be successfully recovered from remote measure-
ments then it is necessary to estimate the atmospheric
effect and correct for it. Such corrections are particu-
larly important (i) whenever estimates of ground-leaving
radiances or reflectance rather than relative values are
required, for example in studies of change over time or
(ii) where the part of the signal that is of interest is
smaller in magnitude than the atmospheric component.
For example, the magnitude of the radiance upwelling
from oceanic surfaces is generally very low, often being
much less than the atmospheric path radiance (the radi-
ance scattered into the field of view of the sensor by the

gaseous and particulate components of the atmosphere).
If any useful information about variations in radiance
upwelling from the ocean surface is to be obtained from
a remotely-sensed image then the component of the sig-
nal received at the sensor that emanates from the ocean
surface must be separated from the larger atmospheric
component (Figure 1.23). It is fair to say that no single
method of achieving this aim has yet been established,
and it is also true that most of the techniques that are in
use today and which produce even approximately realistic
results tend to be complex in nature. In my experience,
simple techniques cannot solve complex problems. The
more complex techniques are well beyond the scope of
this book and will thus not be considered in any detail.
Section 4.4 provides an introductory review of atmo-
spheric correction techniques.

Sections 4.5–4.7 are concerned with the radiometric
correction of images. If images taken in the optical and
infrared bands at different times (multitemporal images)
are to be studied then one of the sources of variation that
must be taken into account is differences in the angle
of the Sun. A low Sun-angle image gives long shadows,
and for this reason might be preferred by geological users
because these shadows may bring out subtle variations
in elevation. A high Sun angle will generate a differ-
ent shadow effect. If the reflecting surface is Lambertian
(which is, in most cases, a considerable oversimplifica-
tion) then the magnitude of the radiant flux reaching the
sensor will depend on the Sun and view angles. For com-
parative purposes, therefore, a correction of image pixel
values for Sun elevation angle variations is needed. This
correction is considered in Section 4.5. The calibration of
images to account for degradation of the detectors over
time is the topic of Section 4.6. Such corrections are
essential if multitemporal images are to be compared, for
changes in the sensor calibration factors will obscure real
changes on the ground. The effects on recorded radiance
levels of terrain slope and orientation are reviewed briefly
in Section 4.7.

The material in this chapter is introductory in scope.
Research applications will require more elaborate meth-
ods of preprocessing. For example, orbital geometry
models of geometric correction (Section 4.3.1) may use
advanced photogrammetric principles (Konecny, 2003),
while the use of the more sophisticated atmospheric
correction procedures (Section 4.4) requires a knowledge
of higher-level physics. The level of presentation adopted
here is intended to provide a basic level of appreciation
rather than a full physical understanding. More advanced
treatments are provided by Slater (1980), Elachi and van
Zyl (2006), Rees (2001) and by various contributors to
Asrar (1989).
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4.2 Cosmetic Operations

Two topics are discussed in this section. The first is the
correction of digital images that contain either partially
or entirely missing scan lines. Such defects can be due
to errors in the scanning or sampling equipment, in the
transmission or recording of image data, or in the repro-
duction of the media containing the data, such as CD
or DVD. Whatever their cause, these missing scan lines
are normally seen as horizontal black or white lines on
the image, represented by sequences of pixel values such
as zero or 255 (in an 8-bit image; Figure 3.4). Their
presence intrudes upon the visual examination and inter-
pretation of images and also affects statistical calculations
based on image pixel values. Methods to replace missing
values with estimates of their true (but unknown) values
are reviewed in Section 4.2.1. This is followed by a brief
discussion of methods of ‘de-striping’ imagery produced
by electromechanical scanners such as those carried by
Landsat (TM and ETM+). As noted in Chapter 2, these
scanners collect data for several scan lines simultane-
ously. The Landsat TM and ETM+ instruments record
16 scan lines for each spectral band on each sweep of
the scanning mirror. The radiance values along each of
these scan lines are recorded by separate detectors. In a
perfect world, each detector would produce the same out-
put if it received the same input. As we know, the world
is far from perfect and so, over time, the responses of the
detectors making up the set of 16 change at different rates.
A systematic pattern is superimposed upon the image,
repeating every 16 lines. Techniques to remove this pat-
tern are discussed in Section 4.2.2. Note that they cannot
be used with images recorded using solid state (pushb-
room) scanners such as the HRV carried by the SPOT
satellites because each individual pixel across a scan line
is recorded by the corresponding detector in the sensor.
Hence, each column of pixels in a SPOT HRV image is
recorded by the same detector. With 6000+ columns in
an image, the problem of correcting for variations in the
detectors is rather more severe than that presented here
for electromechanical scanners.

4.2.1 Missing Scan Lines

When missing scan lines occur on an image (Figure 4.1)
there is, of course, no means of knowing what values
would have been present had the scanner or data recorder
been working properly; the missing data have gone for
ever. It is, nevertheless, possible to attempt to estimate
what those values might be by looking at the image
data values in the scan lines above and below the
missing values. This approach relies upon a property

Figure 4.1 Illustrating dropped scan lines on a Landsat MSS
false colour composite image (bands 7, 5 and 4) of south
Wales and north Devon. Original data courtesy of NASA and
USGS.

of spatial data that is called spatial autocorrelation. The
word ‘auto’ means ‘self’, thus autocorrelation is the
relationship between one value in a series and a neigh-
bouring value or values in the same series. Temporal
autocorrelation is usually present in a series of hourly
readings of barometric pressure, for example. The value
at 11.00 tends to be very similar to the value at 10.00
unless the weather conditions are quite abnormal. Spatial
autocorrelation is the correlation of values distributed
over a two-dimensional or geographical surface. Points
that are close in geographical space tend to have similar
values on a variable of interest (such as rainfall or height
above sea-level). The observation that many natural
phenomena exhibit spatial autocorrelation is the basis of
the estimation of missing values on a scan line from the
adjacent values. This section deals with missing lines
or parts of lines; Kuemmerle, Damm and Hostert (2008)
give details of a method to detect and correct single-band
missing pixels in Landsat TM and ETM+ images.

The simplest method (Method 1 ) for estimating a miss-
ing pixel value along a dropped scan line involves its
replacement by the value of the corresponding pixel on
the immediately preceding scan line. If the missing pixel
value is denoted by vij , meaning the value v of pixel i
on scan line j , then the algorithm is simply:

vij = vij−1

Method 1 has the virtue of simplicity. It also ensures
that the replacement value is one that exists in the
near neighbourhood of pixel (i , j ). We will consider
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an averaging method next, and will see that, where
the assumption of positive spatial autocorrelation does
not hold, the average of two adjacent pixel values will
produce an estimated replacement value that is quite
different from either, whereas method 1 produces an
estimate that is similar to at least one of its neighbours.
Method 1 will need modification whenever the missing
line (j ) is the first line of an image. In that instance, the
value vi,j+1 could be used.

Method 2 is slightly more complicated; it requires that
the missing value be replaced by the average of the cor-
responding pixels on the scan lines above and below the
defective line, that is:

vij = (vij−1 + vij+1)/2

(taking the result to the nearest integer if the data are
recorded as integer counts). Where the missing line is the
first or last line of the image then Method 1 can be used.
As indicated earlier, if nearby pixel values are not highly
correlated then the averaging method can produce hybrid
pixels that are unlike their neighbours on the scan lines
immediately above or below. This is likely to happen only
in those cases where the missing line coincides with the
position of a boundary such as that between two distinct
land-cover types, or between land and water.

Method 3 is the most complex. It relies on the fact
that two or more bands of imagery are often available.
Thus, Landsat TM produces seven bands, ETM+ pro-
duces eight (including the 15 m resolution panchromatic
band) and SPOT HRV produces three bands of imagery.
If the pixels making up two of these bands are corre-
lated on a pair-by-pair basis then high correlations are
generally found for bands in the same region of the spec-
trum. For instance, the Landsat ETM+ bands 1 and 2 in
the blue–green and green wavebands of the visible spec-
trum are normally highly correlated. The missing pix-
els in band k might best be estimated by considering
contributions from (i) the equivalent pixels in another,
highly correlated, band and (ii) neighbouring pixels in the
same band, as in the case of the two algorithms already
described. If the neighbouring, highly correlated, band
is denoted by the subscript r then the algorithm can be
represented by

vi,j,k = M
[
vi,j,r − (vij+1,r + vij−1,r )/2

]
+(vi,j+1,k + vi,j−1,k)/2

The symbol M in this expression is the ratio of the
standard deviation of the pixel values in band k and
the standard deviation of the pixel values in band r .
This algorithm was first described by Bernstein et al.
(1984) and is examined, together with the two algorithms
outlined above, by Fusco and Trevese (1985). The con-
clusion of the latter authors is that the use of a second cor-
related band both reduces error and better preserves the

geometric structures present in the image. They present
some further results and elaborations of the basic algo-
rithm, and readers wishing to go more deeply into the
matter are referred to their paper.

The location of missing scan lines might not at first
sight seem a topic worthy of serious consideration, for
they are usually manifestly obvious when a defective
image is examined visually. However, to locate such
missing lines interactively using a cursor is a tedious task.
The spatial autocorrelation property of images might be
used as the basis for formulating a strategy that might
allow missing scan lines to be located semi-automatically.
If the average of the pixel values along scan line i is
computed (with i running from 1 to n , where n is the
number of scan lines in the from image) then it might
be reasonable to expect that the average of scan line i
differs from the average of scan lines i + 1 and i − 1
by no more than a value e. The parameter e would be
determined by looking at the frequency distribution of
the scan line averages over a number of images, or for
a representative (and non-defective) part of the image
under consideration. Step 1 would then involve locating
all those scan lines with average values that deviated by
more than e from the average of the preceding scan line.
The first scan line of the image could either be omitted
or compared with the second scan line. At the end of
step 1 we cannot be sure that the unexpectedly deviant
behaviour of the scan lines picked out by this compara-
tive method is the result of missing values. Step 2 thus
involves a search along each of the scan lines picked out
at step 1 for unexpected sequences of values. These unex-
pected sequences are most likely to be strings of extreme
values, either 0 or 255 in 8-bit images. The beginnings
and ends of such sequences are marked. At this stage the
image can be displayed and a cursor used to mark the
start of the suspect sequence. The operator is then able
to check that the scan lines or portions of scan lines are
indeed defective. Step 3 consists of the application of one
of the three methods described earlier, which allow the
defective value to be replaced by an estimate of its true
but unknown value. Note that isolated aberrant values
such as speckle noise on synthetic aperture radar (SAR)
images are removed by the use of filters such as the Lee
filter or the median filter. These methods are described
in Chapter 7.

4.2.2 Destriping Methods

The presence of a systematic horizontal banding pattern
is sometimes seen on images produced by electromechan-
ical scanners such as Landsat’s TM (Figure 4.2).

This pattern is most apparent when seen against a
dark, low-radiance background such as an area of water.
The reasons for the presence of this pattern, known as
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Figure 4.2 Horizontal banding effects can be seen on this
Landsat-4 TM band 1 image of part of the High Peak area of
Derbyshire, UK. The banding is due to detector imbalance.
As there are 16 detectors per band, the horizontal banding
pattern repeats every 16th scan line. The image has been
contrast-stretched (Section 5.3) in order to emphasise the
banding effect. See Section 4.2.2 for more details. Original
data courtesy of NASA and USGS.

banding, are given in Section 2.3.6.1. It is effectively
caused by the imbalance between the detectors that are
used by the scanner. This banding can be considered to
be a cosmetic defect (like missing scan lines) in that it
interferes with the visual appreciation of the patterns and
features present on the image. If any statistical analysis
of the pixel values is to be undertaken then the prob-
lem becomes somewhat more difficult. The pixel values
recorded on a CD or DVD are by no means ‘raw’ data,
for they have been subjected to radiometric and geomet-
ric correction procedures at the ground receiving station,
as described in Section 3.2.3. Hence, there does not seem
to be much force in the argument that ‘raw data’ should
not be interfered with. If we take as our starting point
the assumption that the image data should be internally
consistent (that is areas of equal ground-leaving radiance
should be represented by equal pixel values in the image,
assuming no other complicating factors) then some kind
of correction or compensation procedure would appear
to be justified. Two reasons can thus be put forward in
favour of applying a ‘destriping’ correction: (i) the visual
appearance and interpretability of the image is thereby
improved and (ii) equal pixel values in the image are
more likely to represent areas of equal ground-leaving
radiance, other things being equal.

Two methods of destriping Landsat imagery are con-
sidered in this section. For the sake of simplicity, they are
illustrated with reference to Landsat MSS images (which
have only six detectors per band) rather than to Land-
sat TM or ETM+ images, which have 16 detectors per
spectral band. Both methods are based upon the shapes
of the histograms of pixel values generated by each of
the detectors; these histograms are calculated from lines
1, 7, 13, 19, . . . (histogram 1), lines 2, 8, 14, 20, . . .

(histogram 2) and so on until six histograms have been
computed (in the case of Landsat MSS) or 16 (in the case
of Landsat TM or ETM+).

The first method characterizes the relationship between
the scene radiance rin that is received at the detector and
the value rout that is output by the sensor system in terms
of a linear function. The second method is non-linear in
the sense that the relationship between rin and rout is
not characterized in terms of a single linear function; a
piecewise function made up of small linear segments is
used instead. Methods based on low-pass filtering (such
as those described by Crippen (1989) and Pan and Chang
(1992) are mentioned in Chapter 7.

4.2.2.1 Linear Method

The first method uses a linear expression to model the
relationship between the input and output values. The
underlying idea is quite simple, though it is based upon
the assumption that each of the six detectors ‘sees’ a
similar distribution of all the land-cover categories that
are present in the image area. If this assumption is sat-
isfied, and the proportion of pixels representing water,
forest, grassland, bare rock, and so on, is approximately
the same for each detector, then the histograms generated
for a given band from the pixel values produced by the n
detectors should be identical (n is the number of detec-
tors used by the scanning instrument, for example 6 for
Landsat MSS and 16 for Landsat TM or ETM+). This
implies that the means and standard deviations of the data
measured by each detector should be the same. Detector
imbalance is considered to be the only factor producing
differences in means and standard deviations of the sub-
sets of data collected by each detector. To eliminate the
striping effects of detector imbalance, the means and stan-
dard deviations of the n histograms are equalized, that is,
forced to equal a chosen value. Usually the means of the
n individual histograms are made to equal the mean of
all of the pixels in the image, and the standard deviations
of the n individual histograms are similarly forced to be
equal to the standard deviation of all of the pixels in the
image. Example 4.1 provides a guide to the calculations
that are involved.

If the linear method were to be applied on a pixel-by-
pixel basis to an image of any great size then it would be
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Example 4.1: Destriping – Linear Method

This example demonstrates the way in which the calculations involved in destriping an image using the linear
method (Section 4.2.2.1) are carried out. In effect, we partition the image data into k subsets, where k is the
number of detectors, and calculate the mean and standard deviation for each subset. Second, the values of the mean
and standard deviation of the full data set are required. Given these values, a bias term and an offset term are
computed for each subset. The bias term is a multiplier and the offset is a constant to be added. These biases and
offsets are applied to the subsets in turn, and the net effect is that all of the subset means are equal to the overall
mean and the subset standard deviations are all equal to the overall standard deviation. Given that striping results
from detector imbalance (i.e. differences in mean and standard deviation from detector to detector), this equalizing
procedure should eliminate striping.

We first need to compute the value of the overall variance V , given by the expression:

V =
∑

ni(x
2
i + vi)∑
ni

− X
2

For simplicity, we assume that the number of detectors used in the imaging instrument is 6. The columns in the
table below show:

(i) detector number (1–6)
(ii) number of pixels recorded by each detector

(iii) pixel values recorded by each detector
(iv) means of the pixel values for each detector
(v) standard deviations of the pixel values for each detector

(vi) variances of the pixel values for each detector.

(i) (ii) (iii) (iv) (v) (vi)
Detector Number of Pixel Individual Standard Variances
number pixels values means (xi) deviations (si) (vi = s2i)

1 5 1 3 2 4 6 3.2 1.720 2.96
2 5 3 6 2 3 8 4.4 2.245 5.04
3 5 4 3 4 2 9 4.4 2.417 5.84
4 5 2 4 3 3 7 3.8 1.720 2.96
5 5 0 2 2 2 6 2.4 1.959 3.84
6 5 4 3 3 3 9 4.4 2.332 5.44

(Continues on next page)

inordinately slow. A little thought will show that, for 8-
bit images collected by the Landsat TM and ETM+, there
are only 256 possible values for each detector. We could
build a table consisting of n columns and 256 rows. The
input pixel value is the row number and the n corrected
values, one per detector, form the data values for that
row. The principle is simple. For a given pixel, the row
number in the table is the input pixel value while the
output (corrected) value is the i th value on that row,
where i is the detector number (1 ≤ i ≤ n). The table is
known as a lookup table or a direct address table. The use
of lookup table methods can be very effective where 8- or
16-bit integer data are being processed, as is the case with
most images, because the number of outcomes is limited
and is relatively small, so that precalculation of results

for all possible cases becomes feasible. More complicated
methods using hash tables are needed if the same idea is
to be applied to 32-bit integer data, which can represent
integers in the range 0 to 2 147 483 647. An example of
the use of hash tables in processing remotely-sensed data
is given by Mather (1985). Cormen et al. (2001) provide
a more in-depth study of data structures and algorithms,
including hash tables.

4.2.2.2 Histogram Matching

The method of de-striping images produced by electrome-
chanical scanners described in Section 4.2.2.1 is based on
the assumption that the output from a detector is a linear
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We need the value of the overall mean, X, which appears in the numerator. This is the sum of the individual
detector means (column (iv)) divided by the number of detectors (6), which gives 22.6/6 = 3.766̇. The numerator
of the equation is the sum of ni(x

2
i + vi)where xi is the mean value of the 5 pixel values for each detector and the

ni (column (ii)) are all equal to 5. The calculation is as follows:

[(3.22 + 2.96) × 5] + [(4.42 + 5.04) × 5] . . . [(4.42 + 5.44) × 5] = 573.

The denominator is the sum of the ni , which equals 5 + 5 + 5 + 5 + 5 + 5 = 30, so the first term in the equation
is equal to 530/40 = 19.1.

The second term is the square of the overall mean (X
2
), that is, the square of 3.766 or 14.183. Finally, subtract

the second term from the first (19.100 – 14.183) to get the value of the overall variance V , which equals 4.192.
The overall standard deviation is the square of V , or 2.216. To apply the destriping correction to the image from
which the statistics were derived you must calculate the gains (bi) and offsets (ai), mentioned above, from:

ai = S

si

bi = X − aixi

The corrected pixel values r ′
ij are then found from the relationship r ′

ij = airij + bi , where rij are the uncorrected
pixel values. It is important to ensure that the gain and offset computed from the subset of data collected by
detector i are applied to the pixels collected by that detector.

The sampling variability of the subset means and standard deviations (which measures their reliability) increases
with the size of the subset, so each subset should be reasonably large. An image size of at least 1024 lines and
1024 pixels per line is suggested.

function of the input value according to the expression:

rout = offset + gain × rin

Horn and Woodham (1979) observe that

. . . it appears that different gains and offsets are appropri-
ate for different scene radiance [rin] ranges. That is, the
sensor transfer curves are somewhat non-linear.

In other words, the linear relationship between rin and
rout used in Section 4.2.2.1 is an oversimplification. The
method described in this section uses the shape of the
cumulative frequency histogram of each detector to find
an estimate of the non-linear transfer function. The ideal
or target transfer function is taken to be defined by the
shape of the cumulative frequency histogram of the whole
image, which is easily found by carrying out a class-by-
class summation of the n individual detector histograms
(e.g. 6 for Landsat MSS or 16 for Landsat TM/ETM+).
The histogram for detector 1 is computed from the pixel
values on scan-lines 1, 7, 13 . . . of the image, while
the histogram for detector 2 is derived from the pixel
values on scan lines 2, 8, 14, . . . , and so on. The his-
tograms are expressed in cumulative form (so that class 0
is the number of pixels with a value of 0, class 1 is the
number of pixels with values 0 or 1, and so on). Next,
each histogram class frequency is divided by the number
of pixels counted in that histogram, thus ensuring that

the individual histograms and the target histogram are all
scaled between 0 and 1.

At this stage, we have n individual cumulative his-
tograms and one target cumulative histogram, where n is
the number of detectors. Our aim is to adjust the individ-
ual cumulative histograms so that they match the shape
of the target cumulative histogram as closely as possible.
This is done by adjusting the class numbers of the indi-
vidual histograms. Thus, class number k in an individual
histogram may be equated with class number j in the
target histogram. This means that all pixels scanned by
the detector corresponding to that individual histogram,
and which have the value k , would be replaced in the
destriped image by the value j , which is derived from
the target histogram. In order to determine the class num-
ber in the target histogram to be equated to class number
k in the individual histogram, we find the first class in
the target histogram for which the cumulative frequency
count equals or exceeds the cumulative frequency value
of class k in the individual histogram. The class in the tar-
get histogram that is found is class y . An example is given
in Table 4.1. The frequency value for cell 3 of an indi-
vidual histogram is 0.57. This value is compared with the
target histogram values until the first class with a value
greater than or equal to 0.57 is found. This is class 4 of the
target histogram. Class 3 of the detector histogram is thus
equated to class 4 of the target histogram, and all pixel
values of 3 scanned by that detector are replaced with the
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Table 4.1 Example of histogram matching for de-striping
Landsat MSS and TM images.

Input pixel Target Detector Output

value histogram histogram pixel

value value value

0 0.09 0.08 0

1 0.18 0.11 1

2 0.33 0.18 2

3 0.56 0.57 4

4 0.60 0.66 4

5 0.76 0.78 6

6 0.95 0.95 6

7 1.00 1.00 7

The target histogram is the cumulative histogram of the entire image or subim-
age. The detector histogram is the cumulative histogram using values of pixels
scanned by one of Landsat MSS’s six detectors. The output pixel value to replace
a given input value is found by comparison of the two histograms. For example,
the detector histogram for input pixel value 3 is 0.57. The first value in the target
histogram to equal or exceed 0.57 is that in row four. Hence, the pixel values
in the uncorrected image that are generated by this detector are replaced by the
value 4.

value 4. The procedure is applied separately to all 256
values for each of the 6 (or 16) detectors. The result is
generally a reduction in the banding effect, though much
depends on the nature of the image. Wegener (1990) gives
a critical review of the Horn and Woodham procedure,
and presents a modified form of the algorithm.

The lookup table procedure described at the end of
Section 4.2.2.1 can be used to make the application of this
method more efficient. Thus, for each detector histogram,
a table can be constructed so that the output value corre-
sponding to a given input can be easily read. The input
value is the pixel value in the image being corrected while
the output value is its equivalent in the destriped image.

4.2.2.3 Other Destriping Methods

The procedures discussed in Sections 4.2.2.1 and 4.2.2.2
operate directly on the image data, which has spatial coor-
dinates of (row, column). Hence, these procedures are
said to operate in the ‘spatial domain’. A number of meth-
ods of transforming an image data set from the spatial
domain representation to an alternative frequency domain
representation are described in Chapter 6. In particular,
the Fourier transform has been widely used to determine
the existence of periodicities a data series such as may be
caused, for example by a recurring 6- or 16-line horizon-
tal pattern. More recently, the wavelet transform has been
introduced as an image transform tool; it is also consid-
ered in Chapter 6. Gadallah, Csillag, and Smith (2000)
describe a new method based on moment matching. Tsai
and Chen (2008) provide a recent review.

4.3 Geometric Correction and Registration

Remotely-sensed images are not maps. Frequently,
however, information extracted from remotely-sensed
images is integrated with map data in a GIS or presented
to consumers in a map-like form (for example gridded
‘weather pictures’ on TV or in a newspaper). If images
from different sources are to be integrated (for example
multispectral data from Landsat ETM+ and SAR data
from ERS-1 and -2, Radarsat or ASAR) or if pairs of
interferometric SAR images are to be used to develop
digital elevation models (DEMs) (Section 9.2) then the
images from these different sources must be expressed in
terms of a common coordinate system. The transforma-
tion of a remotely-sensed image so that it has the scale
and projection properties of a given map projection is
called geometric correction . A related technique, called
registration , is the fitting of the coordinate system of
one image to that of a second image of the same area.
Accurate image registration is needed if a time sequence
of images is used to detect changes in, for example the
land cover of an area. The terminology of geometric cor-
rection and registration is confusing, and terms are used
without being properly defined. In this book we use the
phrase geometric correction as a generic term covering
all techniques, however approximate, of converting the
data for a specified image band from row/column to lati-
tude/longitude (lat/long) format. Rectification means the
equalization of one image coordinate system to another.
For example, a multitemporal series of images could be
rectified to the first image in the sequence without any
consideration of latitude and longitude, north orientation
or reference ellipsoid. The term geometric correction can
include geocorrection , geocoding , georeferencing and
orthorectification . Geocorrection is a shorthand form of
‘geometric correction’ and has no special attributes. It
is an unnecessary term. Georeferencing usually implies
that the four corners of the image have geographical
coordinates but the individual pixels are not given a
lat/long pair. No specific account is taken of ellipsoids,
or projections. This is the simplest form of geometric
correction and is described below (Sections 4.3.1 and
4.3.2). Geocoding means that the image has all the
properties of a map (see definition below) whereas
orthorectification means that the terrain elevation has
been included in the correction process, implying that
all pixels are viewed as if from above. This is the most
accurate form of geometric correction and, as the (x ,
y , z ) Earth-centric coordinates are now readily obtain-
able from global positioning system (GPS) and other
locational devices both for aircraft and satellites, and as
higher-resolution DEM become more readily available
(ASTER global DEMs (GDEM) are available at no cost
at 30 m resolution; http://asterweb.jpl.nasa.gov/gdem.asp)



Preprocessing of Remotely-Sensed Data 95

so more remotely-sensed imagery (particularly those
products and derivations used in a GIS) that has been
orthorectified will become the norm.

A map is defined as:

. . . a graphic representation on a plane surface of the
Earth’s surface or part of it, showing its geographical
features. These are positioned according to pre-established
geodetic control, grids, projections and scales (Steigler,
1978).

A map projection is a device for the representation of a
curved surface (that of the Earth) on a flat sheet of paper
(the map sheet). Many different map projections are in
common use (see Snyder, 1982; Fenna, 2006; Frei, Graf
and Meier, 1993; Grafarend and Krumm, 2006). Each
projection represents an effort to preserve some property
of the mapped area, such as uniform representation of
areas or shapes, or preservation of correct bearings. Only
one such property can be correctly represented, though
several projections attempt to compromise by minimizing
distortion in two or more map characteristics. The UK
Ordnance Survey uses a Transverse Mercator projection.
A regular grid, graduated in metres and with its origin
to the south-west of the British Isles, is superimposed on
the map sheet since lines of latitude and longitude plot as
complex curves on the Transverse Mercator projection.

Geometric correction of remotely-sensed images is
required when the remotely-sensed image, or a product
derived from the remotely-sensed image such as a
vegetation index image (Chapter 6) or a classified image
(Chapter 8), is to be used in one of the following
circumstances (Kardoulas, Bird and Lawan 1996):

1. to transform an image to match a map projection
2. to locate points of interest on map and image
3. to bring adjacent images into registration
4. to overlay temporal sequences of images of the same

area, perhaps acquired by different sensors and
5. to overlay images and maps within a GIS.

The advent of high-resolution images obtained from
instruments carried by satellites such as QuickBird,
IKONOS, SPOT-5 and Resourcesat has brought the
topic of geometric correction of remotely-sensed images
much closer to the field of photogrammetry. For many
years photogrammetrists have used accurate camera
models to perform analytical corrections on aerial
photographs (Konecny, 2003; Wolf and DeWitt, 2000).
The use of stellar navigation and GPS on board satellites
has meant that orbital parameters required for an ana-
lytical solution are now more readily available. Finally,
considerable research effort has been directed towards
providing a solution to the problem of terrain or relief
correction. A brief account of these developments is

given in Section 4.7. It should be made clear that the
methods of registration and correction described in this
chapter will work satisfactorily only in areas of low
relative relief. In hilly or mountainous areas the effects
of topography can result in the displacement of pixels
from their true or relative geographical position.

If a DEM is available at a suitable scale, then the
photogrammetric procedure of orthorectification can pro-
duce images conforming to map accuracy standards (see
Figure 4.10 for an illustration of locational error caused
by the topographic effect). An accessible source is Dow-
man and Dare (1999). Leprince et al. (2007) give a more
mathematical overview. Often, orthorectification proce-
dures are applied to medium or high resolution images
(Aguilar et al., 2008; Robertson, 2003; Wang and Ellis,
2005). Tucker, Grant and Dykstra (2004) and Tatem,
Nayar and Hay (2006) provide details of NASA’s Landsat
global orthorectified data sets, while Masek et al. (2006)
illustrate the use of these datasets in land surface cover
monitoring. Schläpfer and Richter (2002) describe the
orthorectification of airborne hyperspectral images, while
Liu and Jezek (2004) show how SAR imagery of the
Antarctic continent is generated. Wegmüller et al. (2003)
also use SAR imagery from ENVISAT’s ASAR to gen-
erate orthorectified imagery.

The sources of geometric error in moderate spatial
resolution imagery with a narrow field of view, such
as the imagery produced by Landsat ETM+ and SPOT
HRV are summarized in Section 2.3. The main cate-
gories are: (i) instrument error, (ii) panoramic distortion,
(iii) Earth rotation and (iv) platform instability (Bannari
et al., 1995a). Instrument errors include distortions in the
optical system, non-linearity of the scanning mechanism
and non-uniform sampling rates. Panoramic distortion
is a function of the angular field of view of the sen-
sor and affects instruments with a wide angular field of
view (such as the AVHRR and VIIRS) more than those
with a narrow field of view, such as the Landsat TM
and ETM+ and the SPOT HRV. Earth rotation veloc-
ity varies with latitude. The effect of Earth rotation is
to skew the image. Consider the Landsat satellite as it
moves southwards above the Earth’s surface. At time t ,
its ETM+ sensor scans image lines 1–16. At time t + 1,
lines 17–32 are scanned. But the Earth has moved east-
wards during the period between time t and time t + 1
therefore the start of scan lines 17–32 is slightly fur-
ther west than the start of scan lines 1–6. Similarly, the
start of scan lines 33–48 is slightly further west than
the start of scan lines 17–32. The effect is shown in
Figure 4.3. Platform instabilities include variations in alti-
tude and attitude. All four sources of error contribute
unequally to the overall geometric distortion present in
an image. In this section, we deal with the geometric
correction of medium-resolution digital images such as
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Scan line 1

Scan line 3

Scan line m

Start of
scan-line End of

scan-line

Earth rotating towards East

Scan line 2

Figure 4.3 Effects of Earth rotation on the geometry of a
line-scanned image. Due to the Earth’s eastwards rotation, the
start of each swath (of 16 scan lines, in the case of the Landsat-7
ETM+) is displaced slightly westwards. At the Equator the line
joining the first pixel on each scan line (the left margin of the
image) is oriented at an angle that equals the inclination angle i
of the satellite’s orbit. At a latitude of (90 − i)◦ the same line
is parallel to the line of latitude (90 − i)◦. Thus, the image
orientation angle increases pole-wards. See Section 4.3.1 for
further details.

those acquired by the Landsat TM and SPOT HRV instru-
ments. Correction of wide-angle images derived from the
NOAA AVHRR is described by Brush (1985), Craw-
ford, Brooks and Brush (1996), Moreno and Melia (1993)
and Tozawa (1983). Geocoding of SAR images is cov-
ered by Dowman (1992), Dowman, Laycock and Whal-
ley (1993), Johnsen, Lauknes and Guneriussen (1995)
and Schreier (1993a). The use of digital elevation data
to correct images for the geometric distortion produced
by relief variations is considered by Blaser and Caloz
(1991), Itten and Meyer (1993), Kohl and Hill (1988),
Palü and Pons (1995), Toutin (1995) and Wong, Orth
and Friedmann (1981). Other useful references are Fogel
and Tinney (1996), Kropatsch and Strobl (1990), Kwok,
Curlander and Pang (1987), Novak (1992), Westin (1990)
and Wolberg (1990). Williams (1995) provides an excel-
lent treatment of many aspects covered in this section,
including geocoding of SAR and AVHRR imagery. Geo-
referencing SAR and optical imagery is treated by Hong
and Schowengerdt (2005). The text by Wolf and DeWitt
(2000) is a good source of information on georeferencing
of digital air photographs. Toutin (2004) gives a compre-
hensive review of the geometric processing of remote
sensing images.

The process of geometric correction can be considered
to include: (i) the determination of a relationship between
the coordinate system of map and image (or image and
image in the case of registration); (ii) the establishment
of a set of points defining pixel centres in the corrected
image that, when considered as a rectangular grid, define
an image with the desired cartographic properties; and

(iii) the estimation of pixel values to be associated with
those points. The relationship between the two coordi-
nate systems (map and image) could be defined if the
orbital geometry of the satellite platform were known to
a sufficient degree of accuracy. Where orbital parameters
are known, methods based upon orbital geometry give
high accuracy. The DORIS system, used with the SPOT
satellite, is described in Section 2.3.7. Otherwise, orbital
models are useful only where the desired accuracy is not
high, or where suitable maps of the area covered by the
image are not available. A simple method based on nomi-
nal orbital parameters is described in Section 4.3.1, while
the map-based method is covered in Section 4.3.2. The
extraction of the locations of the pixel centre points for
the corrected image and the estimation of pixel values to
be associated with these output points is considered in
Section 4.3.3.

4.3.1 Orbital Geometry Model

Orbital geometry methods are based on knowledge of
the characteristics of the orbit of the satellite platform.
Bannari et al. (1995a) describe two procedures based
on the photogrammetric equations of collinearity. These
equations describe the properties of the satellite orbit and
the viewing geometry, and relate the image coordinate
system to the geographical coordinate system. They
require knowledge of the geographical coordinates of a
number of points on the image. Such points are known
as ground control points or GCPs.

A simple method of correcting the coordinate system of
remotely-sensed images using approximate orbit parame-
ters, described by Landgrebe et al. (1974), is used here to
illustrate the principles involved. It is not recommended
as an operational method, because it is based upon nom-
inal rather than actual orbital parameters, which implies
that the accuracy of the geometrically corrected image
produced by this technique is not high. Landgrebe et al.
(1975) suggest that the magnitude of the error is of the
order of 1–2%, meaning that if the corrected image is
overlaid on a map and both are aligned with reference
to a well-defined point, then the error in measured coor-
dinate positions of other points will be 1–2%. Note that
the image coordinate system has its origin in the top left
corner, at cell (1, 1). The x -axis runs horizontally and
increases in value to the right, with the y-axis running
vertically, with values increasing downwards. Thus, the
x -axis gives the pixel position across the scan line. The
y-axis gives the scan line number.

4.3.1.1 Aspect Ratio

Some sensors, such as the Landsat MSS, produce images
with pixels that are not square. The Landsat MSS scan



Preprocessing of Remotely-Sensed Data 97

lines are nominally 79 m apart, whereas the pixels along
each scan line are spaced at a distance of 56 m. Since
the instantaneous field of view of the MSS is 79 m there
is oversampling in the across-scan direction. As we gen-
erally require square rather than rectangular pixels, we
can choose 79 m2 pixels or 56 m2 pixels to overcome
the problem of unequal scale in the x and y directions.
Because the across-scan direction is over-sampled, it is
more reasonable to choose 79 m2 pixels. The aspect ratio
(the ratio of the x : y dimensions) is 56 : 79 or 1 : 1.41.
The first transformation matrix, M1, which corrects the
image to a 1 : 1 aspect ratio, is therefore

M1 =
[

0.00 1.41
1.00 0.00

]

This transformation matrix is not required if the image
to be geometrically transformed already has square
pixels.

4.3.1.2 Skew Correction

Landsat TM and ETM+ images are skewed with respect
to the north–south axis of the Earth. Landsat-1 to -3 had
an orbital inclination of 99.09◦ whereas Landsats-4–5
and -7 have an inclination of 98.2◦. The satellite head-
ing (the direction of the forward motion of the satellite)
at the Equator is therefore 9.09◦ and 8.2◦ respectively,
increasing with latitude (Figure 2.1). The skew angle θ

at latitude L is given (in degrees) by

θ = 90 − cos−1 sin(θE)

cos(L)

where θE is the satellite heading at the Equator and the
expression cos−1(arg) means: the angle whose cosine is
arg , that is, the inverse cosine of x . Given the value
of θ the coordinate system of the image can be rotated
through θ◦ anticlockwise so that the scan-lines of the
corrected image are oriented in an east–west direction
using the transformation matrix M2:

M2 =
[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]

The value of L that is normally used in the determi-
nation of θ is the centre latitude of the image being
corrected. Since the latitude of the satellite is varying
continuously this value will be only an approximation.

For latitude L = 51◦ and using the heading of Landsat-
4 and -5 at the equator, θE, the value of θ is given by:

θ = 90.00◦ − cos−1 sin(8.20◦)
cos(51.00◦)

= 90.00◦ − cos−1 0.14

0.63

= 90.00◦ − 76.90◦ = 13.10◦

and the elements of matrix M2 are:

M2 =
[

0.9740 0.2286
−0.2286 0.9740

]

4.3.1.3 Earth Rotation Correction

As the satellite moves southwards over the illuminated
hemisphere of the Earth, the Earth rotates beneath it in
an easterly direction with a surface velocity proportional
to the latitude of the nadir or subsatellite point. To com-
pute the displacement of the last line in the image relative
to the first line we need to determine (i) the time taken
for the satellite sensor to scan the image, and (ii) the
eastwards angular velocity of the Earth. The distance
travelled by the Earth’s surface can then be obtained
by multiplying time by velocity. The time taken for the
satellite sensor to scan the image can be found if the dis-
tance travelled by the satellite and the satellite’s velocity
are known. Both distance and velocity are expressed in
terms of angular measure (i.e. in radians; 1 radian equals
approximately 57◦; Figure 1.6a). If A is a point on the
Earth’s surface corresponding to the centre pixel of the
first scan line in the image, and if B is the corresponding
point for the last scan line in the image, then the curve AB
(the line on the Earth’s surface joining points A and B )
is an arc of a circle centred at the Earth’s centre, O . The
angle AOB can be calculated because we know that the
Earth’s equatorial radius (OA or OB ) is approximately
6378 km, and an angle (in radian measure) is equal to arc
length divided by radius (Figure 1.6a). The arc length AB
is the distance between the centre pixels in the first and
last scan lines of the image. For Landsat MSS and TM
images, AB is 185 km, hence angle AOB (representing the
angular distance moved by the Landsat satellite during the
capture of one image) equals 185/6378 or 0.029 radians.

The orbital period (the time required for one full
revolution) for Landsats 1–3 is 103.267 min (99 min
for the later Landsats), so the satellite’s angular veloc-
ity ω0 is 2π/(103.267 × 60) radians per second, or
0.001014 rad s−1. The problem is now to find the
time required for a satellite travelling at this angular
velocity to traverse through an angle of 0.029 radians
(the angular distance between the first and last scan
line, see preceding paragraph). The answer is found
by dividing the angular distance to be moved by the
angular velocity, and the result of this operation is
0.029/0.001014 = 28.6 s.

Now the question becomes: how far will point B (the
centre of the last scan line) move eastwards during the
28.6 s that elapses between the scanning of the first and
last scan lines of the MSS or TM image? The answer
again depends on latitude. For simplicity, we will take
the latitude (L) of the centre of the image. The Earth’s
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surface velocity at latitude L is VE(L) which is defined as:

VE (L) = R cos(L)ωE

R is the Earth’s radius, approximately 6378 km, and ωE

(omega-e) is the Earth’s angular velocity. Since the Earth
rotates once in 23 h, 56 min and 4 s (that is 86 164 s),
then its angular velocity is simply (2π/86 164) rad s−1,
or 0.7292 × 10−4 rad s−1. If L is 51◦ then VE(L) equals
6378 × 10−3 × 0.6293 × 0.72921 × 10−4 m s−1, that is
292.7 m s−1. Now that we know (i) that the time taken
to scan an entire Landsat TM/ETM+ or MSS image
is 28.6 s and (ii) the Earth’s surface velocity, then the
calculation of the eastward displacement of the last
scan line in the image can be obtained. At 51◦N the
surface velocity is 292.7 m s−1 so the distance travelled
eastwards is 292.7 × 28.6 = 8371 m.

These calculations assume that the line AB joining the
centres of the first and last scan lines is oriented along
a line of longitude whereas, in fact, the Landsat satel-
lites (like SPOT, Terra, Aqua and all Sun-synchronous,
polar orbiting platforms) have an orbit that is skewed rel-
ative to lines of longitude, as noted in the calculation of
matrix M2 above. The skew angle θ for 51◦ latitude is
14.54◦ (see above) so the actual eastwards displacement
is 8371 × cos(14.54◦) = 8103m. These computations are
summarized by the term ask:

ask = ωE cos(L)

ωO cos(θ)
= 0.0719

cos(L)

cos(θ)

where ωE is the Earth’s angular velocity, ωO is the satel-
lite’s angular velocity and θ and L are defined above. The
transformation matrix M3 is:

M3 =
[

1 0
ask 1

]

At 51◦ latitude, M3 is:

M3 =
[

0 1
0.04647 1

]

Note that ‘fill pixels’ are added to the start of each
scan-line of a Landsat MSS or TM image by some ground
stations to compensate for the Earth rotation effect. If this
correction is thought to be sufficient then transformation
M3 can be omitted. Alternatively, since the number of fill
pixels is generally given in the header/trailer data associ-
ated with each scan-line, these fill pixels can be stripped
off and the correction M3 applied.

The three transformation matrices M1, M2 and M3
given in Sections 4.3.1.1–4.3.1.3 above are not applied
separately. Instead, a composite transformation matrix,
M, is obtained by multiplying the three separate trans-
formation matrices:

M = M1 M2 M3

The corrected image coordinate system is related to the
raw image coordinate system by

x′ = Mx

where x′(= x′
1, x

′
2) is the vector holding the pixel

and line (x and y) coordinates of the corrected pixel
and x (= x1, x2) is the original (pixel, line) coordinate.
Remember that the origin of the image coordinate system
is the top left corner of the image. See Example 4.2 for
more details.

4.3.2 Transformation Based on Ground
Control Points

The orbital geometry model discussed in Section 4.3.1 is
based on nominal orbital parameters. It takes into account
only selected factors that cause geometric distortion.
Variations in the altitude or attitude of the platform are
not considered simply because the information needed
to correct for these variations is not generally available.
Some satellites such as SPOT-5 now carry instruments
that provide precise orbital data (Section 2.3.7), and
more complex analytical models than the one described
in Section 4.3.1 are used to generate a geometrically
corrected image.

An alternative method is to look at the problem from
the opposite point of view and, rather than attempt to con-
struct a physical model that define the sources of error
and the direction and magnitude of their effects, use an
empirical method which compares differences between
the positions of common points that can be identified
both on the image and on a map of a suitable scale for
the same area. For a Landsat ETM+ image, for example
a map scale of at least 1 : 25 000 is needed, since the
minimum measurable line width on a map is considered
to be 1 mm, which translates to 25 m (approximately the
size of one Landsat TM/ETM+ pixel) at a map scale of
1 : 25 000. From the differences between the distribution
of the common set of points on the image and the dis-
tribution of these points on the map, the nature of the
distortions present in the image can be estimated, and
an empirical transformation to relate the image and map
coordinate systems can be computed and applied. This
empirical function should be calibrated (using GCPs),
applied to the image, and then validated (using a separate
test set of GCPs).

The aim of the procedures described in this section is to
produce a method of converting map coordinates to image
coordinates, and vice versa. Two pieces of information
are required. The first is the map coordinates of the image
corners. Once the image is outlined on the map, the map
coordinates of the pixel centres (at a suitable scale) can
be found (Figure 4.4).
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Figure 4.4 The area of the corrected image is shown by the rectangle that encloses the oblique uncorrected image. The
positions of the corners of this enclosing rectangle (in map easting and northing coordinates) can be calculated from the (row,
column) image coordinates of the corners of the uncorrected image using a least-squares transformation. Once the corners of
the corrected image area are known in terms of map coordinates, the locations of the pixel centres in the corrected image (also
in map coordinates) can be determined using simple arithmetic, noting that easting and northing map coordinates are expressed
in kilometres. Finally, the pixel centre positions are individually converted to image (row, column) coordinates in order to find
the image pixel value to be associated with the pixel position in the corrected image. Not all pixels in the corrected image lie
within the area of the uncorrected image. Such pixels receive a zero value.

The map coordinates of the image corners are found by
determining an image-to-map coordinate transformation.
The map coordinates of the required pixel centres are
converted to image coordinates by a map-to-image coor-
dinate transformation. Both transformations are explained
in this section. The final stage, that of associating pixel
values with calculated (map) pixel positions, is discussed
in the next section under the heading of resampling.

The method relies on the availability of an accurate
map of the area at a suitable scale. In some parts of
the world maps of sufficient accuracy are not available.
It is thus paradoxical that accurate ‘image maps’ can
only be produced for areas for which conventional maps
are available using this method unless field surveying
techniques, including GPS, are used. The coordinates of
selected points, the GCPs, are measured on map and
image. GCPs are well defined and easily recognizable
features that can be located accurately both on a map
and on the corresponding image. They can be located
on the ground by the use of GPS rather than by map
measurement. Clavet, Lasserre and Pouliot (1993) and
Kardoulas, Bird and Lawan (1996) and Toutin (2004)
provide details of the use of GPS in locating GCPs for
geometric correction. Cook and Pinder (1996) compare
the transformation accuracy resulting from the use of con-
trol points derived from 1 : 24 000 US Geological Survey
maps and from the use of GPS. They summarize the
problems involved in the accurate measurement of control

points from maps, and conclude that differential GPS pro-
vides substantially better results than map digitizing. It
is, however, more costly both in terms of equipment and
travel time as each control point must be visited and its
coordinates measured. Figure 4.5 shows the area around
London Heathrow airport. Three ‘good’ GCP lie within
the white circles, which are all motorway junctions. They
are good because their position does not change over time
(at least, not over the time-scales that we are consider-
ing). Bridges over the River Thames would also provide
a good choice for locations of GCP. However, it may be
less wise to use a point on a reservoir shoreline as a GCP
or as a test point, for the water level of the reservoir, and
therefore its surface area and size, will vary according
to weather conditions. Meanders along rivers also are a
poor choice, especially if the map is not up to date.

The symbols (xi, yi) refer to the map coordinates of
the i th GCP, and the symbols (ci, ri) refer to the image
column and row image coordinates of the same point.
The map coordinates can be expressed in eastings (x )
and northings (y) from an arbitrary origin, or in degrees
and decimal degrees of longitude and latitude. The image
coordinates are expressed in terms of column (c; pixel
position along the scan-line) and row (r ; scan line num-
ber, where scan line 1 is the first scan line of the image
(Figure 4.3)). We seek a method that will allow us to
convert from (x , y) to (c, r) coordinates and vice versa.
To achieve this aim, the method of least squares is used.
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Example 4.2: Orbital Geometry Model

This example illustrates the use of the orbital geometry model (Section 4.3.1) in the process of geometric correction
of an image. Assume that we have a square image of size 1024 lines and 1024 pixels per line. This image is shown
as a square (ABCD) in Example 4.2 Figure 1 (solid line). It is assumed that the image pixels are square so that the
transformation matrix M1 is not required. The Landsat-4 and -5 satellites have an orbital inclination angle of 8.2◦
so, at a latitude of 51◦, angle θ is equal to 13.10◦, and the transformation matrices M2 and M3 are given by:

M2 =
[

0.9740 0.2286

−0.2286 0.9740

]
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Example 4.2 Figure 1. An uncorrected (raw) square image is outlined by the solid line joining the points ABCD. After
geometric transformation, the map coordinates of the image corners become A′B′C′D′(outlined by dashed line). The
subsatellite track is the ground trace of the platform carrying the scanner that collected the raw image. One scan line of the
raw image is shown (line PP′) with pixel centres indicated by triangles. The geometrically corrected image (A′B′C′D′) has its
columns oriented towards north, with rows running east–west. One scan line in the corrected image is shown (line SS′) with
pixel centres indicated by circles. The filled circles show pixel centres that lie within the area of the known, raw image. Note
that the angle θ between the subsatellite track and north is equal to 13.0992◦.

(Continues on next page)

To illustrate the method, let us assume that a sample
of si and ti values is available, where s and t are any
two variables of interest, such as the row number of an
image pixel (s) and the easting coordinate of the same
point on the corresponding map (t). Furthermore, assume
that values of ti are found relatively easily whereas
the values of si are difficult to acquire, so it would be
advantageous to be able to estimate the value of s given
the corresponding value of t . For this reason, we can
call s the predicted variable and t the predictor variable.
The method of least squares allows the estimation of

and value of s (si) given the corresponding value of
t(ti ) using a function of the form:

si = a0 + a1ti + ei

Because only a single predictor variable, t , is used
the expression is known as the univariate least-squares
equation. It allows the difficult-to-measure si to be
estimated from the value of the corresponding easier-
to-measure ti . The estimated value of si is written ŝ.
The terms a0 and a1 are computed from a sample of
values of s and t using the method of least squares.
The criterion used in the least squares procedure is that
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and

M3 =
[

1.00000 0.04649

0.00000 1.00000

]

so that the final transformation matrix M is equal to

M =
[

0.9740 0.2719

−0.2266 0.9634

]

The coordinates of the corners of the original image and their transformed equivalents are: [A (0, 0), A′ (0, 0)],
[B (1024, 0), B′(997, −232)], [C (1024, 1024), C′(1276, 754)] and [D (0, 1024), D′(278, 986)]. The second stage
of the geometric correction operation is to find values for ‘new’ pixels located at 30 m intervals along the scan
lines of the transformed image, that is lines that are 30 m apart and parallel to line A′B′ (or D′E′) in Figure 1. This
procedure is termed ‘resampling’ and is considered in Section 4.3.3. Note that the values for the new pixels can
only be obtained in the area where ABCD and A′B′C′D′(Example 4.2 Figure 1) overlap. In practical applications,
we would generate a geometrically corrected image of a size sufficient to enclose the whole of the raw image, as
shown in Example 4.2 Figure 2.
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Example 4.2 Figure 2. In practical applications of geometric correction, the corrected image area is delimited by the
rectangle that encloses the uncorrected image. Pixel values within the boundary of the geometrically corrected image but
lying outside the area of the uncorrected image are set to zero. The angle θ measures the anticlockwise rotation of 13.10◦
that is required at latitude 51◦ to produce a north-oriented image.

the sum of the squared differences between the true (and
usually unavailable) values si and the values ŝi estimated
from the univariate least-squares equation (above) is the
smallest for all possible value of ŝi . In other words,
the coefficients a0 and a1 could, in principle, take on
any values, such as a0 = 8.999 and a1 = −82.192.
However, of all these possible values, those derived
using the least squares principle will minimize the cri-
terion ESS =∑ (si − �si)

2. The term ESS is called the
‘explained sum of squares’ in least-squares regression
analysis. The differences between s and �s are called

‘residuals’, and they are represented by the term ei .
Thus, we could omit ei from the equation and express ŝ

directly as:

ŝi = a0 + a1ti

The number of predictor variables can be greater
than 1. For example, the bivariate least squares regression
equation would be used if variable s were to be predicted
from variables t1 and t2. This equation has the form:

ŝi = a0 + a1t1i + a2t2i
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Figure 4.5 Extract of Landsat-5 TM image of the area around
Heathrow Airport. The north and south runways are visible,
as is the M4 and the M25 (labelled in black). The white circles
enclose ‘good’ ground control points, where the M25 London
Orbital Road crosses the M4, the M3 and the River Thames.
Poor control points would be located around the edges of
the reservoirs (dark blue) because the level, and therefore the
spatial extent, of the reservoirs varies according to the weather
conditions. Landsat data courtesy NASA/USGS.

where si is the i th observation made on variable s,t1i is
the i th observation made on variable t1 and t2i is the i th
observation made on variable t2.

The bivariate linear least squares function is used to
find the least squares coefficients for the following four
expressions:

1. map x coordinate as a function of image c and r
coordinates (x = f (c, r))

2. map y coordinate as a function of image c and r
coordinates (y = f (c, r)),

3. image c coordinate as a function of map x and y
coordinates (c = f (x, y)) and

4. image r coordinate as a function of map x and y
coordinates (r = f (x, y)).

If the coefficients of each of these regression functions
are known, it is possible to transform from map (x , y)
to image (c, r) coordinates or from image (c, r) to map
(x , y) coordinates.

The following bivariate least squares equation relates
the map x coordinate to the image r and c coordinates
(item (i) in the list above):

x̂i = a0 + a1ci + a2ri

It can be interpreted as follows: the least squares esti-
mate of the map x coordinate of the GCP labelled i can
be found from the image column and row coordinates
of that GCP (ci and ri) if the least-squares coefficients
a0, a1 and a2 are known. The values of these coefficients
are determined from a sample of values of x , c and r ,
as described below, and are then applied to all the image
pixels in order to estimate map x coordinates. The same
operation is performed to find the map y coordinates of
all of the pixels in the image. The steps involved are
described in the following paragraphs. First, however,
some of the technical details involved in the calculations
need to be explained.

In mathematical terminology, the bivariate least-
squares equation used in the preceding paragraphs is
a first-order polynomial least squares function. It is
first-order because neither of the predictor variables (on
the right-hand side of the equation) is raised to a power
greater than 1. A first-order function can accomplish
scaling, rotation, shearing and reflection but not warping
(such as would be necessary to correct for panoramic
distortion or for any similar ‘bending’ effect). A second-
or higher-order polynomial can be used to model such
distortions, though in practice it is rare for polynomials
of order higher than 3 to be used for medium resolution
satellite imagery. Where a relatively small image area is
being corrected (for instance, a 1024 × 1024 segment)
it should be unnecessary to correct for warping at all.
Note that the polynomial method does not correct for
terrain relief distortions and is therefore applicable only
to relatively flat areas. See Kohl and Hill (1988) and
other references listed at the end of the introduction to
Section 4.5 for details of a modification to the standard
polynomial correction that corrects for relief-induced
variations using a DEM. Example 4.3 shows polynomial
surfaces of orders 1–3.

In general terms, a polynomial function in two vari-
ables t and u can be written concisely as:

ŝ =
m∑

j=0

m−j∑
k=0

ajkt
juk

where m is the order of the polynomial function. A third-
order polynomial, written out in full, becomes:

ŝ = a00t0u0 + a01t0u1 +
a02t0u2 + a03t0u3 +
a10t1u0 + a11t1u1 +
a12t1u2 + a20t2u0 +
a21t2u1 + a30t3u0

(do you see the relationship between the subscripts of the
coefficients a and the powers to which the corresponding
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Example 4.3: Visualizing Polynomial Surfaces

The three surfaces shown in Example 4.3 Figure 1a–c give the z value (vertical axis) at a given point on the
base defined by an x and a y coordinate in the range 1–100. The x , y and z coordinates represent one of the
four relationships between map eastings and northings and image row and column shown in Section 4.3.2. In this
instance, it is assumed that the relationship under study is that between image column (x ) and image row (y) and
map easting (z ) coordinates. Example 4.3 Figure 1a shows a first order or linear surface, which is defined by the
relationship z = a0 + a1x + a2y. The three coefficients forming the vector a are computed from the GCP data.
The result shown in Example 4.3 Figure 1a is a uniformly sloping plane. The fitting procedure is repeated with
x and y staying the same but with the z coordinate representing map northing. These two sets of predicted or
computed z values can be shifted and rotated with respect to the image easting and northing coordinates to give
the sort of relationship shown in Figure 4.8b, where (e′, n′) are derived from the polynomial surface and (c′, r ′)
are measured values at a GCP. Example 4.3 Figure 1b,c show that the relationship between z on the one hand and
(x , y) on the other becomes more complex. The second and third order surfaces, also known as the quadratic and
cubic, respectively, are warped as well as shifted, scaled and rotated. If GCPs are not measured accurately or if
the degree of the fitted surface is too high then the polynomial surface can start to bend and warp in response to
errors rather than to a true relationship between x , y and z . A surface order of more than two is rarely required
for images collected by sensors with a narrow field of view over a relatively flat area.
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Example 4.3 Figure 1. (a) first order (b) second order and (c) third order bivariate polynomials. The polynomials are
evaluated for a grid of size (100, 100). The numerical labels on the z-axis are arbitrary.
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t and u are raised?) The equation can be reduced to a
less formidable form as:

ŝ = a00 + a10t + a01u + a20t
2 + a11tu + a02u

2

+ a30t
3 + a21t

2u + a12tu
2 + a03u

3

The terms s , t and u are replaced by the appropriate
terms in expressions (i–iv) above. If, for instance, we
wished to estimate y as a function of c and r we would
replace s , t and u in the polynomial expansion by y , c and
r . There is thus one polynomial function for each of the
four coordinate transformations. The first pair gives map
coordinates (x , y) in terms of image coordinates (c, r)
while the second pair give image coordinates (c, r) in
terms of map coordinates (x , y). See Example 4.3 for
more details.

Before we consider methods of evaluating polynomial
expressions for given sets of (x , y) and (c, r) coordi-
nates we should consider (i) the size of the sample of
control points needed to give reliable estimates of the
coefficients aii , (ii) the spatial distribution of the control
points and (iii) the accuracy with which they are located
(Labovitz and Marvin, 1986). In mathematical terms we
need to take a sample of at least n control points where n
is the number of coefficients in the polynomial expres-
sion. For a first-order polynomial, n is equal to 3. For
a second-order polynomial, the value of n is 6 and for
a third-order equation n has the value 10. These num-
bers of control points are necessary purely and simply to
ensure that it is mathematically possible to evaluate the
equations defining the coefficients aij . It is important to
note that the statistical requirement, which is concerned
not so much with the theoretical feasibility of the calcu-
lations but with the reliability of the results, sets a much
higher standard. Most conventional statistics texts suggest
that a sample size of at least 30 is required to achieve
reliable estimates, but experience suggests that 10–15
control points will give acceptable results for a first-order
fit and a small image area (up to 10242 pixels) medium
resolution imagery such as those produced by the Landsat
TM/ETM+ and SPOT HRV instruments. More GCPs will
be needed in areas of moderate relief, or for images pro-
duced by instruments with a wide field of view, where a
second order polynomial may be required. Results based
on the use of small numbers of GCPs should be treated
with caution as they may satisfy the mathematical crite-
ria but may not satisfy the statistical ones. Mather (1995)
gives details of a simulation study that emphasizes the
importance of adequate GCP sample size.

The second aspect of sampling that should concern
users is the spatial distribution of GCPs, a topic that is
treated in more detail by Mather (1995). Since the coordi-
nate system being transformed is a two-dimensional one,
it seems reasonable to suggest that the control point loca-
tions should be represented by a two-dimensional pattern.

It may, for instance, be possible to take a large number of
control points along a linear transect, such as a main road.
The information contained in these control points refers
only to one dimension. Results derived from such infor-
mation could say nothing about variations in the direction
perpendicular to the transect line. Another possibility is
to locate control points in clusters, for example repre-
senting road junctions in small towns that are widely
separated. Again, large areas of the image would not be
sampled, and results would thus be biased. In extreme
cases a condition known mathematically as ‘singularity’
would be signalled during the least squares computations.
This is equivalent in scalar terms to trying to divide by
zero. Mather (1976, pp. 124–129) considers this point
in detail, and also provides the technical background for
two-dimensional least squares problems. Refer also to
Section 3.3.

We can conclude from this brief examination not only
that control points should be sufficient in number but also
that they should be evenly spread, as far as possible, over
the image area. This presents problems where substan-
tial parts of the image cover sea or water areas where
control points are absent. The same could be said of
images covering any relatively featureless region. Unwin
and Wrigley (1987) introduce the concept of the leverage
of a control point, which measures the influence of the
point on the overall fit of the polynomial function and
allows the user to determine which points require most
care and attention.

The accuracy with which control points are measured
is also considered by Mather (1995). In his simulation
experiment, increasing amounts of random ‘noise’ were
added to the coordinates of the GCPs, and (particularly
when the distribution of control points was linear or clus-
tered) the effects of the noise were severe. The residual
error is the difference between the value of the map or
image coordinate estimated from the equation and the
corresponding coordinate measured on the map or image.
Residual errors can be calculated for the line/pixel coor-
dinates of the image or the easting/northing coordinates
of the map. Using the appropriate polynomial function
selected from the four listed above, the map easting coor-
dinate of a control point can be estimated from the image
row (line) and column values of the same control point.
The difference between the measured and estimated val-
ues of the map easting of the control point is the residual
value for the map easting. This residual value is expressed
in the same units as the map eastings, for example in kilo-
metres. A similar operation can be carried out for the map
northings and the image line and pixel coordinates.

Users of some commercial software are encouraged to
remove control points that are identified as ‘erroneous’
by the fact that their associated residual error is con-
sidered to be unacceptably high (sometimes ‘high’ is
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defined as a value more than one standard deviation dis-
tant from the mean). This may seem to be sensible step
but, as Morad, Chalmers and O’Regan (1996) show, this
is not necessarily the case. Instead of eliminating con-
trol points one should seek reasons for the error, which
may be the result of erroneous or inaccurate digitization
or measurement or the consequence of image distortions
such as those induced by high relief. Bolstad, Gessler and
Thomas (1990) discuss positional uncertainty in digitiz-
ing map data. Since remotely-sensed images are likely
to be coregistered with maps in a GIS, it is even more
important that the geometric quality of products derived
from remotely-sensed image matches the requirements of
the project. Overlay operations within a GIS are prone to
error if misregistration is present. Users should, therefore,
take considerable care in the digitizing and measurement
of control point locations because locational errors are
magnified by any departures from randomness of the spa-
tial pattern of the control points, and the net result may
well be unacceptable.

When using an empirical method such as polynomial
least squares to carry out the geometric correction pro-
cedure, the user should always be aware of the fact that
these residuals are the only measure of goodness of fit that
are available. A perfect fit of the polynomial function at
the control points tells us nothing about the goodness of
fit in the remainder of the area. If a control point (whose
location has been checked carefully) is associated with
a high residual value is deleted, then the goodness of
fit of the least-squares polynomial surface in the neigh-
bourhood of that deleted point is likely to be low. Best
practice is to keep some control points in reserve, and
use them as check points to measure the distortion in
regions of the image that are not close to those control
points used to calculate the polynomial function, a pro-
cedure that is outlined below in a little more detail. You
will find that the residual error values at check points will
tend to fall as the order of the polynomial increases from
1 to 2, and possibly 3. Once the order of the polyno-
mial increases beyond three it is probable that the error
at check points will increase, simply because the two-
dimensional surface that is represented by the polynomial
function is becoming increasingly flexible. Since the map
and image are only being colocated at the control points,
a lot of flexibility is available for distortions of the least-
squares surface between the control point locations. Also,
the variance of the residuals (used as an overall mea-
sure of goodness of fit) will decrease as polynomial order
increases, until it becomes zero when the number of coef-
ficients in the polynomial equals the number of control
points. This does not imply a ‘good fit’; rather, it indicates
that the number of GCPs is too small (Example 4.3).

We should also pay attention to the factors to be taken
into consideration when control points are selected. If

there is a substantial difference in time between the date
of imaging and the last full map revision then it would
be unwise to select as control points any feature subject
to change, for example a point on a river meander, at
the edge or corner of a forest plantation or on a coast-
line. In tidal areas, the land/sea boundary may go back
and forth if the region is tidal – sometimes for several
hundred metres – and it is thus difficult to correlate a
point shown on a map as being on the coastline and the
equivalent point on the image. The best control points are
intersections of roads or airport runways, edges of dams,
or isolated buildings and other permanent features. All
are unlikely to change in position, beyond the few cen-
timetres per century produced by continental drift, and
all are capable of being located accurately both on map
and image. At the 1 : 25 000 map scale or better, control
points should be located with and error of 25 m or less,
while a cursor can be used to fix the location on the image
to within one resolution element. If a zoom function is
used to enlarge the image, the exact position of a pair of
linear features that intersect at an oblique angle can be
estimated to within half a pixel or better.

It would be sensible to test the accuracy of the
image–map and map–image coordinate transformations
before using them to convert from one system to the
other. It seems illogical to generate the least-squares
coefficients ai using a set of (x , y , c, r) control point
coordinates and then use the same data to test the
adequacy of the calculation. An independent assessment
is necessary. As suggested earlier in this discussion,
a subset of control points (‘test points’) that are not
used in the least-squares estimation process should be
used to assess the goodness of fit of the least-squares
transformation by taking each of the test points in turn
and converting its c and r image coordinates to map x
and y coordinates, then calculating the residual values.
The same should be done for the reverse transformation.
The standard of the map coordinate residuals and of the
image coordinate residuals will give a measure of the
goodness of fit. If the residual values are normally
distributed, which can be checked by producing a
histogram of these values, then 68% of all calculated
values should lie within one standard deviation of the
mean. The mean residual is zero. If a root mean square
error or standard deviation of 0.5 pixel or 10 m, for
example is cited then one should be careful not to
interpret this statement to mean that all of the coordinate
transformation results fall within the quoted range.

In some instances, control points may already be avail-
able for the required map area and for an earlier image
of the region of interest. Rather than go through the
tedious procedure of collecting control point information
again, the map coordinates of the control points could
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Figure 4.6 (a) Chip ABCD is covering pixels in the top left of the image. The correlation between the chip pixels and the image
pixels is calculated, and the chip moves to the right by 1 pixel, and the procedure is repeated. The chip moves right until its
right margin is coincident with the right border of the image at PQRS. The chip is moved down one line and back to the left
side of the image, and the procedure is repeated. The arrows show the direction of movement of the chip. (b) Isoline map of
correlations between image pixels and chip pixels, using the procedure shown in Figure 4.6a. The red star marks the point of
maximum correlation.

be reused without difficulty. However, due to fluctua-
tions in the orbit of the satellite, it is unlikely that the
control point positions on the second image would be
the same as those on the first. Variations in satellite alti-
tude and attitude are quite small, so (i) the pixels in two
separate images of the same area collected by the same
satellite-borne instrument should have nearly equal sizes
and (ii) the linear features whose intersection defined the
control point should have approximately the same ori-
entation from image to image of the same area. Benny
(1981) made up a set of ‘chips’ or extracts of the first
image of size 19 × 19 pixels, each chip containing a con-
trol point. The value of 19 × 19 is not a fixed, nor even
a recommended one – much depends on the nature of the
image, especially the contrast and the amount of detail.
Larger chips are required for images lacking contrast.

The map coordinates of the centre of the chip are
known. The problem is to find the image coordinates of
the centre of the 19 × 19 chip on the new image. This
problem is solved by a correlation procedure. Given that
it is possible to estimate the position of the control point
on the new image, and maximum deviations from this
position in the column and row directions, then a rect-
angular search area can be defined. The control point is
thought to be somewhere inside this search area. The
‘chip’ is placed over the top left 19 × 19 pixels of this
search area and the correlation between the chip pixels
and the pixels of the image that underlie the chip pixels

is calculated and recorded, together with the row and
column coordinates of the image pixel that lies below
the centre pixel of the chip (Figure 4.6). The chip is
then moved one column to the right and the correlation
coefficient is recalculated. Once the chip has reached its
furthest right position it is moved down one row and back
to its leftmost position. The process continues until the
chip has moved to the bottom right-hand corner of the
search area.

At this stage, we have (i) the row coordinate of the
chip centre, (ii) the corresponding column coordinate and
(iii) the correlation value for that position. Values (i) and
(ii) could be used as conventional xy coordinates and
isolines of correlation could be drawn on this ‘map’. The
most likely match would be given by the point which
had the highest correlation. If the maximum correlation
is low (less than about +0.4) then it might be concluded
that no match has been found. Benny (1981) describes
a ‘spiral search’ algorithm that differs from the regular
search algorithm outlined above. If the regular search
algorithm were coded efficiently then it would be as fast
as the spiral technique.

An efficient method of conducting the regular search
would be to compute the mean of the top left chip for
the search chip and the underlying then the deviations
from the mean and the standard deviations of the
19 × 19 pixels making up the chip. The statistics for
the search chip are computed only once. The correlation
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coefficient r for the search chip (first time only) and the
19 × 19 image area lying below the search chip can then
be computed from:

r = 1

n

∑(
(x − x)2

Sx

)(
(y − y)2

Sy

)

The values xi are the search chip pixel values and the
yi are the pixels in the search area of the image lying
below the chip pixels. The value of r , the correlation
between x and y , is placed in the results image at the
point lying beneath the centre pixel of the search chip,
which is then moved onwards to the right by 1 pixel. The
mean of the yi can be updated quickly using the idea that
as the search chip is moved from position 1 to position 2
on line 1 (i.e. moves 1 pixel to the right) then a column
of 19 image pixels enters the right side of the region of
the image covered by the chip and a column of 19 image
pixels on the left side leaves that region. The value of
the mean of the yi is found by subtracting the values
of the pixels leaving the region from 	yi and by adding
the values of the pixels entering the region. Since all the
calculations in the derivation of rxy except the final divi-
sion can be performed exactly in integer arithmetic the
method is both fast and accurate. This ‘moving window’
technique is used in Chapter 7 when spatial filtering tech-
niques are considered. See also Section 3.3 for comments
on the avoidance of computational error in calculations
involving floating-point numbers.

All the available control points could be located by this
correlation-based method, which requires the user to pro-
vide an estimate of the position of the control point and of
the dimensions of the search area for each control point.
Benny (1981) goes on to consider a method for the auto-
matic relocation of all control points without user inter-
vention, provided that one control point can be located
accurately. He estimates that, for a typical image contain-
ing 100 control points, the manual location of the control

points would take about 80 hours of effort, plus 1 minute
of computer time to carry out the coordinate transfor-
mation method described below. For the semiautomatic
method, with the user supplying information about the
approximate location of each control point, the user man-
hours drop from 80 to 8, but computer time goes up to
20 minutes. Finally, the automatic procedure, in which
the user supplies information relating to only one control
point, the number of man-hours required falls to 0.1 (6
minutes) while the computer time requirement remains at
20 minutes. Automatic identification of GCPs is exam-
ined in more detail by Ackermann (1984), Emery, Bald-
win and Matthews (2003) and Motrena and Rebordão
(1998). Automatic registration of stereo pairs of images,
as a prelude to the derivation of DEMs, is described by
Al-Rousan et al. (1997) and Al-Rousan and Petrie (1998).

Procedures for estimating the coefficients aij in the
least squares functions (i–iv) above relating map and
image coordinate systems are now considered. The fol-
lowing description assumes that we wish to estimate the
map easting e from the image column and row coordi-
nates r and c for a set of n control points. In practice,
all four functions relating map (e, n) and image (r , c)
coordinates would be computed (e from r and c, n from
r and c, r from e and n and c from e and n). The set
of control point map easting coordinates is denoted by
the vector e, while the powers and cross products of the
c and r values are considered to form the matrix P. The
coefficients aij are the elements of the coefficients vec-
tor a. For a second-order fit we would have the system
shown in Table 4.2.

The method of least squares is used to find the vector
of estimates e according to the following model:

e = Pa

P and e are explained above, while a is a vector of
unknown coefficients, which are to be estimated from the

Table 4.2 Matrix P and vectors e and a required in solution of second-order
least-squares estimation procedure.
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1 c1 r1 c2
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1 c2 r2 c2
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In this example the map easting vector e is to be estimated from the powers and cross-products of the image
column (c) and row (r) vectors which form the matrix P. The measurements of c, r and e are measured at n
ground control points.
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GCP data. The least-squares formula for the evaluation
of a is:

a = (P′P)−1P′e

The elements of vector a can be found by a standard
subroutine for solving linear simultaneous equations.
Such routines work efficiently with well-conditioned
equations but can produce significant errors if the
equations are ill conditioned. The condition of a matrix
such as P′P in the expression above can be considered
to be a measure of the degree of independence of its
columns. Ill-conditioning is indicated by a near-zero
determinant, or by a high value of the ratio of the
largest and smallest eigenvalues of P′P. The degree
of independence of a pair of column vectors can be
visualized by analogy with the crossing point of two
lines. The intersection can be measured accurately if
the lines are perpendicular, whereas if the lines cross
at a very acute angle the exact point of intersection is
difficult to specify (Figure 4.7). In a similar way, the
solutions of a set of well-conditioned equations (with the
columns of the matrix P′P being independent, or nearly
so) can be found accurately but the solution vector
could be substantially in error if the matrix is badly
conditioned. Various studies have indicated that the
accuracy of standard procedures (using matrix inversion
techniques) for the solution of the least squares equations
depends critically on the condition of the matrix. The
Gram–Schmidt procedure described by Mather (1976)
appears to be a reliable algorithm, and this conclusion is
confirmed by later work (Mather, 1995).

It is likely that the matrix P′P will be ill-conditioned
in our particular case because the columns of P are the
powers and cross-products of two variables, c and r ,
for example, c, r, c2, cr, r2, c3, c2r, cr2 and r3 in the
case of a cubic bivariate polynomial. Hence, standard
methods may well produce poor or even misleading
results. These will be worsened if the spatial distri-
bution of control points is linear or clustered or if
the number of GCPs is small, as noted above. The
Gram–Schmidt method is thus to be preferred The
application of this method provides estimates of the
elements of the coefficients vector a, which can then
be used to find the vector of map easting coordinate e.
The coefficients of the other required functions
(n estimated from c and r , c estimated from e, and
n and r estimated from e and n) can be found in a
similar fashion.

Note that the procedures described in this section are
applicable only to images obtained from relatively stable
platforms such as satellites and for areas with a low rel-
ative relief. Scanned images from aircraft contain distor-
tions caused by rapid variations in the aircraft’s attitude as
measured by pitch, roll and yaw. Such imagery will con-
tain defects such as non-parallel scan lines, which cannot

Lines cross
here

Lines cross
between here

and here

Figure 4.7 The ‘condition’ of a matrix in least-squares cal-
culations can be likened to the sharpness of definition of the
crossing point of two straight lines. Perpendicular lines have a
sharply defined crossing point (left), while the crossing point
of two near-coincident lines cannot be well defined (right).

easily be corrected by polynomial least squares methods.
The influence of terrain on the results obtained by the use
of the methods described above are summarized earlier
in this section. The correction of aircraft imagery, such as
the lidar data described in Chapter 9, uses a combination
of GPS and inertial navigation systems (INSs) to model
the position and attitude of the aircraft.

4.3.3 Resampling Procedures

Once the four transformation equations relating image
and map coordinate systems are known, and the results
tested, the next step is to find the location on the map of
the four corners of the image area to be corrected, and to
work out the number of and spacing (in metres) between
the pixel centres necessary to achieve the correct map
scale. We can now work systematically across the map
area, starting at the top left, and locate (in map coordi-
nates e and n) the centre of each pixel in turn. Given
the (e, n) location coordinates of a pixel centre on the
map we can apply the transformations described in the
preceding section to generate (c, r) image coordinates
corresponding to the position of the pixel’s centre. These
(c, r) coordinates are the column and row position in the
uncorrected image of the new (geometrically corrected)
pixel centres (Figure 4.4 and Figure 4.8a).

It is unlikely that c and r are integers; if they were, it
would be possible to take the pixel value at (c, r) (pixel
centre position in the uncorrected image, shown by a cir-
cle in Figure 4.8a) and transfer it to the corresponding
pixel centre in the corrected image, shown by a plus sign
in Figure 4.8a. Non-integral values of c and r imply that
the corrected pixel centre lies between the columns and
rows of the uncorrected image, so that a method of inter-
polation is needed to estimate the pixel value at (c, r).
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Figure 4.8 (a) Schematic representation of the resampling process. The extreme east, west, north and south map coordinates of
the uncorrected image ABCD define a bounding rectangle PQRS, which is north-orientated with rows running east–west. The
elements of the rows are the pixels of the geometrically corrected image expressed in map (e, n) coordinates. Their centres are
shown by the + symbol and the spacing between successive rows and columns is indicated by 
e and 
n. The centres of the
pixels of the uncorrected image are marked by the symbol o. See text for discussion. (b) The least-squares bivariate polynomial
functions take the coordinates at the centre of a pixel with coordinates (e′n′) in the corrected image and find the coordinates of
the corresponding point (c′r′) in the corrected image. Since the values of the pixels in the uncorrected image are known, one
can proceed systematically through the pixels of the corrected image and work out the value to place in each using a procedure
called resampling. Pixels in the corrected image that have corresponding (c, r) locations outside the limits of the uncorrected
image (the green rectangle in Figure 4.8a) are given the value zero.

Figure 4.8b illustrates this point. The coordinates of the
pixel at the point (e′, n′) in the corrected image are trans-
formed using the least-squares polynomial function com-
puted from the GCPs to point (r ′, c′) in the uncorrected
image. If r ′ and c′ were integers then the pixel values in
the corrected and uncorrected image would be the same.
In most cases, r ′ and c′ are non-integral values and lie

somewhere between the pixel centres in the uncorrected
image. An interpolated value is computed using a proce-
dure called resampling.

Three methods of resampling are in common use. The
first is simple – take the value of the pixel in the raw
image that is closest to the computed (c, r) coordinates.
This is called the nearest neighbour method. It has two
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Figure 4.9 Bilinear interpolation. Points P1–P4 represent
the centres of pixel in the uncorrected image. The height of
the ‘pin’ at each of these points is proportional to the pixel
value. The pixel centre in the geometrically corrected image
is computed as (x, y) (point Q). The interpolation is performed
in three stages. First, the value at A is interpolated along
the line P4–P3, then the value at B is interpolated along the
line P1–P2. Finally, the value at Q is interpolated along the
line AB.

advantages; it is fast and its use ensures that the pixel val-
ues in the output image are ‘real’ in that they are copied
directly from the raw image. They are not ‘fabricated’
by an interpolation algorithm such as the two that are
described next. On the other hand, the nearest neighbour
method of interpolation tends to produce a rather blocky
effect as some pixel values are repeated.

The second method of resampling is bilinear interpo-
lation (Figure 4.9). This method assumed that a surface
fitted to the pixel values in the immediate neighbourhood
of (c, r) will be planar, like a roof tile. The four pixel
centres nearest to (c, r) (i.e points P1–P4 in Figure 4.9)
lie at the corners of this tile; call their values vij . The
interpolated value V at (c, r) is obtained from:

V = (1 − a)(1 − b)vi,j + a(1 − b)vi,j+1

+ b(1 − a)vi+1,j + abvi+1,j+1

where
a = c − j j = |c|
b = r − i i = |r| and
|x | is the absolute value of the argument x .

Note that the method breaks down if the point (c, r) is
coincident with any of the four pixel centres in the uncor-
rected image and so a test for this should be included in
any computer program. Bilinear interpolation results in a
smoother output image because it essentially an averag-
ing process. Thus, sharp boundaries in the input image

may be blurred in the output image. The computational
time requirements are greater than those of the nearest
neighbour method.

The third spatial interpolation technique that is in
common use for estimating pixel values in the corrected
image is called bicubic because it is based on the
fitting of two third-degree polynomials to the region
surrounding the point (c, r). The 16 nearest pixel values
in the uncorrected image are used to estimate the value
at (c, r) on the output image. This technique is more
complicated than either the nearest neighbour or the
bilinear methods discussed above, but it tends to give a
more natural-looking image without the blockiness of the
nearest neighbour or the oversmoothing of the bilinear
method, though – as is the case with all interpolation
methods – some loss of high-frequency information is
involved. The interpolator is essentially a low-pass filter
(Chapter 7). The penalty to be paid for these improve-
ments is considerably increased computing requirements.

The cubic convolution method is described by Wolf
and DeWitt (2000) as follows: first, take the 4 × 4 pixel
area surrounding the point whose value is to be interpo-
lated. Next, compute two vectors each with four elements.
The first contains the absolute differences between the
row values (in the full image) and the row value of the
point to be interpolated. The second contains the absolute
differences for the column values. For example, the 4 × 4
area may consist of rows 100, 101, 102 and 103 of the
full image, with the column values being 409, 410, 411
and 412. The 4 × 4 set of pixel values forms a matrix M.
If the point p to be interpolated has row/column coordi-
nates of (101.1, 410.5) then the row difference vector is
r= [1.1, 0.1, 0.9, 1.9] and the column difference vector
is c = [1.5, 0.5, 0.5, and 1.5].

Next, a row interpolation vector and a column inter-
polation vector are derived from r and c. Let v represent
any element of r or c. If the value of v is less than 1.0
then use function f1 to compute the interpolation value.
Otherwise, use function f2, where f1andf2 are defined
as follows:

f1(v) = (a + 2)v3 − (a + 3)v2 + 1

f2(v) = av3 − 5av2 + 8av − 4a

The value of the term a is set by the user, normally
in the range −0.5 to −1.0. At this point the elements of
r and c have been converted to row and column inter-
polation values, respectively. The interpolated value z at
point p is given by the solution of the matrix equation:

z = r′Mc

The value of a in the row/column interpolation proce-
dure is rarely mentioned, but it has a significant impact
on the value returned by the cubic convolution algorithm.
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For example, using the same set of data as that presented
by Wolf and Dewitt (2000, p. 564), different values of z
can be obtained simply by changing the value of a by a
small amount. Wolf and DeWitt’s matrix M is:

M =




58 54 65 65
63 62 68 58
51 56 59 53
52 45 50 49




for row numbers 618–621 and column numbers 492–621
and column numbers 492–495 of the full image. The
row/column coordinates of point p are [619.71 493.39].
If the value of a is set to −0.5 then the interpolated value
z at point p is 60.66. For values of a of −0.6, −0.75 and
−1.0 the corresponding z values are 61.13, 61.87 and
63.15. Since the interpolated results are rounded to the
nearest integer, small differences do not matter – in this
example, the values 60.66 and 61.13 would be rounded to
61. Nevertheless, it would be rather odd of a professional
user of the method to concern himself with the arcane
algorithmic details of least squares procedures in order
to improve computational accuracy while ignoring the
choice of a value in the cubic convolution interpolation.

The choice between the three interpolation methods
of nearest neighbour, bilinear and cubic convolution
depends upon two factors – the use to which the cor-
rected image is to be put, and the computer facilities
available. If the image is to be subjected to classification
procedures (Chapter 8) then the replacement of raw
data values with artificial, interpolated values might
well have some effect on the subsequent classification
(although, if remote sensing data are to be used alone
in the classification procedure, and not in conjunction
with map-based data, then it would be more economical
to perform the geometric correction after, rather than
before, the classification). If the image is to be used
solely for visual interpretation, for example in the
updating of a topographic map, then the resolution
requirements would dictate that the bicubic or cubic
method be used. The value of the end product will,
ultimately, decide whether the additional computational
cost of the bicubic method is justified. Khan, Hayes and
Cracknell (1995) consider the effects of resampling on
the quality of the resulting image.

4.3.4 Image Registration

Registration of images taken at different dates (multitem-
poral images) can be accomplished by image correlation
methods such as that described in Section 4.3.2 for
the location of GCPs. Although least squares methods
such as those used to translate from map to image
coordinates, and vice versa, could be used to define
a relationship between the coordinate systems of two

images, correlation-based methods are more frequently
employed. A wide range of applications is considered
by Goshtasby (2005). A full account of what are termed
sequential similarity detection algorithms (SSDAs) is
provided by Barnea and Silverman (1972) while Anuta
(1970) describes the use of the fast Fourier transform
(Chapter 6) in the rapid calculation of the interimage
correlations. Eghbali (1979) and Kaneko (1976) illus-
trate the use of image registration techniques applied
to Landsat MSS images. Hong and Zhang (2008b) use
wavelet-based methods (see Section 3.7). Townshend
et al. (1992) point out the problems that may arise if
change detection techniques are based on multi-temporal
image sets that are not properly registered. This point
is discussed further in Section 6.8. As noted earlier,
any GIS overlay operation involving remotely-sensed
images is prone to error because all such images must
be registered to some common geographical reference
frame. Misregistration provides the opportunity for error
to enter the system.

4.3.5 Other Geometric Correction Methods

The least squares polynomial procedure described in
Section 4.3.1.3 is one of the most widely used methods
for georeferencing medium-resolution images produced
by sensors such as such as the Landsat ETM+, which
has a nominal spatial resolution of around 30 m. The
accuracy of the resulting geometrically corrected image
depends, as we have already noted, on the number and
spatial distribution of GCPs. Significant points to note
are: (i) the map and image may not coincide in the
sense of associating the same coordinates (to a specified
number of significant digits) to a given point, even at
the control points, because the least squares polynomial
produces a global approximation to the unknown correc-
tion function and (ii) the method assumes that the area
covered by the image to be georeferenced is flat. The
effects of terrain relief can produce very considerable
distortions in a geometric correction procedure based on
empirical polynomial functions (Figure 4.10). The only
effective way of dealing with relief effects is to use a
mathematical model that takes into account the orbital
parameters of the satellite, the properties of the map
projection, and the nature of the relief of the ground
surface. Where high-resolution images such as those
produced by IKONOS and QuickBird are used, the
question of accurate, relief-corrected geocoded images
becomes critical.

GeoEye, the company which owns and operates the
IKONOS system, does not release details of the orbital
parameters of the satellite to users (though QuickBird
orbital data are available). Instead, they provide the
coefficients of a set of rational polynomials with their
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Figure 4.10 The least-squares polynomial method of geo-
metric correction does not take terrain variations into account.
The position of points on a map is given in terms of their loca-
tion on a selected geodetic datum. At an off-nadir view angle
of α, point P appears to be displaced to P ′. The degree of
displacement is proportional to the satellite altitude h and the
view angle α.

stereo products. The term rational means ‘ratios of’.
Dowman and Dolloff (2000) provide a useful summary
of the characteristics of this georeferencing procedure,
while Chen, Teo and Liu (2006) compare the rigorous
sensor model and the rational function model for
FORMOSAT-2 images, and Arévalo and González
(2008) consider geometric rectification of QuickBird
imagery. Tao and Hu (2001) describe the rational func-
tion model in photogrammetric processing, and Fraser
and Yamakawa (2004) evaluate the affine transformation
for high-resolution satellite sensor orientation. Di, Ma
and Li (2004) also consider rational function models.
Cheng and Sustera (2009) examine automatic methods
of high-speed, high-accuracy orthorectification and
mosaicing of RapidEye imagery (Section 2.3.9). In a
well-illustrated paper these authors demonstrate that
high accuracy can be achieved via the use of a star
tracker, called the Altair HB, which provides attitude
information, plus the set of rational polynomial coeffi-
cients pertaining to the image in question and, finally, a
DEM developed from a spaceborne interferometric SAR
elevation mapping mission called SRTM (Section 9.2).
With no GCPs available the error in the resulting image
is cited as being of the order of 5.7 m in the x direction
and 7.5 m in the y direction, or about one pixel. Better
results may have been achieved if a map at a larger
scale than the 1 : 24 000 map actually used had been
available. Although better results were realised when
accurate GCPs were used in the correction, the result is
still good enough for most purposes.

Geometric correction of SAR images is generally
accomplished using orbital models and DEM. The
process is complicated by the fact that SAR is a
side-looking instrument, producing images in the ‘slant
range’. Geometric correction involves the conversion
from slant range to ground range as well as scaling and
north-orientation. The use of a DEM in the geometric
correction process allows the consideration of the effects
of terrain slope and elevation. A SAR image that is
corrected both for viewing geometry and terrain is said
to be orthocorrected. Mohr and Madsen (2001) and
Sansosti et al. (2006) describe the geometric calibration
of ERS SAR images, while Hong and Schowengerdt
(2005) give details of a technique for the precise regis-
tration of radar and optical imagery. The use of SAR
images to generate interferograms, which is discussed in
Chapter 9, requires accurate geometric correction of the
images that are used.

The derivation of DEMs from pairs of radar (SAR)
images using interferometric methods is considered in
detail in Chapter 9. It should, however, be noted here
that DEMs are routinely derived from stereo pairs of
optical imagery produced by sensors such as SPOT
HRV, ASTER and ALOS PRISM. All of these sensors
are described in Chapter 2. Practical aspects of regis-
tering the stereo pairs prior to extraction of elevation
information are covered by Al-Rousan et al. (1997)
and Al-Rousan and Petrie (1998), Dowman and Neto
(1994), Giles and Franklin (1996), Theodossiou and
Dowman (1990), Tokunaga and Hara (1996) and Welch
et al. (1998). Hirano, Welch and Lang (2003) report on
validation and accuracy assessment experiments using
ASTER stereo image data.

4.4 Atmospheric Correction

4.4.1 Background

An introductory description of the interactions between
radiant energy and the constituents of the Earth’s atmo-
sphere is given in Chapter 1. From this discussion one
can conclude that a value recorded at a given pixel loca-
tion on a remotely-sensed image is not a record of the
true ground-leaving radiance at that point, for the mag-
nitude of the ground-leaving signal is attenuated due to
atmospheric absorption and its directional properties are
altered by scattering. Figure 4.11 shows, in a simplified
form, the components of the signal received by a sensor
above the atmosphere. All of the signal appears to orig-
inate from the point P on the ground whereas, in fact,
scattering at S2 redirects some of the incoming electro-
magnetic energy within the atmosphere into the field of
view of the sensor (the atmospheric path radiance) and
some of the energy reflected from point Q is scattered
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Figure 4.11 Components of the signal received by an air-
borne or satellite-mounted sensor. See text for explanation.

at S1 so that it is seen by the sensor as coming from P .
This scattered energy, called ‘environmental radiance’,
produces what is known as the ‘adjacency effect’. To
add to these effects, the radiance from P (and Q) is
attenuated as it passes through the atmosphere. Other
difficulties are caused by variations in the illumination
geometry (the geometrical relationship between the Sun’s
elevation and azimuth angles, the slope of the ground and
the disposition of topographic features). These problems
are considered in Section 4.5. If the sensor has a wide
field of view, such as the NOAA AVHRR, or is capable
of off-nadir viewing (for example the SPOT HRV) then
further problems result from the fact that the reflectance
of a surface will vary with the view angle as well as
with the solar illumination angle (this is the bi-directional
reflectance property, noted in Chapter 1). Given this cat-
alogue of problems one might be tempted to conclude
that quantitative remote sensing is the art of the impossi-
ble. However, there is a variety of techniques that can be
used to estimate the atmospheric and viewing geometry
effects, although a great deal of research work remains
to be done in this highly complex area. A good review
of terminology and principles is contained in Deschamps,
Herman and Tanré (1983), while Woodham (1989) gives
a lucid review of problems. The problem of the ‘adja-
cency effect’ which is mentioned above is considered by
Milovich, Frulla and Gagliardini (1995).

Atmospheric correction might be a necessary prepro-
cessing technique in three cases. In the first, we may want
to compute a ratio of the values in two bands of a multi-
spectral image (Section 6.2.4). As noted in Chapter 1, the
effects of scattering increase inversely with wavelength,
so the shorter-wavelength measurements experience more

scattering than the longer-wavelength data. The computed
ratio will thus be a biased estimate of the true ratio. In the
second situation, a research worker may wish to relate
upwelling radiance from a surface to some property of
that surface in terms of a physically based model. To
do this, the atmospheric component present in the signal
recorded by the sensor must be estimated and removed.
This problem is experienced in, for example oceanogra-
phy because the magnitude of the water-leaving radiance
(which carries information about the biological and sed-
imentary materials contained by the upper layers of the
ocean) is small compared to the contribution of atmo-
spheric effects. The third case is that in which results or
ground measurements made at one time (time 1) are to be
compared with results achieved at a later date (time 2).
Since the state of the atmosphere will undoubtedly vary
from time 1 to time 2, it is necessary to correct the radi-
ance values recorded by the sensor for the effects of the
atmosphere. In addition to these three cases, it may well
be necessary to correct multispectral data for atmospheric
effects even if it is intended for visual analysis rather than
any physical interpretation.

The atmosphere is a complex and dynamic system. A
full account of the physics of the interactions between the
atmosphere and electromagnetic radiation is well beyond
the scope of this book, and no attempt is made to pro-
vide a comprehensive survey of the progress that has been
made in the field of atmospheric physics. Instead, tech-
niques developed by remote sensing researchers for deal-
ing with the problem of estimating atmospheric effects
on multispectral images in the 0.4–2.4 µm reflective solar
region of the spectrum are reviewed briefly. We begin by
summarizing the relationship between radiance received
at a sensor above the atmosphere and the radiance leaving
the ground surface:

Ls = HtotρT + Lp

Htot is the total downwelling radiance in a specified spec-
tral band, ρ is the reflectance of the target (the ratio of
the downwelling to the upwelling radiance) and T is the
atmospheric transmittance. Lp is the atmospheric path
radiance. The downwelling radiance is attenuated by the
atmosphere as it passes from the top of the atmosphere
to the target. Further attenuation occurs as the signal
returns through the atmosphere from the target to the
sensor. Some of the radiance incident upon the target is
absorbed by the ground-surface material, with a propor-
tion ρ being reflected by the target. Next, energy reflected
by the ground surface from outside the target area is scat-
tered by the atmosphere into the field of view of the
sensor. Finally, the radiance reaching the sensor includes
a contribution made up of energy scattered within the
atmosphere; this is the path radiance term (Lp) in the
equation. In reality, the situation is more complicated,
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as Figure 4.11 shows. The path radiance term Lp varies
in magnitude inversely with wavelength for scattering
increases as wavelength decreases. Hence, Lp will con-
tribute differing amounts to measurements in individual
wavebands. In terms of a Landsat TM or ETM+ image
the blue-green band (band 1) will generally have a higher
Lp component than the green band (band 2).

4.4.2 Image-Based Methods

The first method of atmospheric correction that is consid-
ered is the estimation of the path radiance term, Lp and
its subtraction from the signal received by the sensor.
Two relatively simple techniques are described in the lit-
erature. The first is the histogram minimum method, and
the second is the regression method. In the first approach,
histograms of pixel values in all bands are computed for
the full image, which generally contains some areas of
low reflectance (clear water, deep shadows or exposures
of dark coloured rocks). These pixels will have values
very close to zero in near-infrared bands, for example
Landsat TM band 4 or SPOT HRV band 3, and should
have near-zero values in the other bands in this spectral
region. Yet, if the histograms of these other bands are
plotted they will generally be seen to be offset progres-
sively towards higher levels. The lowest pixel values (or
some combination of the lowest values) in the histograms
of visible and near-infrared bands are a first approxima-
tion to the atmospheric path radiance in those bands, and
these minimum values are subtracted from the respective
images. Path radiance is much reduced in mid-infrared
bands such as Landsat TM bands 5 and 7, and these
bands are not normally corrected.

The regression method is applicable to areas of
the image that have dark pixels as described above.
In terms of the Landsat ETM+ sensor, pixel values
in the near-infrared band (numbered 4) are plotted
against the values in the other bands in turn, and a
best-fit (least-squares) straight line is computed for each
using standard regression methods. The offset a on the
x -axis for each regression represents an estimate of
the atmospheric path radiance term for the associated
spectral band (Figure 4.12).

Chavez (1988) describes an elaboration of this ‘haze
correction’ procedure based on the ‘histogram minimum’
methods described above. Essentially Chavez’s method
is based on the fact that Rayleigh scattering is inversely
proportional to the nth power of the wavelength, the
value of n varying with atmospheric turbidity. He
defines a number of ‘models’ ranging from ‘very clear’
to ‘hazy’ and each of this is associated with a value of n .
A ‘starting haze’ value is provided for one of the short
wavelength bands, and the haze factors in all other bands
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Figure 4.12 Regression of selected pixel values in spectral
band A against the corresponding pixel values in band B.
Band B is normally a near-infrared band (such as Landsat
ET M+ band 4 or SPOT HRV band 3) whereas band A is a
visible/near-infrared band.

are calculated analytically using the Rayleigh scattering
relationship. The method requires the conversion from
pixel values to radiances. The gains and offsets that
are used to perform this conversion are the pre-flight
calibrations for the Landsat TM. Chavez (1996) gives
details of modifications to the method which enhance its
performance.

The image-based methods described above (dark
object subtraction and regression) simply estimate the
contribution to the radiance at a pixel of the atmospheric
path radiance. The methods described next are generally
used to derive estimates of the radiance reaching the
sensor from the target pixel. In other words, they
are normally used in conjunction with procedures to
correct for illumination effects (Section 4.5) and sensor
calibration (Section 4.6). Franklin and Giles (1995) give
a systematic account of these procedures, while Aspinall,
Marcus and Boardman (2002) consider atmospheric
correction of imaging spectrometer data sets (Chapter 9).
A full radiometric correction would include conversion
of pixel digital value to apparent (at-sensor) radiance,
subtraction of the atmospheric contribution, topographic
normalization and sensor calibration. The end product
is an estimate of the true ground-leaving radiance at
a pixel. Such values are required in environmental
modelling, and in the measurement of change between
two dates of imaging. The use of radiative transfer
models and the empirical line method for estimating
the atmospheric effect is considered next. Topographic
corrections are mentioned briefly in Sections 4.5 and 4.7.
Sensor calibration issues are considered in Section 4.6.
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4.4.3 Radiative Transfer Models

The methods of atmospheric correction described above
rely on information from the image itself in order to
estimate the path radiance for each spectral band. How-
ever, a considerable body of theoretical knowledge con-
cerning the complexities of atmospheric radiative transfer
is in existence, and has found expression in numerical
radiative transfer models such as LOWTRAN (Kneizys
et al., 1988), MODTRAN (Berk et al., 1999; Guanter,
Richter and Kaufmann 2009), ATREM (Gao, Heidebrecht
and Goetz, 1993) and 5S/6S (Tanré et al., 1986; Vermote
et al., 1997). Operational (as opposed to research) use
of these models is limited by the need to supply data
relating to the condition of the atmosphere at the time
of imaging. The cost of such data collection activities is
considerable, hence reliance is often placed upon the use
of ‘standard atmospheres’ such as ‘mid-latitude summer’.
The use of these estimates results in a loss of accuracy,
and the extent of the inaccuracy is not assessable. See
Popp (1995) for further elaborations. It is also difficult to
apply radiative transfer models to archive data because
of lack of knowledge of atmospheric conditions. Richter
(1996) shows how spatial variability in atmospheric prop-
erties can be taken into account by partitioning the image.

The following example of the use of the 5S model
of Tanré et al. (1986) is intended to demonstrate the
magnitudes of the quantities involved in atmospheric
scattering. Two hypothetical test cases are specified,
both using Landsat TM bands 1–5 and 7 for an early
summer (1 June) date at a latitude of 51◦. A standard
mid-latitude summer atmosphere was chosen, and the
only parameter to be supplied by the user was an
estimate of the horizontal visibility in kilometres (which
may be obtainable from a local meteorological station).
Values of 5 km (hazy) and 20 km (clear) were input
to the model, and the results are shown graphically
in Figure 4.13. The apparent reflectance is that which
would be detected by a scanner operating above the
atmosphere, while the pixel reflectance is an estimate
of the true target reflectance which, in this example, is
green vegetation. The intrinsic atmospheric reflectance
is analogous to the path radiance. At 5 km visibility
the intrinsic atmospheric reflectance is greater than
pixel reflectance in TM bands 1 and 2. Even at the
20 km visibility level, intrinsic atmospheric reflectance
is greater than pixel reflectance in TM band 1. In both
cases the intrinsic atmospheric reflectance declines with
wavelength, as one might expect. Note that the difference
between the apparent reflectance and the sum of the
pixel reflectance and the intrinsic atmospheric reflectance
is equal to reflectance from pixels neighbouring the
target pixels being scattered into the field of view of
the sensor (see Figure 4.11). The y-axis in Figure 4.13
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Figure 4.13 Examples of output from atmospheric model
(Tanré et al., 1986). Reflectance, expressed as percent irra-
diance at the top of the atmosphere in the spectral band, is
shown for the atmosphere (intrinsic atmospheric reflectance),
the target pixel (pixel reflectance) and the received signal
(apparent reflectance). The difference between the sum of
pixel reflectance and intrinsic atmospheric reflectance and
the apparent reflectance is the background reflectance from
neighbouring pixels. Examples show results for (a) 5 km visi-
bility and (b) 20 km visibility.

shows percent reflectance, that is, the proportion of solar
irradiance measured at the top of the atmosphere that
is reflected.

4.4.4 Empirical Line Method

An alternative to the use of radiative transfer models
is the empirical line approach (Baugh and Groeneveld,
2008; Smith and Milton, 1999; Karpouzli and Malthus,
2003; Moran et al., 2001; Vaudour et al., 2008). This
method is illustrated in Figure 4.14. Two targets – one
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Figure 4.14 Empirical line method of atmospheric correc-
tion. Two targets (light and dark) whose reflectance (R) and
at-sensor radiance (L) are known are joined by a straight line
with slope s and intercept a. The reflectance for any at-sensor
radiance can be computed from R = s(L − a). Based on
Figure 1 of Smith and Milton, International Journal of Remote
Sensing, 1999, 20, 2654. c© Taylor and Francis Ltd.

light and one dark – are selected, and their reflectance
is measured on the ground, using a field radiometer,
to give values R on the y-axis of Figure 4.14. The
radiances recorded by the sensor (shown by the x -axis,
L, in Figure 4.14) are computed from the image pixel
values using the methods described in Section 4.6.
Finally, the slope, s , and intercept, a , of the line joining
the two target points are calculated. The conversion
equation is R = s(L − a). The term a represents
the atmospheric radiance. This equation is computed
for all spectral bands of interest. Smith and Milton
(1999) report the results of a detailed experiment, and
conclude that the method ‘. . . is capable of providing
acceptable calibration of sensor radiance measurements
to estimates of ground reflectance’ (Smith and Milton,
1999, p. 2657), though they list a number of theoretical
and practical considerations that must be taken into
account before reliance is placed on any results. These
considerations are discussed in detail by Smith and
Milton (1999). Karpouzli and Malthus (2003) also report
the results of experiments to estimate surface reflectance
using the empirical line method applied to IKONOS
data. The absolute differences between calculated band
reflectances and corresponding reflectances measured on
the ground ranged from 0 to 2.7%. The authors describe
these results as ‘. . . highly satisfactory’ (Karpouzli and
Malthus, 2003, p. 1148). Vaudour et al. (2008) use the
empirical line method to retrieve soil reflectance from
SPOT imagery. Yuan and Elvidge (1996) and Hong
and Zhang (2008a) compare these and other methods
of radiometric normalization. Atmospheric correction of

hyperspectral imagery (Section 9.3) is reviewed by Gao,
Davis and Goetz (2006).

Some general advice on the need for atmospheric cor-
rection in classification and change detection studies is
provided by Song et al. 2001. These authors suggest that
atmospheric correction is not required as long as the train-
ing data and the data to be classified are measured on
the same relative scale. However, if multitemporal image
data are being processed then they must be corrected for
atmospheric effects to ensure that they are comparable.

Huang et al. (2008) give an example of the use of
atmospheric and topographic correction in forest classi-
fication. Mitri and Gitas (2004) compare classification
performance in classifying burned areas using topograph-
ical and non-topographical corrections. Nunes, Marcal
and Vaughan (2008) give details of a fast over-land atmo-
spheric correction of visible and near-IR imagery.

4.5 Illumination and View Angle Effects

The magnitude of the signal received at a satellite sensor
is dependent on several factors, particularly:

• reflectance of the target
• nature and magnitude of atmospheric interactions
• slope and aspect of the ground target area relative to

the solar azimuth
• angle of view of the sensor
• solar elevation angle.

Variations in the spectral reflectance of particular
types of Earth-surface cover materials are discussed
in Chapter 1, where a general review of atmospheric
interactions is also to be found, while Section 4.4
contains an introduction to the correction of image data
for atmospheric effects. In this section we consider the
effects of: (i) the solar elevation angle, (ii) the view
angle of the sensor and (iii) the slope and aspect angles
of the target.

In the absence of an atmosphere, and assuming no com-
plicating factors, the magnitude of the radiance reflected
from or emitted by a fixed target and recorded by a remote
sensor will vary with the illumination angle and the angle
of view of the sensor. The reflectance of the target will
vary as these two angles alter, and one could therefore
consider a function which described the magnitude of
the upwelling radiance of the target in terms of these
two angles. This function is termed the bi-directional
reflectance distribution function (or BRDF, described in
Chapter 1). When an atmosphere is present an additional
complication is introduced, for the irradiance at the target
will be reduced as the atmospheric path length increases.
The path length (which is the distance that the incoming
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energy travels through the atmosphere) will increase as
the solar elevation angle decreases, and so the degree of
atmospheric interference will increase.

The radiance upwelling from the target also has to pass
through the atmosphere. The angle of view of the sensor
will control the upward path length. A nadir view will be
influenced less by atmospheric interactions than would an
off-nadir view; for example the extremities of the scan-
lines of a NOAA AVHRR image are viewed at angles
of up to 56◦ from nadir, while the SPOT HRV instru-
ment is capable of viewing angles of ±27◦ from nadir.
Amounts of shadowing will also be dependent upon the
solar elevation angle. For instance, shadow effects in
row crops will be greater at low Sun elevation angles
than at high angles. Ranson, Biehl and Bauer (1985)
report the results of a study of variations in the spec-
tral response of soybeans with respect to illumination,
view and canopy geometry. They conclude that the spec-
tral response depended greatly on solar elevation and
azimuth angles and on the angle of view of the sen-
sor, the effect being greater in the visible red region of
the spectrum than in the near-infrared. In another study,
Pinter et al. (1983) show that the spectral reflectance of
wheat canopies in MSS and TM wavebands is strongly
dependent on the direction of incident radiation and its
interaction with vegetation canopy properties, such as leaf
inclination and size. Clearly, reflectance from vegetation
surfaces is a complex phenomenon which is, as yet, not
fully understood and methods for the estimation of the
effects of the various factors that influence reflectance
are still being evaluated at a research level. It would
obviously be desirable to remove such effects by prepro-
cessing before applying methods of pattern recognition
(Chapter 8) particularly if results from analyses of images
from different dates are to be compared, or if the meth-
ods are applied to images produced by off-nadir viewing
or wide angle-of-view sensors.

The effects of variation in the solar elevation angle
from one image to another of a given area can be accom-
plished simply if the reflecting surface is Lambertian
(Section 1.3.1). This is rarely the case with natural sur-
faces, but the correction may be approximate to the first
order. If the solar zenith angle (measured from the verti-
cal) is θ , the observed radiance is L and the desired view
angle is x then the correction is simply:

L′ = L
cos(x)

cos(θ)

This formula may be used to standardize a set of multi-
temporal images to a standard solar illumination angle. If
a suitable DEM is available, and assuming that the image
and DEM are registered, then the effects of terrain slope
on the angle of incidence of the solar irradiance can be
taken into account (Feng, Rivard and Sánchez-Azofeifa,

2003). See Frulla, Milovich and Gagliardini (1995) for a
discussion of illumination and view angle effects on the
NOAA-AVHRR imagery.

Barnsley and Kay (1990) consider the relationship
between sensor geometry, vegetation canopy geometry
and image variance with reference to wide field of
view imagery obtained from aircraft scanners (though
multiangle satellite data are now available from ESA’s
CHRIS/Proba mission – see Barnsley et al., 2004). The
effect of off-nadir viewing is seen as a symmetric
increase in reflectance away from the nadir point, so that
a plot of the mean pixel value in each column (y-axis)
against column number (x -axis) shows a parabolic
shape. A first-order correction for this effect uses a
least-squares procedure to fit a second-order polynomial
of the form:

ŷx = a0 + a1x

to the column means. The term ŷx is the value on the
least-squares curve corresponding to image column x .
Let ŷnad be the value on the least squares curve at the
nadir point (the centre of the scan line and the mini-
mum point on the parabolic curve). Then the values in
column x of the image can be multiplied by the value
ŷnad
/
ŷx in order to ‘flatten’ the curve so that the plot

of the column means of the corrected data plot (approx-
imately) as a straight line. Palubinskas et al. (2007) give
details of a more complicated procedure for radiometric
normalization. Helder and Ruggles (2004) describe some
radiometric artefacts in the Landsat reflective bands.

4.6 Sensor Calibration

Sensor calibration has one of three aims. First, the
user may wish to combine information from images
obtained from different sensor systems such as Landsat
TM and SPOT HRV. Second, it may be necessary in
studies of change to compare pixel values obtained from
images that were acquired at different times. Third,
remotely-sensed estimates of surface parameters such as
reflectance are used in physical and biophysical models.
Generally speaking, sensor calibration is normally
combined with atmospheric and view angle correction
in order to obtain estimates of target reflectance (e.g.
Teillet and Fedosejevs, 1995). These authors also provide
details of the correction required for variations in solar
irradiance over the year. A useful starting point is the
review by Duggin (1985). In this section, attention is
focused on the Landsat TM/ETM+ optical bands and
the SPOT HRV. Calibration of the Landsat TM/ETM+
thermal band (conventionally numbered 6) is discussed
by Schott and Volchok (1985), Itten and Meyer (1993),
Chander, Markham and Helder (2009a) and Coll et al.
(2010). Radiometric normalization of sensor scan angle
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effects is treated by Palubinskas et al. (2007) and Paolini
et al. (2006) report on the use of radiometric correction
in change detection studies. Consideration of calibration
issues relating to the NOAA-AVHRR is provided by Che
and Price (1992) and by Vermote and Kaufman (1995).
Gutman and Ignatov (1995) compare pre- and postlaunch
calibrations for the NOAA AVHRR, and show how
the differences in these calibrations affect the results
of Vegetation Index calculations (Chapter 6). A special
issue of Canadian Journal of Remote Sensing (volume
23, number 4, December 1997) is devoted to calibration
and validation issues. Morain and Budge (2004) present
a selection of papers delivered at an international
workshop on radiometric and geometric calibration.

Atmospheric correction methods are considered in
Section 4.4, while corrections for illumination and view
angle effects are covered in Section 4.5. In the present
section, the topic of sensor calibration is reviewed.
Recall from Chapter 1 that the values recorded for a
particular band of a multispectral image are counts – they
are the representation, usually on a 0–255 scale, of
equal-length steps in a linear interpolation between the
minimum and maximum levels of radiance recorded
by the detector. If more than one detector is used then
differences in calibration will cause ‘striping’ effects on
the image (Section 4.2.2). The term ‘sensor calibration’
refers to procedures that convert from counts to physical
values of radiance. The numerical coefficients that
are used to calibrate these image data vary over time,
and consequently the relationship between the pixel
value (count) recorded at a particular location and the
reflectance of the material making up the surface of the
pixel area will not be constant. Recall that reflectance
is the ratio of the radiance reflected or emitted by the
target and the incident radiation (irradiance).

In the case of Landsat TM and ETM+, two coefficients
are required for conversion of pixel values to radiance.
These coefficients are called the gain and the offset. The
gain is the slope of the line relating pixel values and radi-
ance. Offset is an additive term, as shown in Figure 4.15.

The determination of these calibration coefficients is
not an easy task. Prelaunch calibration factors (coeffi-
cients) are obtainable from ground receiving stations and
from vendors of image data, and some image processing
software packages incorporate these values into their sen-
sor calibration routines. However, studies such as Thome
et al. (1993) indicate that these calibration factors are
time-varying for the Landsat-5 TM sensor, and that sub-
stantial differences in the outcome of calibration calcula-
tions depend on the values of the calibration factors that
are used. The fact that a number of different process-
ing procedures have been applied to Landsat TM data
by ground stations further complicates the issue (Moran
et al., 1992, 1995). Thome et al. (1993, see also Table 2
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Figure 4.15 Landsat ETM + uses one of two gain modes. The
spectral radiance reaching the sensor is converted to a digital
count or pixel value using high gain mode for target areas
which are expected to have a maximum spectral radiance
of Lsat (High Gain). For other target areas, the maximum
radiance is specified as Lsat (Low Gain). Each gain setting has
an associated offset, measured in counts, which is 10 for low
gain and 15 for high gain. Based on Irish (2002), Figure 6.9.

of Teillet and Fedosejevs, 1995) provide the expressions
shown in Table 4.3 for Landsat-5 TM sensor gains in
bands 1–5 and 7 (the offset is assumed to be constant
over time):

Table 4.3 Landsat-5 TM calibration coefficients
from Thome et al. (1993). Gi is the gain value for
band i and D is the number of days since the
launch of Landsat-5 (1 March 1984).

G1 = (−7.84 × 10−5) D + 1.409

G2 = (−2.75 × 10−5) D + 0.7414

G3 = (−1.96 × 10−5) D + 0.9377

G4 = (−1.10 × 10−5) D + 1.080

G5 = (7.88 × 10−5) D + 7.235

G7 = (7.15 × 10−5) D + 15.63

D is the number of days since 1 March 1984, the date
of the launch of the Landsat-5 satellite. The day number
in the year is called the Julian Day (JD). You can cal-
culate the JD relative to any year since 1753 using the
Utilities|Julian Dates module in MIPS. The gain
coefficients are used in the equation:

L∗
n = (PV − offset)/Gn (W m−2sr−1µm−1)

In this equation, which differs from the relationship
presented in the next paragraph, uses the symbol L∗

n

to denote apparent radiance at the sensor, while PV is
the pixel value, Gn is the sensor gain and the offsets
are as follows (values in brackets): TM1 (2.523), TM2
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Table 4.4 Landsat-5 TM offset (a0) and gain (a1)
coefficients.

Band number a0 a1 a0 a1

1 –0.1009 0.0636 –0.1331 0.0727

2 –0.1919 0.1262 –0.2346 0.1385

3 –0.1682 0.0970 –0.1897 0.1102

4 –0.1819 0.0914 –0.1942 0.0885

5 –0.0398 0.0126 –0.0398 0.0126

7 –0.0203 0.0067 –0.0203 0.0067

The results of pre-flight calibration are given in the two leftmost columns. The
values in the two rightmost columns are derived from observations at White
Sands, NM, USA. Note that the gain and offset coefficients for the TM bands 5
and 7 are unchanged. Figures given in units of mW cm−2sr−1µm−1.

(2.417), TM3 (1.452), TM4 (1.854), TM5 (3.423) and
TM7 (2.633). Note that the values of gain and offset
given in Table 4.4 refer to the procedure that is described
in the following paragraphs.

Hill (1991) and Hill and Aifadopoulou (1990) present
a methodology for the calibration of the Landsat TM
optical bands and SPOT HRV data. They note that the
relationship between radiance and pixel value [PV, some-
times called a digital signal level (DSL) or a digital count
(DC)] can be defined for spectral band n of the Landsat
TM as follows:

L∗
n = a0 + a1PV

where a0 and a1 are the offset and gain coefficients and
L∗ is apparent radiance at the sensor measured in units
of mW cm−1sr−1µm−1. The work of Thome et al. (1993)
on the determination of the values of the gain and offset
coefficients is noted above; their gains and offsets use the
relationship between L

∗
and PV described earlier. Other

relevant references are Hall et al. (1991), Holm et al.
(1989), Markham, Halthore and Goetz (1992), Moran
et al. (1990, 1992), Muller (1993), Olsson (1995), Price
(1987, 1988), Rao and Chen (1996), Sawter et al. (1991),
Slater et al. (1987), Teillet and Fedosejevs (1995) and
Woodham (1989). Table 4.4 shows the Landsat-5 TM
calibration coefficients (i) as determined before launch
and (ii) as estimated from ground-based measurements
at White Sands, New Mexico. Updated radiometric
calibration coefficients are provided by Helder et al.
(2008). Teillet et al. (2007) consider the problem of
cross-calibration of sensors in the solar reflective wave-
bands. This aspect of calibration is important whenever
data from different sensors are used synergistically. For
example, the satellites making up the disaster monitoring
constellation (DMC) or the RapidEye system must have
instruments that are correctly calibrated so that a target
viewed by the sensor onboard UK-DMC2 will produce
the same outcome (i.e. radiance in Wm−1sr−1) as any

other member of the DMC constellation. Also important
is the maintenance of internally consistent time series
of measures such as NDVI and other vegetation indices
derived from AVHRR measurements (Sections 6.2.4
and 6.3.1).

Calibration of Landsat-7 ETM image data is described
in Irish (2008). The ETM+ sensor, like the previous TM
instruments, operates in one of two modes, termed low
and high gain. Where the expected range of upwelling
radiances is small, then low-gain mode is used, otherwise
high-gain mode is used. The aim of this procedure is to
provide the greatest possible image contrast. Figure 4.15
shows graphs of low and high gain modes, and Table 4.4
gives minimum and maximum radiances for the two gain
settings for all bands including the panchromatic band,
which is labelled as band 8. Irish (2002) gives details of
the gain settings used for different targets.

Conversion of Landsat ETM+ counts (Q) to radiance
units (L) is accomplished using the following equation:

Lλ = GλQ + Oλ

The gain (G) and offset (O) values for spectral band λ

should be read from the metadata provided with the image
data. Use of the values contained in the metadata will
provide a more accurate estimate of the spectral radiance.

An alternative to the use of absolute calibration pro-
cedures for the determination of reflectance factors for
Landsat data is to use one of the images in a multi-
temporal image set as a reference and adjust other images
according to some statistical relationship with the refer-
ence image. Thus, Elvidge et al. (1995) use a regression
procedure to perform relative radiometric normalisation
of a set of Landsat MSS images. Their procedure assumes
that land cover has not changed and that the vegetation
is at the same phenological stage in all images. A similar
approach is used by Olsson (1993).

The corresponding expression for SPOT HRV uses
calibration coefficients derived from the header data pro-
vided with the image. Table 4.5 shows a part of the output
generated by the MIPS program. The header data refer
to a SPOT-1 multispectral (XS) image of the Camargue
area of southern France, acquired on 12 January 1987,
and gain values ai for the three multispectral channels
are provided. Note that all of the offset values are zero.
The apparent radiance of a given pixel is calculated from:

L = PV/a1

where a1 is the gain coefficient, and PV and L are as
defined earlier. These coefficients are updated regularly
(Begni, 1988; Begni et al., 1988; Moran et al., 1990).
These apparent radiance values must be further corrected
if imagery acquired from SPOT in off-nadir viewing
mode is used (Moran et al., 1990; Muller, 1993).
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Table 4.5 Extract from SPOT header file showing radiometric gains and offsets.

Scene ID S1H1870112102714

Scene centre latitude N0434026

Scene centre longitude E0043615

Spectral mode (XS or PAN) XS

Preprocessing level
identification

1B

Radiometric calibration
designator

1

Deconvolution designator: 1

Resampling designator: CC

Pixel size along line: 20

Pixel size along column: 20

Image size in map
projection along y axis

059792

Image size in map
projection along x axis

075055

Sun calibration operation
date

19861115

This is a multispectral image

Absolute calibration gains 00.86262 00.79872 00.89310

Absolute calibration offsets 00.00000 00.00000 00.00000

The procedure for conversion of ASTER visible and
short wave infrared data (Table 2.4) expressed in counts
to radiance units is similar to that described above for
SPOT and ETM+ data. The sensor has a number of
different gain settings, which can be selected in order to
produce a high signal-to-noise ratio for different targets.
Table 4.5 shows the maximum radiance values for each
band for the high, normal, low 1 and low 2 gain settings.
In bands 1–9, pixel values 1–254 represent zero radiance
and maximum radiance, respectively. The magnitude of
the radiance represented by a change of unity in the
quantisation level for band 1, for example increases
from 0.6751 (high gain) to 1.6877 (normal gain) to
2.2490 W m−2sr−1µm−1. Thus, high gain mode can be
used for images of regions of low reflectance while
low-gain mode is used in regions of high reflectance
in order to avoid saturation (which occurs when the
radiance received by the sensor exceeds the maximum
radiance that can be quantized). The gain setting for any
specific image is contained in the metadata. See Table
4.6 for maximum radiance values for ASTER’s high,
normal and low gain modes.

Given the value of radiance at the sensor (L) it is
usual to convert to apparent reflectance, that is, the total
reflectance (from target and atmosphere) at the sensor.
This value is also known as at-satellite reflectance. Of
course, if the image has been corrected for atmospheric

effects then the value computed by the equation below
is an estimate of actual target reflectance. Conversion
to reflectance is accomplished for each individual band
using the expression:

ρ = πLd2

Es cos θs

L is the radiance computed as described earlier, Es is the
exoatmospheric solar irradiance (Markham and Barker,
1987; Price, 1988; Table 4.6), d is the relative Earth-Sun
distance in astronomical units (the mean distance is 1.0
AU) for the day of image acquisition, and θs is the solar
zenith angle. The Earth–Sun distance correction factor is
required because there is a variation of around 3.5% in
solar irradiance over the year. The value of d is provided
by the formula:

d = 1 − 0.01674 cos[0.9856(JD − 4)]

JD is the ‘Julian day’ of the year, that is the day num-
ber counting 1 January = 1. A utility to calculate the JD
is available via the Utilities|Julian Dates function
in MIPS. The module actually calculates the number of
days that have elapsed since a reference calendar date
since the start of the first millennium, though most read-
ers will wish to compute elapsed days since the start of
a given year. The program is useful in computing the
time-dependent offset and gain values from the formu-
lae given in Thome et al. (1993), described above, which
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Table 4.6 Maximum radiance for different gain settings for the ASTER VNIR and
SWIR spectral bands.

Maximum radiance (W m−2 sr−1 µm−1)

Band number High gain Normal gain Low gain 1 Low gain 2

1 170.8 427 569 N/A

2 179.0 358 477

3N 106.8 218 290

3B 106.8 218 290

4 27.5 55.0 73.3 73.3

5 8.8 17.6 23.4 103.5

6 7.9 15.8 21.0 98.7

7 7.55 15.1 20.1 83.8

8 5.27 10.55 14.06 62.0

9 4.02 8.04 10.72 67.0

require the number of days that have elapsed since the
launch of Landsat-5 (1 March 1984). Table 4.7 con-
tains details of solar exo-atmospheric spectral irradiance
for both the Landsat TM and ETM+ instruments. Com-
parisons of the radiometric characteristics of these two
instruments are provided by Teillet et al. (2001), Masek
et al. (2001) and Vogelmann et al. (2001). Thome et al.
(1997) give details of Landsat TM radiometric calibra-
tion, while Thome (2001) discusses the absolute calibra-
tion of Landsat ETM+ data. Apparent reflectance is used
by Huang et al. (2002c) to permit comparison of images
collected under different illumination conditions.

Calibration of SAR imagery requires the recovery of
the normalised radar cross-section (termed sigma-nought
or σ0 and measured in terms of decibels, dB). The range
of σ0 values is from +5 dB (very bright target) to −40dB
(very dark target). Meadows (1995) notes that the purpose
of calibration is to determine absolute radar cross-section
measurements at each pixel position, and to estimate drift
or variation over time in the radiometric performance of
the SAR. Calibration can be performed in three ways:
by imaging external calibration targets on the ground, by
the use of internal calibration data, or by examining raw
data quality. Laur et al. (2002) give details of calibration
of ERS SAR data and the derivation of σ0. Loew and
Mauser (2007) discuss the calibration of SAR data and
the removal of terrain effects, which is considered next.

4.7 Terrain Effects

The corrections required to convert ETM+ and SPOT
HRV data described in Section 4.6 assume that the area
covered by the image is a flat surface that is imaged
by a narrow field of view sensor. It was noted in

Section 4.6 that apparent reflectance depends also on
illumination and view angles, as target reflectance is
generally non-Lambertian. That discussion did not refer
to the commonly observed fact that the Earth’s surface
is not generally flat. Variations in reflectance from
similar targets will occur if these targets have a different
topographic position, even if they are directly illumi-
nated by the Sun. Therefore, the spectral reflectance
curves derived from multispectral imagery for what is
apparently the same type of land cover (for example
wheat or coniferous forest) will contain a component that
is attributable to topographic position, and the results of
classification analyses (Chapter 8) will be influenced by
this variation, which is not necessarily insignificant even
in areas of low relief (Combal and Isaka, 2002). Various
corrections have been proposed for the removal of the
‘terrain illumination effect’. See Li, Daels and Antrop
(1996), Proy, Tanré and Deschamps (1989), Teillet,
Guindon and Goodenough (1982), Woodham (1989) and
Young and Kaufman (1986) for reviews of the problem.
Danaher, Xiolaing and Campbell (2001) and Danaher
(2002) propose an empirical BRDF correction for
Landsat TM and ETM+ images based on the conversion
of pixel values to top-of-atmosphere reflectances, as
described in the preceding section, and an empirical
BRDF model.

Correction for terrain illumination effects requires a
DEM that is expressed in the same coordinate system
as the image to be corrected. Generally, the image is
registered to the DEM, as the DEM is likely to be map-
based. The DEM should also be of a scale which is close
to that of the image, so that accurate estimates of slope
angle and slope direction can be derived for each pixel
position in the image. A number of formulae are in com-
mon use for the calculation of slope and aspect ‘images’
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Table 4.7 Exo-atmospheric solar irradiance for (a) Landsat TM, (b) Landsat ETM+, (c) SPOT HRV (XS) bands and ASTER
(Markham and Barker, 1987; Price, 1988; Teillet and Fedosejevs, 1995; Irish, 2008 Thome, personal communication). The
centre wavelength is expressed in micrometres (µm) and the exo-atmospheric solar irradiance in mW cm−2sr−1µm−1. See also
Guyot and Gu (1994), Table 2.

(a) Landsat Thematic Mapper

Landsat TM/ETM+
band number

Centre
wavelength

Centre wavelength
(Teillet and Fedosejevs,
1995)

Exo-atmospheric
spectral irradiance

Exo-atmospheric spectral
irradiance (Teillet and
Fedosejevs, 1995)

1 0.486 0.4863 195.70 195.92

2 0.570 0.5706 192.90 182.74

3 0.660 0.6607 155.70 155.50

4 0.840 0.8832 104.70 104.08

5 1.676 1.677 21.93 22.075

7 2.223 2.223 7.45 7.496

(b) Landsat enhanced thematic mapper plus (ETM+)

Band Bandwidth
(µm)

Exo-atmospheric
spectral irradiance

1 0.450–0.515 196.9

2 0.525–0.605 184.0

3 0.630–0.690 155.1

4 0.775–0.900 104.4

5 1.550–1750 22.57

7 2.090–2.350 8.207

8 0.520–0.900 136.8

(c) SPOT high resolution visible (HRV)

SPOT
HRV
band no

Centre
wavelength

Exo-amospheric
spectral
irradiance

1 0.544 187.48

2 0.638 164.89

3 0.816 110.14

(d) ASTER

ASTER
band no

Bandwidth
(µm)

Exo-
atmospheric
spectral
irradiance

1 0.520–0.600 1846.9

2 0.630–0.690 1546.0

3 0.780–0.860 1117.6

4 1.600–1.700 232.5

5 2.145–2.185 80.32

6 2.185–2.225 74.92

7 2.235–2.285 69.20

8 2.295–2.365 59.82

9 2.360–2.430 57.32



Preprocessing of Remotely-Sensed Data 123

from a DEM and different results may be determined
by different formulae (Bolstad and Stowe, 1994; Carara,
Bitelli and Carla 1997; Hunter and Goodchild, 1997).
A simple method to correct for terrain slope in areas
that receive direct solar illumination is simply to use the
Lambertian assumption (that the surface reflects radia-
tion in a diffuse fashion, so that it appears equally bright
from all feasible observation angles). This cosine correc-
tion is mentioned above. It involves the multiplication of
the apparent reflection for a given pixel by the ratio of
the cosine of the solar zenith angle (measured from the
vertical) by the cosine of the incidence angle (measured
from the surface normal, which is a line perpendicular to
the sloping ground). Teillet, Guindon and Goodenough
(1982, p. 88) note that this correction is not particularly
useful in areas of steep terrain where incidence angles
may approach 90◦. Feng, Rivard and Sánchez-Azofeifa
(2003) describe a terrain correction for imaging spec-
trometer data (Chapter 9) based on the assumption of
Lambertian behaviour.

Non-Lambertian models include the Minnaert cor-
rection , which is probably the most popular method of
computing a first-order correction for terrain illumination
effects (though the method does not include any correc-
tion for diffuse radiation incident on a slope). Values of
slope angle and slope azimuth angles are needed, so a
suitable DEM is required. The Lambertian model can be
written as:

L = LN cos(i)

where L is the measured radiance, LN is the equivalent
radiance on a flat surface with incidence angle of zero
and i is the exitance angle. The Minnaert constant, k ,
enters into the non-Lambertian model as follows:

LN = L cos(e)

cosk(i) cosk(e)

where i , L and LN are defined as before and e is the
angle of exitance, which is equal to the slope angle (βt

in the equation below). The value of cos(i ) is found from
the relationship

cos(i) = cos(θs) cos(βt) + sin(θs) sin(βt) cos(φs − φt)

with θs being the solar zenith angle, βt the slope angle, φs

the solar azimuth angle and φt the slope azimuth angle.
The value of the incidence angle, i , will be in the range
0 − 90◦ if the pixel under consideration receives direct
illumination. If the value of i falls outside this range
then the pixel lies in shadow.

The value of the Minnaert constant k is the slope of
the least-squares line relating y = log(L cos(e)) and x =
log(cos(i) cos(e)). Most surfaces have k values between
0 and 1; k = 1 implies Lambertian reflectance while k > 1
implies a dominance of the specular reflectance compo-
nent. Once k has been determined then the equivalent

radiance from a flat surface can be calculated. However,
the value of k depends on the nature of the ground cover,
and so would vary over the image even in the absence
of any other control. Since a sample of pixels is required
in order to estimate the slope of the least-squares line
relating log(L cos(e)) and log(cos(i ) cos(e)) it might be
necessary to segment the image into regions of similar
land cover type and calculate a value of k for each type.
Often, however, the purpose of performing a terrain illu-
mination correction is to improve the identification of
land cover types, hence the problem takes on circular
proportions. An iterative approach might be possible, in
which classification accuracy assessment (Chapter 8) is
used as a criterion. However, a simpler approach would
be to calculate an average k value for the whole image.
Useful references include Bishop and Colby (2002), Ble-
sius and Weirich (2005), Gitas and Devereux (2006), Gu
et al. (1999) and Hale and Rock (2003). Riaño et al.
(2003) provide a useful comparative survey of methods.

Parlow (1996) describes a method for correcting
terrain-controlled illumination effects using a simulation
model of solar irradiance on an inclined surface. The
short wave irradiance model (SWIM) computes both
direct and diffuse components of irradiance for given
atmospheric conditions and allows the conversion of
satellite-observed radiances to equivalent radiances for a
flat surface. Note that the Minnaert method, described
in the preceding paragraphs, does not consider diffuse
illumination. Parlow (1996) shows that correction of
the image data for terrain illumination effects produces
superior classification performance (Chapter 8). Further
references are Conese et al. (1993), Costa-Posada and
Devereux (1995), Egbert and Ulaby (1972), Hay and
Mackay (1985), Hill, Mehl and Radeloff (1995), Huang
et al. (2008), Jones, Settle and Wyatt (1988), Katawa,
Ueno and Kusaka (1986), Mitri and Gitas (2004) and
Smith, Lin and Ranson (1980).

4.8 Summary

Methods of preprocessing remotely-sensed imagery are
designed to compensate for one or more of (i) cosmetic
defects, (ii) geometric distortions, (iii) atmospheric inter-
ference and (iv) variations in illumination geometry, to
calibrate images for sensor degradation, and to correct
image pixel values for the effects of topography. The
level of preprocessing required will depend on the prob-
lem to which the processed images are to be applied.
There is therefore no fixed schedule of preprocessing
operations that are carried out automatically prior to the
use of remotely-sensed data. The user must be aware of
the geometrical properties of the image data and of the
effects of external factors (such as the level of, and vari-
ations in, atmospheric haze) and be capable of selecting
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an appropriate technique to correct the defect or estimate
the external effect, should that be necessary.

The material covered in this chapter represents the
basic transformations that must be applied in order to
recover estimates of ground-leaving radiance. The devel-
opment of models requiring such estimates as input has
expanded in recent years. Equally importantly, the use of
remote sensing to measure change over time is becoming
more significant in the context of global environmental

change studies. Multitemporal analysis, the comparison
of measurements derived by different sensors at differ-
ent points in time, and the determination of relationships
between target radiance and growth and health character-
istics of agricultural crops are examples of applications
that require the application of corrections described in
this chapter. Procedures to accomplish these corrections
are not well formulated at present, and the whole area
requires more research and investigation.



5 Image Enhancement Techniques

5.1 Introduction

The ways in which environmental remote sensing satellite
and aircraft systems collect digital images of the Earth’s
surface is described in Chapters 1–3. In these chapters,
a remotely-sensed image is characterized as a numerical
record of the radiance leaving each of a number of small
rectangular areas on the ground (called pixels) in each of
a number of spectral bands. The range of radiance values
at each pixel position is represented (quantized) in terms
of a scale which is normally 8 or more bits in magnitude,
depending on the type of scanner that is used and on the
nature of any processing carried out at the ground station.
Each pixel of a digital multispectral image is thus associ-
ated with a set of numbers, with one number per spectral
band. For example, Landsat ETM+ provides seven bands
of multispectral data, and each pixel can therefore be rep-
resented as a group (mathematically speaking, a vector or
a set) of seven elements, each expressed on the 0–255
(8 bit) range.

A digital image can therefore be considered as a three-
dimensional rectangular array or matrix of numbers, the
x - and y-axes representing the two spatial dimensions
and the z -axis the quantized spectral radiance (pixel value
(PV)). A fourth dimension, time, could be added, since
satellite data are collected on a routine and regular basis
(every 16 days for Landsat-7, for example). The elements
of this matrix are numbers in the range 0–2n−1 where n is
the number of bits used to represent the radiance recorded
for any given pixel in the image. As described in Section
3.2, image data that are represented by more than n = 8
bits per pixel must be scaled to 8 bit representation before
they can be stored in the computer’s display memory and
viewed on the monitor.

Visual analysis and interpretation are often sufficient
for many purposes to extract information from remotely-
sensed images in the form of standard photographic
prints. If the image is digital in nature, such as the satel-
lite and aircraft-acquired images considered in this book,
a computer can be used to manipulate the image data
and to produce displays that satisfy the particular needs
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of the interpreter, who may need, for example to produce
an image map for use in a geographical information
system (GIS). In this chapter, methods of enhancing
digital images are considered. The term enhancement
is used to mean the alteration of the appearance of an
image in such a way that the information contained in
that image is more readily interpreted visually in terms
of a particular need. Since the choice of enhancement
technique is problem-dependent, no single standard
method of enhancement can be said to be ‘best’, for the
needs of each user will differ. Also, the characteristics
of each image in terms of the distribution of PVs over
the 0–255 display range will change from one image
to another; thus, enhancement techniques suited to one
image (for example covering an area of forest) will
differ from the techniques applicable to an image of
another kind of area (for example the Antarctic ice-cap).

There are a number of general categories of enhance-
ment technique and these are described in the following
sections. As in many other areas of knowledge, the dis-
tinction between one type of analysis and another is a
matter of personal taste; some kinds of image transfor-
mations (Chapter 6) or filtering methods (Chapter 7) can,
for instance, reasonably be described as enhancement
techniques. In this chapter we concentrate on ways of
improving the visual interpretability of an image by one
of two methods:

1. Altering image contrast and
2. Converting from greyscale to colour representation.

The first group of techniques consists of those methods
which can be used to compensate for inadequacies of
what, in photographic terminology, would be called
‘exposure’; some images are intuitively felt to be ‘too
dark’, while others are over-bright. In either case,
information is not as easily comprehended as it might be
if the contrast of the image were greater. In this context,
contrast is simply the range and distribution of the PVs
over the 0–255 scale used by the computer’s display
memory. The second category includes those methods
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that allow the information content of greyscale image to
be re-expressed in colour. This is sometimes desirable,
for the eye is more sensitive to variations in hue than to
changes in brightness.

The chapter begins with a brief description of the
human visual system, since the techniques covered in
the following sections are fundamentally concerned with
the visual comprehension of information displayed in
image form.

5.2 Human Visual System

There are a number of theories that seek to explain the
manner in which the human visual system operates. The
facts on which these theories are based are both physical
(to do with the external, objective world) and psycholog-
ical (to do with our internal, conscious world). Concepts
like ‘red’ and ‘blue’ are an individual’s internal or sen-
sory response to external stimuli. Light reaching the eye
passes through the pupil and is focused onto the retina by
the lens (Figure 5.1a,b). The retina contains large num-
bers of light-sensitive photoreceptors, termed rods and
cones. These photoreceptors are connected via a network
of nerve fibres to the optic nerve, along which travel the
signals that are interpreted by the brain as images of our
environment.

There are around 100 million rod-shaped cells on the
retina, and 5 million cone-shaped cells. Each of these
cells is connected to a nerve, the junction being called a
synapse. The way in which these cells respond to light
is through alteration of a molecule known as a chro-
mophore. Changes in the amount of light reaching a
chromophore produce signals that pass through the nerve
fibre to the optic nerve. Signals from the right eye are
transmitted through the optic nerve to the left side of the
brain, and vice versa.

It is generally accepted that the photoreceptor cells,
comprising the rods and cones, differ in terms of their
inherent characteristics. The rod-shaped cells respond to
light at low illumination levels, and provide a means of
seeing in such conditions. This type of vision is called
scotopic. It does not provide any colour information,
though different levels of intensity can be distinguished.
Cone or photopic vision allows the distinction of colours
or hues and the perception of the degree of saturation
(purity) of each hue as well as the intensity level. How-
ever, photopic vision requires a higher illumination level
than does scotopic vision. Colour is thought to be asso-
ciated with cone vision because there are three kinds of
cones, each kind being responsive to one of the three pri-
mary colours of light (red, green and blue (RGB)). This
is called the tristimulus theory of colour vision. Experi-
ments have shown that the number of blue-sensitive cones
is much less than the number of red- or green-sensitive
cones, and that the areas of the visible spectrum in which
the three kinds of cones respond do, in fact, overlap
(Figure 5.2). There are other theories of colour (Fairchild,
2005; Malacara, 2002) but the tristimulus theory is an
attractive one not merely because it is simple but because
it provides the idea that colours can be formed by adding
RGB light in various combinations. Bruce, Green and
Georgeson (2003) is a more advanced book covering the
physiological and psychological processes of visual per-
ception. Other useful references are Tovée (1996) and the
computer vision literature, for example Faugeras (1993)
and Shapiro and Stockman (2001). Drury (2004) dis-
cusses the properties of the human visual system in rela-
tion to the choice of techniques for processing remotely
sensed images for geological applications.

A model of ‘colour space’ can be derived from the
idea that colours are formed by adding together differ-
ing amounts of RGB. Figure 5.3 shows a geometrical
representation of the RGB colour cube. The origin is

Cornea
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Retina
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nerve

Figure 5.1 (a) Simplified diagram of the human eye. (b) Senior author’s retina. Arteries and veins are clearly visible, and they
converge on the optic nerve, which appears in a lighter colour. Rods and cones on the surface of the retina are tiny, and are
only visible at a much greater magnification. Courtesy Thomas Bond and Partners, Opticians, West Bridgford, Nottingham.



Image Enhancement Techniques 127

100

80

60

40

20

0

400 500 600 700

RedViolet Wavelength (nm)

Blue (x20)

Green

Red

R
el

at
iv

e 
se

ns
iti

vi
ty

Figure 5.2 Sensitivity of the eye to red, green and blue light.
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Figure 5.3 Red–green–blue colour cube.

at the vertex of the cube marked ‘black’ and the axes
are black–red, black–green and black–blue. A specific
colour can be specified by its coordinates along these
three axes. Black represents the absence of colour. These
coordinates are termed (R, G, B) triples. Notice that white
light is formed by the addition of maximum red, maxi-
mum green and maximum blue light. The line joining the
black and white vertices of the cube represents colours
formed by the addition of equal amounts of RGB light;
these are shades of grey. Colour television makes use
of the RGB model of colour vision. A cathode ray tele-
vision screen is composed of an array of dots, each of
which contains RGB-sensitive phosphors. Colours on the
screen are formed by exciting the RGB phosphors in dif-
fering proportions. If the proportions of RGB were equal
at each point (but varying over the area of the screen)

a greyscale image would be seen. A colour picture is
obtained when the amounts of RGB at each point are
unequal, and so – in terms of the RGB cube – the colour
at any pixel is represented by a point that is located away
from the black-white diagonal line. Flat screen technol-
ogy using a liquid crystal display (LCD) and thin film
transistor (TFT) allows light from a fluorescent source to
pass through RGB liquid crystals with intensity propor-
tional to the voltage at that point. The number of points
(representing image pixels) is determined by screen size.
Each pixel can be addressed separately and a picture pro-
duced in a way that is conceptually similar to the image
on a conventional cathode ray tube (CRT) display. LCD
screens can be much bigger than CRT; commercial TVs
with a diagonal screen size of 52 inches (132 cm) are
readily available.

The RGB colour cube model links intuitively with
the tristimulus theory of colour vision and also with the
way in which a colour television monitor works. Other
colour models are available which provide differing
views of the nature of our perception of colour. The
hue–saturation–intensity (HSI) model uses the concepts
of hue, saturation and intensity to explain the idea of
colour. Hue is the dominant wavelength of the colour we
see; hues are given names such as red, green, orange and
magenta. The degree of purity of a colour is given by
its saturation. Intensity is a measure of the brightness of
a colour. Figure 5.4 shows a geometrical representation
of the HSI model. Hue is represented by the top edge
of a six-sided cone (hexcone) with red at 0◦, green at
120◦ and blue at 240◦, then back to red at 360◦. Pure
unsaturated and maximum intensity colours lie around
the top edge of the hexcone. Addition of white light
produces less saturated, paler, colours and so saturation
can be represented by the distance from the vertical
axis of the hexcone. Intensity (sometimes called value)
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Figure 5.4 Hue–saturation–intensity (HSI) hexcone.
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is shown as a distance above the apex of the hexcone,
increasing upwards as shown by the widening of the
hexcone. The point marked black has no hue, nor do any
of the shades of grey lying on the vertical axis between
the black and white points. All these shades of grey,
including white and black, have zero saturation.

The RGB model of colour is that which is normally
used in the study and interpretation of remotely-sensed
images, and in the rest of this chapter we will deal exclu-
sively with this model. The use of the HSI model is
considered in Chapter 6 in common with other image
transforms, for the representation of colours in terms of
the HSI model can be accomplished by a straightforward
transformation of the RGB colour coordinates. The HSI
transform can be used to enhance multispectral images
in terms of their colour contrast (Section 5.3).

5.3 Contrast Enhancement

The sensors mounted onboard aircraft and satellites have
to be capable of detecting upwelling radiance levels rang-
ing from low (for example over oceans) to very high (for
example over snow or ice). For any particular area that
is being imaged it is unlikely that the full dynamic range
from 0 to (2n − 1) levels of the sensor will be used and
the corresponding image is dull and lacking in contrast or
over-bright. In terms of the RGB colour cube model of
Section 5.2 the PVs are clustered around a narrow section
of the black–white axis (Figure 5.3). Not much detail can
be seen on such images, which are either underexposed
or overexposed in photographic terms. If the range of
levels used by the display system could be altered so as
to fit the full range of the black-white axis of Figure 5.3
then the contrast between the dark and light areas of the
image would be improved while maintaining the relative
distribution of the grey levels.

5.3.1 Linear Contrast Stretch

In its basic form the linear contrast-stretching technique
involves the translation of the image PVs from the
observed range Vmin to Vmax to the full range of the
display device (generally 0–255, which assumes an 8-bit
display memory; see Chapter 3). V is a PV observed in
the image under study, with Vmin being the lowest PV
in the image and Vmax the highest. The PVs are scaled
so that Vmin maps to a value of 0 and Vmax maps to a
value of 255. Intermediate values retain their relative
positions, so that the observed PV in the middle of the
range from Vmin to Vmax maps to 127. Notice that we
cannot map the middle of the range of the observed PVs
to 127.5 (which is exactly half way between 0 and 255)
because the display system can store only the discrete
levels 0, 1, 2, . . . , 255.

Some dedicated image processing systems include a
hardware lookup table (LUT) that can be set so that the
colour that you see at a certain pixel position on the
screen is a mapping or modification of the colour in the
corresponding position in the display memory. The colour
code in the display memory remains the same, but the
mapping function may transform its value, for example
by using the linear interpolation procedure described in
the preceding paragraph. The fact that the colour values in
the display memory are not altered can be a major advan-
tage if the user has adopted a trial and error approach to
contrast enhancement. The mapping is accomplished by
the use of a LUT that has 256 entries, labelled 0–255.
In its default state, these 256 elements contain the val-
ues 0–255. A PV of, say, 56 in the display memory is not
sent directly to the screen, but is passed through the LUT.
This is done by reading the value held in position 56 in
the LUT. In its default (do nothing) state, entry 56 in the
LUT contains the value 56, so the screen display shows
an image of what is contained in the display memory. To
perform a contrast stretch, we first realize that the number
of separate values contained in the display memory for
a given image is calculated as (Vmax − Vmin + 1), which
must be 256 or less for an 8-bit display. All LUT out-
put values corresponding to input values of Vmin or less
are set to zero, while LUT output values correspond-
ing to input values of Vmax or more are set to 255. The
range Vmin − Vmax is then linearly mapped onto the range
0–255, as shown in Figure 5.5. Using the LUT shown in
this figure, any pixel in the image having the value 16 (the
minimum PV in the image) is transformed to an output
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Figure 5.5 Graphical representation of lookup table to map
input pixel values 16–191 on to the full intensity range 0–255.
Input values less than 16 are set to 0 on output. Input values of
191 or greater are set to 255 on output. Input values between
16 and 191 inclusive are linearly interpolated to output values
0–255.
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value of 0 before being sent to the digital-to-analogue
converter and thence to the display screen. All input val-
ues of 191 and more are transformed to output values
of 255. The range of input values between 16 and 191 is
linearly interpolated onto the full dynamic range of the
display device, assumed in this example to be 0–255. If
a colour (RGB) image is being stretched then the process
is repeated separately for each of the components (R then
G then B). Figure 5.6a shows a Landsat-7 ETM+ image
of the south-east corner of The Wash in eastern England.
The un-stretched image is shown. The histograms of the
RGB inputs (corresponding to Landsat ETM+ bands 4,
3 and 2, respectively) are shown in Figure 5.6b. The
histograms are calculated from the image PVs, and are
simply counts of the number of PVs having the value 0,
1, . . . , 255. Recall that low PVs generate darker shades.
The histograms in Figure 5.6b indicate that the image is
dark (we can see that from Figure 5.6a but the histogram
allows the quantification of the degree of darkness and
lightness, and it plays a key role in the methods of image
enhancement that are discussed in this chapter).

Figure 5.7a shows the image in Figure 5.6a after a lin-
ear contrast stretch in which the highest PV in each of the
three bands is stretched to the value 255 and the lowest
value is stretched to 0, thus using the full 0–255 dynamic
range. Figure 5.7b is the histogram of each channel after
the stretch has been applied. The difference between the
stretched and raw image is not great.

A slight modification can be used to provide a little
more user interaction. The basic technique, as described
above, does not take into consideration any characteristic
of the image data other than the maximum and minimum
PVs. These values may be outliers, located well away
from the rest of the image data values. If this were the
case, then it could be observed if the image histogram
were computed and displayed. It is a relatively straight-
forward matter to find the 5th and 95th (or any other
usually symmetrical pair of) percentile values of the dis-
tribution of PVs from inspection of the image histogram.
The fifth percentile point is that value exceeded by 95%
of the image PVs, while the 95th percentile is the PV
exceed by 5% of all PVs in the image. If, instead of
Vmax and Vmin we use V95% and V5% then we can carry
out the contrast enhancement procedure so that all PVs
equal to or less than V5% are output as zero while all
PVs greater than V95% are output as 255. Those values
lying between V5% and V95% are linearly mapped (inter-
polated), as before, to the full brightness scale of 0–255.
Again, this technique is applied separately to each com-
ponent (RGB) of a false-colour image. Of course, values
other than the 5th and 95th percentiles could be used; for
example one might elect to choose the 10th and 90th per-
centiles, or any other pair. The chosen percentage points
are usually symmetric around the 50% point, but not

necessarily so. Figure 5.8a,b illustrates the application
of a 5% linear contrast stretch.

Some image data providers use the value zero as a
‘bad pixel’ indicator. Others pad a geometrically cor-
rected image (Section 4.3) with 0 pixel. These are called
zero-fill pixels. We normally do not want to count these
pixels in the image histogram, as their inclusion would
bias the histogram. Most software allows 0 pixel to be
ignored. Another possibility is that interest centres around
a particular part of the 0–255 brightness range, such as
180–250. It is possible to stretch this range so that a
PV of 180 maps to zero, and a PV of 250 maps to 255
with values 181–249 being interpolated linearly. Values
outside the 180–250 range remain the same. This kind
of contrast stretch destroys the relationship between PV
and brightness level, but may be effective in visualiza-
tion of a particular aspect of the information content of
the image. Example 5.1 illustrates the use of the linear
contrast stretch.

5.3.2 Histogram Equalization

The whole image histogram, rather than its extreme
points, is used in the more sophisticated methods of
contrast enhancement. Hence, the shape as well as the
extent of the histogram is taken into consideration.
The first of the two methods described here is called
histogram equalization. Its underlying principle is
straightforward. It is assumed that in a well-balanced
image the histogram should be such that each brightness
level contains an approximately equal number of PVs,
so that the histogram of these displayed values is
almost uniform (though not all 256 available levels are
necessarily non-zero). If this operation, called histogram
equalization, is performed then the entropy of the image,
which is a measure of the information content of the
image, will be increased (Section 2.2.3). Because of the
nature of remotely-sensed digital images, whose pixels
can take on only the discrete values 0, 1, 2, . . . , 255 it
may be that there are ‘too many’ PVs in one class, even
after equalization. However, it is not possible to take
some of the values from that over-populated class and
redistribute them to another class, for there is no way of
distinguishing between one PV of ‘x ’ and another of the
same value. It is rare, therefore, for a histogram of the
PVs of an image to be exactly uniformly distributed after
the histogram equalization procedure has been applied.

The method itself involves, firstly, the calculation of
the target number of PVs in each class of the equalized
histogram. This value (call it nt) is easily found by divid-
ing N , the total number of pixels in the image, by 256
(the number of histogram classes, which is the number
of intensity levels in the image). Next, the histogram of
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Figure 5.6 (a) Raw Landsat-7 ETM+ false colour composite image (using bands 4, 3 and 2 as the RGB inputs) of the south-east
corner of The Wash, an embayment in eastern England. The River Ouse can be seen entering The Wash. (b) Frequency
histograms of the 256 colour levels used in the RGB channels. Landsat data courtesy NASA/USGS.
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Figure 5.7 (a) Image shown in Figure 5.6a after a linear contrast stretch in which the minimum and maximum histogram values
in each channel are set to 0 and 255 respectively. (b) The histograms for the stretched image.
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Figure 5.8 (a) Linear contrast stretch applied to the image shown in Figure 5.6a. The 5th and 95th percentile values of the
cumulative image histograms for the RGB channels are set to 0 and 255 respectively and the range between the 5th and 95th
percentiles is linearly interpolated onto the 0–255 scale. (b) Image histograms corresponding to the RGB channels (Landsat TM
bands 4, 3 and 2). Landsat data courtesy NASA/USGS.
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Example 5.1: Linear Contrast Stretch

This example uses the image set that is referenced by the image dictionary file missis.inf , so you should ensure
that this file (and the referenced image files) are available. The image file set consists of seven Landsat TM bands
of an area of the Mississippi River south of Memphis, TN, USA. The images have 512 lines of 512 pixels.

Use View|Display Image to select missis.inf as the current image dictionary file. Display band 4
(misstm4.img) in greyscale. The default state of the LUT is to map a pixel intensity value of x (on the range
0–255) to a display value of x , also on the range 0–255. If the PVs in the image are low, then the image will
appear dark. Example 5.1 Figure 1 shows an image that is so dark that it may as well have been taken at night.
The distribution of image PVs can be seen by displaying the image histogram (Plot|Histogram), and it is
immediately clear why the image is so dark – its dynamic range is very low (Example 5.1 Figure 2). The extreme
values are 4 and 79, though the majority of the PVs are in the range 10–55.

Example 5.1 Figure 1. Band 4 of Landsat-4 TM image of the Mississippi River near Memphis (details in the file
missisp.inf). The dynamic range of the image is very low, and no detail can be seen. The histogram of this image is
shown in Example 5.1 Figure 2.

Now choose Enhance|Stretch and, if there is more than one image on the screen, select the appropriate
window. Click the button with the caption Automatic Stretch and the image shown in Example 5.1 Figure 3
is generated, and displayed in a new window. The Automatic Stretch sets the LUT so that the actual range of the
data −xmin to xmax− is mapped linearly onto the output brightness range of 0–255. Use Plot|Histogram to view
the histogram of the automatically stretched image (Example 5.1 Figure 4).

Although the image shown in Example 5.1 Figure 3 is much easier to see than the image shown in Example 5.1
Figure 1, it is still rather dark, possibly because xmin and xmax, the extreme pixel intensity values, are outliers. Try
a third experiment. Choose Enhance|Stretch again, and this time click User percentage limits. An input
box will appear, with space for you to enter a lower value and an upper value. If you enter 0 and 100% then the

(Continues on next page)
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Example 5.1 Figure 2. Histogram of the image shown in Example 5.1 Figure 1. The narrow peak at a pixel value of 14–15
represents water. The main, wider peak represents land. There are few pixel values greater than 58–60, so the image is dark.
The range of pixel values is not great (approximately 8–60) and so contrast is low.

Example 5.1 Figure 3. The image shown in Example 5.1 Figure 1 after an automatic linear contrast stretch. The automatic
stretch maps the dynamic range of the image (8–60 in this case) to the dynamic range of the display (0–255). Compare the
histogram of this image (Example 5.1 Figure 4) with the histogram of the raw image (Example 5.1 Figure 2).

minimum and maximum values in the data, xmin and xmax, will be used as the limits of the linear stretch, just as
if you had chosen Automatic Stretch. What is needed is to chop off the extreme low and the extreme high
PVs. Look at the histogram of the raw image (Example 5.1 Figure 2) again. The extreme values (from visual
inspection) appear to be 8 and 58, yet the lowest PV is 4 and the highest is 79. These relatively few low and high
values are distorting the automatic stretch. If we ignore the lowest 5% and the highest 5% of the PVs then we
may see an improvement in image brightness. You actually enter 5 and 95 in the two boxes because they represent
the percentages of pixels that are lower than the specified percentage points – in other words, we specify the 5th
and 95th percentiles. The result is shown in Example 5.1 Figure 5, and the corresponding histogram is shown in
Example 5.1 Figure 6.
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Example 5.1 Figure 4. Histogram of the contrast-stretched image shown in Example 5.1 Figure 3. Although the lower bound
of the dynamic range of the image has been changed from its original value of 8 to 0, the number of pixels with values greater
than 182 is relatively low. This is due to the presence of a small number of brighter pixels that are not numerous enough to
be significant, but which are mapped to the white end of the dynamic range (255).

Example 5.1 Figure 5. The same image as shown in Example 5.1 Figures 1 and 3. This time, a percentage linear contrast
stretch has been applied. Rather than map the lowest image pixel value to an output brightness value of zero, and the highest
to 255, 2 pixel values are found such that 5% of all image pixel values are less than the first value and 5% are greater than
the second. These two values are then mapped to 0 and 255 respectively.
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Example 5.1 Figure 6. Histogram of the image shown in Example 5.1 Figure 5. A percentage linear contrast stretch (using
the 5 and 95% cutoff points) has been applied. The displayed image is now brighter and shows greater contrast than the
image in Example 5.1 Figure 3.

(Continues on next page)
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Example 5.1 Figure 7. Contrast stretching can be applied to all three bands of a natural or false colour composite. (a) raw
Mississippi image, and (b) after a histogram equalisation contrast stretch.

You should relate the visual differences between the images shown in Example 5.1 Figures 1, 3 and 5 to the
shape of the corresponding histograms (Example 5.1 Figures 2, 4 and 6) in order to appreciate the relationship
between brightness and contrast on the one hand, and the shape and spread of the corresponding histogram.

Now try the following experiments:

• Generate stretched images from the raw image misstm4.img using the automatic and manual (Set DN limits

manually) options. How would you estimate the upper and lower limits of the stretch for the manual option?
What happens if you use a range narrower than the 13–42 range used by the 5–95% option? Explain the
differences between the output images.

• Try the Histogram Equalize and Gaussian Stretch options, using a range of standard deviation limits
for the latter. Look at the histograms for each output image. What happens if you opt to use a specified part
of the histogram rather than its full range? What happens if you increase or decrease the number of standard
deviations to either side of the mean in the Gaussian option?

• Which technique produces the ‘best’ output image? How would you define ‘best’?
• Repeat the exercise with a different image, such as Colo4.img from the image set referenced by

litcolorado.inf. Can you say that these techniques always work, or that one method is always better than
the rest?

the input image is converted to cumulative form with the
number of pixels in classes 0– j represented by Cj . This
is achieved by summing the number of pixels falling in
classes 0– j of the histogram (the histogram classes are
labelled 0–255 so as to correspond to the PVs on an
8-bit scale):

Cj = n0 + n1 + . . . + nj

where nj is the number of pixels taking the greyscale
value j . The output level for class j is calculated very
simply as Cj/nt.

The method is not as complicated as it seems, as
the example in Table 5.1 demonstrates. The PVs in
the raw image (16 levels in the example) are shown
in column 1 of Table 5.1, and the number of pixels
at each level is given in column 2. The cumulative
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Table 5.1 Illustrating calculations involved in histogram
equalization procedure. N = 262 144, nt = 16 384. See text
for explanation.

Old LUT Number in Cumulative New LUT
value class number value

0 1 311 1 311 0

1 2 622 3 933 0

2 5 243 9 176 0

3 9 176 18 352 1

4 13 108 31 460 1

5 24 904 56 364 3

6 30 146 86 510 5

7 45 875 132 385 8

8 58 982 191 367 11

9 48 496 239 863 14

10 11 796 251 659 15

11 3 932 255 591 15

12 3 932 259 523 15

13 2 621 262 144 15

14 0 262 144 15

15 0 262 144 15

number of pixels is listed in column 3. The values in
column 4 are obtained by determining the target number
of pixels (= total number of pixels divided by the
number of classes, that is 262 144/16 = 16 384) and
then finding the integer part of Cj divided by nt, the
target number. Thus, input levels 0–2 are all allocated
to output level 0, input levels 3 and 4 are allocated to
output level 1, and so on. Notice that the classes with
relatively low frequency have been amalgamated while
the classes with higher frequency have been spaced
out more widely than they were originally. The effect
is to increase the contrast in the centre of the range
while reducing contrast at the margins. Table 5.2 gives
the numbers of pixels assigned to each output level.

In this example, which uses only 16 levels for ease of
understanding, the output histogram is not uniform. This
is not surprising, for the number of pixels at five of
the input levels considerably exceeds the target number
of 16 384.

The example given in Table 5.1 shows that the effect
of the histogram equalization procedure is to spread the
range of PVs present in the input image over the full
range of the display device; in the case of a colour mon-
itor. This range is normally 256 levels for each of the
primary colours (RGB). The relative brightness of the
pixels in the original image is not maintained. Also, in
order to achieve the uniform histogram the number of
levels used is almost always reduced (see for example
Table 5.2). This is because those histogram classes with
relatively few members are amalgamated to make up the
target number, nt. In the areas of the histogram that have
the greatest class frequencies the individual classes are
stretched out over a wider range. The effect is to increase
the contrast in the densely populated parts of the his-
togram and to reduce it in other, more sparsely populated
areas. If there are relatively few discrete PVs after the
equalization process then the result may be unsatisfactory
compared to the simple linear contrast stretch.

Sometimes it is desirable to equalize only a specified
part of the histogram. For example, if a mask is used
to eliminate part of the image (for example water areas
may be set to zero) then a considerable number of PVs
of zero will be present in the histogram. If there are N
zero pixels then the output value corresponding to an
input PV of zero after the application of the procedure
described above will be N/nt, which may be large; for
instance, if N is equal to 86 134 and nt is equal to 3192
then all the zero (masked) values in the original image
will be set to a value of 27 if the result is rounded to the
nearest integer. A black mask will thus be transformed
into a dark grey one, which may be undesirable. The
calculations described above can be modified so that the
input histogram cells between, say, 0 and a lower limit
L are not used in the calculations. It is equally simple to
eliminate input histogram cells between an upper limit H

Table 5.2 Number of pixels allocated to each class after the application of the equalisation procedure shown in Figure 5.1a.
Note that the smaller classes in the input have been amalgamated, reducing the contrast in those areas, while larger classes are
more widely spaced, giving greater contrast. The number of pixels allocated to each non-empty class varies considerably,
because discrete input classes cannot logically be split into subclasses.

Intensity 0 1 2 3 4 5 6 7

Number 9 176 22 284 0 24 904 0 30 146 0 0

Intensity 8 9 10 11 12 13 14 15

Number 45 875 0 0 58 982 0 0 48 496 22 281
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and 255; indeed, any of the input histogram cells can be
excluded from the calculations.

The Wash image shown in Figure 5.6a is displayed in
Figure 5.9a after a histogram equalization contrast stretch.
The histogram of the image in Figure 5.9a is given in
Figure 5.9b.

5.3.3 Gaussian Stretch

A second method of contrast-enhancement based upon
the histogram of the image PVs is called a Gaussian
stretch because it involves the fitting of the observed his-
togram to a Normal or Gaussian histogram. A Normal
distribution gives the probability of observing a value x
given the mean x is defined by

p(x) = 1

σ
√

2π
e

−(x−x)2

2σ2

The standard deviation, σ , is defined as the range of
the variable for which the function p(x ) drops by a fac-
tor of e−0.5 or 0.607 of its maximum value. Thus, 60.7%
of the values of a normally distributed variable lie within
one standard deviation of the mean. For many purposes a
Standard Normal distribution is useful. This is a Normal
distribution with a mean of zero and a unit standard
deviation. Values of the Standard Normal distribution are
tabulated in standard statistics texts, and formulae for the
derivation of these values are given by Abramowitz and
Stegun (1972).

An example of the calculations involved in applying
the Gaussian stretch is shown in Table 5.3. The input
histogram is the same as that used in the histogram equal-
ization example (Table 5.1). Again, 16 levels are used
for the sake of simplicity. Since the Normal distribution
ranges in value from −∞ to +∞, some delimiting points
are needed to define the end points of the area of the
distribution that are to be used for fitting purposes. The
range ±3 standard deviations from the mean is used in the
example. Level 1 is, in fact, the probability of observing a
value of a Normally distributed variable that is three stan-
dard deviations or more below the mean; level 2 is the
probability of observing a value of a Normally-distributed
variable that is between 2.6 and 3 standard deviations
below the mean, and so on. These values can be derived
from an algorithm based on the approximation specified
by Abramowitz and Stegun (1972). Column (i) of the
table shows the PVs in the original, un-enhanced image.
Column (ii) gives the points on the Standard Normal
distribution to which these PVs will be mapped, while
column (iii) contains the probabilities, as defined above,
which are associated with the class intervals. Assume that
the number of pixels in the image is 512 × 512 = 262 144
and the number of quantization levels is 16. The target
number of pixels (that is the number of pixels that would

be observed if their distribution were Normal) is found
by multiplying the probability for each level by the value
262 144. These results are contained in column (iv) and,
in cumulative form, in column (v). The observed counts
for the input image are shown by class and in cumulative
form in columns (vi) and (vii). The final column gives the
level to be used in the Gaussian-stretched image. These
levels are determined by comparing columns (v) and (vii)
in the following manner. The value in column (vii) at
level 0 is 1311. The first value in column (v) to exceed
1311 is that associated with level 1, namely, 1398; hence,
the input level 0 becomes the output level 1. Taking the
input (cumulative) value associated with input level 1,
that is 3933, we find that the first element of column
(v) to exceed 3933 is that value associated with level 3
(9595) so input level 1 becomes output level 3. This pro-
cess is repeated for each input level. Once the elements
of column (viii) have been determined, they can be writ-
ten to the LUT and the input levels of column (i) will
automatically map to the output levels of column (viii).

The range ±3 standard deviations as used in the
example is not the only one which could have been
used. A larger or smaller proportion of the total range
of the Standard Normal distribution can be specified,
depending on the requirements of the user. Usually, the
limits chosen are symmetric about the mean, and the user
can provide these limits from a terminal. An example of
the Gaussian contrast stretch is given in Figure 5.10.

If Tables 5.1 and 5.2 are compared it will be seen that
the Gaussian stretch emphasizes contrast in the tails of
the distribution while the histogram equalization method
reduces contrast in this region. However, at the centre
of the distribution the reverse may be the case, for the
target number for a central class may well be larger for
the Gaussian stretch than the histogram equalization. In
the worked example the target number for each class in
the histogram equalization was 16 384; note that the tar-
get numbers for classes 5–10 inclusive in the Gaussian
stretch exceed 16 384. Input classes may well have to
be amalgamated in order to achieve these target num-
bers. Table 5.2 and Table 5.4 give the number of pixels
allocated to each output class after the application of the
histogram equalization and Gaussian contrast stretches,
respectively. In both cases, the range of levels allocated
to the output image exceeds the range of PVs in the input
image; this will result in an overall brightening of the
displayed image.

The application of contrast-enhancement techniques is
discussed above in terms of a single greyscale image. The
techniques can be used to enhance a false colour image
by applying the appropriate process to the RGB chan-
nels separately. Methods of simultaneously ‘stretching’
the colour components of a false-colour image are dealt
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Figure 5.9 (a) Histogram equalization contrast stretch applied to the image shown in Figure 5.6a. (b) Histogram of the image
shown in Figure 5.9a. It is difficult to achieve a completely flat or uniform histogram, and in this case the frequency distribution
of the image pixel values is slightly bell shaped. Landsat data courtesy NASA/USGS.
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Table 5.3 Fitting observed histogram of pixel values to a Gaussian histogram. See text for discussion.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

0 <−3.0 0.0 020 530 530 1 311 1 311 1

1 −2.6 0.0 033 868 1 398 2 622 3 933 3

2 −2.2 0.0 092 2 423 3 821 5 243 9 176 3

3 −1.8 0.0 220 5 774 9 595 9 176 18 352 4

4 −1.4 0.0 448 1 175 21 346 13 108 31 460 5

5 −1.0 0.0 779 20 421 41 767 24 904 56 364 6

6 −0.6 0.1 156 30 303 72 070 30 146 86 510 7

7 −0.2 0.1 465 38 401 110 471 45 875 132 385 8

8 0.2 0.1 585 41 555 152 026 58 982 191 367 10

9 0.6 0.1 465 38 401 190 427 48 496 239 863 11

10 1.0 0.1 156 30 303 220 730 11 796 251 659 12

11 1.4 0.0 779 20 421 241 151 3 932 255 591 13

12 1.8 0.0 448 11 751 252 902 3 932 259 523 14

13 2.2 0.0 220 5 774 258 676 2 621 262 144 15

14 2.6 0.0 092 2 423 261 099 0 262 144 15

15 >3.0 0.0 040 1 045 262 144 0 262 144 15

with elsewhere (the HSI transform in Section 6.5 and the
decorrelation stretch in Section 6.4.3).

If an image covers two or more spectrally distinctive
regions, such as land and sea, then the application of
the methods so far described may well be disappointing.
In such cases, any of the contrast-stretching methods
described above can be applied to individual parts
of the range of PVs in the image; for instance, the
histogram equalization procedure could be used to
transform the input range 0–60 to the output range
0–255, and the same could be done for the input range
61–255. The same procedure could be used whenever
distinct regions occur if these regions can be identified
by splitting the histogram at one or more threshold
points. While the aesthetic appeal of images enhanced
in this fashion may be increased, it should be noted
that pixels with considerably different radiance values
will be assigned to the same displayed or output colour
value. The colour balance will also be quite different
from that resulting from a standard colour-composite
procedure.

5.4 Pseudocolour Enhancement

In terms of the RGB colour model presented in
Section 5.2, a greyscale image occupies only the
diagonal of the RGB colour cube running from the
‘black’ to the ‘white’ vertex (Figure 5.3). In terms of
the HSI model, grey values are ranged along the vertical

or intensity axis (Figure 5.4). No hue or saturation
information is present, yet the human visual system is
particularly efficient in detecting variations in hue and
saturation, but not so efficient in detecting intensity
variations. Three methods are available for converting
a grey scale image to colour. The colour rendition
as shown in the output image is not true or natural,
for the original (input) image does not contain any
colour information, and enhancement techniques cannot
generate information that is not present in the input
image. Nor is the colour rendition correctly described as
false colour, for a false colour image is one composed
of three bands of information which are represented in
visible RGB. The name given to a colour rendition of a
single band of imagery is a pseudocolour image. Three
techniques are available for converting from greyscale to
pseudocolour form. These are the techniques of density
slicing, pseudocolour transform and user-specified colour
transform. Each provides a method for mapping from
a one-dimensional greyscale to a three-dimensional
(RGB) colour.

5.4.1 Density Slicing

Density slicing is the representation of a set of contiguous
grey levels of a greyscale image by specific colours. The
range of contiguous grey levels (such as 0–10 inclusive)
is called a ‘slice’. The greyscale range 0–255 is normally
converted to several colour slices. It is acknowledged
that conversion of a greyscale image to pseudocolour is
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Figure 5.10 (a) Gaussian contrast stretch of the image shown in Figure 5.6a. (b) Histogram of Gaussian contrast stretched
image. Compare with Figure 5.9b – the number of classes at the two ends of the distribution is larger with the Gaussian stretch
but the number of classes at the centre of the distribution is reduced. Landsat data courtesy NASA/USGS.
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Table 5.4 Number of pixels at each level following transformation to Gaussian model.

Intensity (0) (1) (2) (3) (4) (5) (6) (7)

Number 0 1 311 0 7 865 9 176 13 108 24 904 30 146

Intensity (8) (9) (10) (11) (12) (13) (14) (15)

Number 45 875 0 58 782 48 496 11 796 3 932 3 932 2 621

41830
37647
33464
29281
25098
20915
16732
12549
8366
4183

0
0 16 32 48 64 80 96 112 128

(a)

(b)

144 160 176 192 208 224 240 256

Max: 153 Min: 2

Figure 5.11 (a) Landsat ETM+ Band 4 (NIR) image of the south-east corner of The Wash, eastern England. Water absorbs NIR
5 radiation almost completely, whereas growing crops reflect strongly, and appear in light shades of grey. This image is shown
in pseudocolour in Figures 5.12 and 5.13. (b) Histogram of Figure 5.11a. Landsat data courtesy NASA/USGS.

an effective way of highlighting different but internally
homogeneous areas within an image, but at the expense
of loss of detail. The loss of detail is due to the con-
version from a 256-level greyscale image to an image
represented in terms of many fewer colour slices. The

effect is (i) to reduce the number of discrete levels in the
image, for several grey levels are usually mapped onto a
single colour and (ii) to improve the visual interpretabil-
ity of the image if the slice boundaries and the colours are
carefully selected.
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Figure 5.12 (a) Greyscale image of Figure 5.11a converted to colour by slicing the greyscale range 0–255 and allocating
RGB values to each slice (b) the density slice colour bar and (c) the image histogram using the slice colours. This rendition is
performed manually and at each step a ‘slice’ of the colour bar (density) is allocated a colour of the user’s choice. Here, water
is blue and the bright shades of grey are shown in red. Landsat data courtesy NASA/USGS.

In most image-processing systems the user is allowed
to specify any colour for the current slice, and to alter
slice boundaries in an upwards or downwards direction
by means of a joystick or mouse. The slice boundaries
are thus obtained by an interactive process, which allows
the user to adjust the levels until a satisfactory result has
been achieved. The choice of colour for each slice is

important if information is to be conveyed to the viewer
in any meaningful way, for visual perception is a psy-
chological as well as a physiological process. Random
colour selections may say more about the psychology of
the perpetrator than about the information in the image.
Consider, for example a thermal infrared image of the
heat emitted by the Earth. A colour scale ranging from
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light blue to dark blue, through the yellows and oranges
to red would be a suitable choice for most people have an
intuitive feel for the ‘meaning’ of colours in terms of tem-
perature. A scale taking in white, mauve, yellow, black,
green and pink might confuse rather than enlighten.

Figure 5.11a shows a greyscale image which is to be
converted to pseudocolour using the process of density
slicing. This image is band 4 of the Landsat ETM+ false
colour image shown in Figure 5.6. Figure 5.11b is the
histogram of this image. Figure 5.12(a–c) are the density
sliced image, the colour wedge giving the relationship
between greyscale and colour, and the histogram of the
density sliced image with colours superimposed.

5.4.2 Pseudocolour Transform

A greyscale image has equal RGB values at each pixel
position. A pseudocolour transform is carried out by
changing the colours in the RGB display to the for-
mat shown in the lower half of Figure 5.13. The settings
shown in the lower part of Figure 5.13 send different
colour (RGB) information to the digital to analogue con-
verter (and hence the screen) for the same greyscale PV.
The result is an image that pretends to be in colour. It
is called a pseudocolour image. Like the density slicing

method, the pseudocolour transform method associates
each of a set of grey levels to a discrete colour. Usually,
the pseudocolour transform uses a lot more colours than
the density slice method. If the histogram of the values
in the greyscale image is not approximately uniform then
the resulting pseudocolour image will be dominated by
one colour, and its usefulness thereby reduced. Analysis
of the image histogram along the lines of the histogram
equalization procedure (Section 5.3) prior to the design
of the pseudocolour LUTs would alleviate this problem.
Figure 5.13 shows the way in which a greyscale PV is
represented as an RGB triple – the PVs (N1, N1, N1) are
converted by this ‘do-nothing’ LUT to the same triple
(N1, N1, N1). The greyscale image on the screen is
directly equivalent to the greyscale values in the image.
The lower part of Figure 5.13 illustrates the same input
PVs (N1, N1, N1) but in this case the RGB LUTs are set
to transform this triple to the values (N2, N3, N4). The
values N2, n3 and N4 define a colour which is dominated
by red and green. Figure 5.14a is a pseudocolour image
of the Wash area converted to pseudocolour using the
colour translation wedge shown in Figure 5.14b (which
is, in fact, made up of 49 steps around the top of the HSI
hexcone shown in Figure 5.4. There is nothing mysterious
about the value 49 – it just happened that way).
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Figure 5.13 Illustrating the pseudocolour transform. A greyscale image is stored in all three (RGB) display memories, and the
lookup tables (LUTs) for all three display memory are equivalent, sending equal RGB values to the screen at each pixel position.
Thus, the greyscale pixel value N1 is sent to the display memory as the values (N1, N1, N1). The pseudocolour transform treats
each display memory separately, so that the same pixel value in each of the RGB display memories sends a different proportion
of red, green and blue to the screen. For example, the pixel value N1 in a greyscale image would be seen on screen as a dark
grey pixel. If the pseudocolour transform were to be applied, the pixel value N1 would transmit the colour levels (N2, N3 N4)
to the display memory, as shown by the purple dotted lines in the lower part of the diagram. The values N2, N3 and N4 would
generate a colour that was close to maximum yellow, with a slight bluish tinge.
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Figure 5.14 (a) Pseudocolour transformation of the grey scale image shown in Figure 5.11. The range of greylevels and their
colour equivalents are shown in (b). Notice that the whole 0–255 range is not used and the transformation is carried out only
on pixel values between 12 and 120. These values were found by visual inspection of the histogram shown in Figure 5.12b.
The overwhelming majority of pixel values lie in this range. The colour wedge shown in (b) has 49 colours, from red through
yellow, green, cyan, blue and magenta. The pixel range of 12–120 is mapped onto these 49 colours to give the image shown in
(a), which is more informative than the greyscale equivalent in Figure 5.11a.

5.5 Summary

Image enhancement techniques include, but are not lim-
ited to, those of contrast improvement and greyscale to
colour transformations. Other image-processing methods
can justifiably be called enhancements. These include:
(i) methods for detecting and emphasizing detail in an
image (Section 7.4), (ii) noise reduction techniques,
ranging from removal of banding (Section 4.2) to filter-
ing (Chapter 7), (iii) colour transforms based on principal
components analysis, called the decorrelation stretch

(Section 6.3) and (iv) the HSI transform, Section 6.5.
All these methods alter the visual appearance of the
image in such a way as to bring out or clarify some
aspect or property of the image that is of interest to
a user. The range of uses to which remotely-sensed
images can be put is considerable and so, although there
are standard methods of enhancement such as those
described here, they should not be applied thought-
lessly but with due regard to the user’s requirements
and purpose.





6 Image Transforms

6.1 Introduction

An image transform is an operation that re-expresses
in a different, and possibly more meaningful, form all
or part of the information content of a multispectral or
greyscale image. In principle, an image transform is
like a good cook, who can take a set of ingredients and
turn them into cakes of different types. There is nothing
in each cake except the same original ingredients yet
they look (and probably taste) different. There are many
different ways of looking remotely-sensed images, just
as there are many different ways of looking at social,
economic or political questions.

A number of different transforms are considered in this
chapter. The term ‘transform’ is used somewhat loosely,
for the arithmetic operations of addition, subtraction,
multiplication and division are included, although they
are not strictly transforms. These operations, which
are described in Section 6.2, allow the generation of a
derived image from two or more bands of a multispectral
or multitemporal image. The derived image may well
have properties that make it more suited to a particular
purpose than the original. For example, the numerical
difference between two images collected by the same
sensor on different days may provide information about
changes that have occurred between the two dates, while
the ratio of the near-infrared (NIR) and red bands of a
single-date image set is widely used as a vegetation index
that correlates with difficult to measure variables such
as vegetation vigour, biomass and leaf area index (LAI).

Vegetation indices are also discussed in Section 6.3.
They are based on a model of the distribution of data
values on two or more spectral bands considered simul-
taneously. Two examples of these transformations are the
Perpendicular Vegetation Index (PVI), which uses a two-
dimensional model of the relationship between vegetation
and soil pixels, and the Tasselled Cap transformation,
which is based on the optical (visible plus NIR) bands of
a multispectral data set.

Section 6.4 provides an introduction to the widely used
technique of principal components analysis (PCA), which
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is a method of re-expressing the information content of a
multispectral set of m images in terms of a set of m prin-
cipal components, which have two particular properties:
zero correlation between the m principal components,
and maximum variance. The maximum variance prop-
erty of principal components means that the components
are extracted in order of decreasing variance. The first
component is that linear combination of spectral bands
that has the maximum variance of all possible linear
combinations of the same spectral bands. The second
principal component is that linear combination of spec-
tral bands that has the maximum variance with respect
to the remaining part of the data once the effects of
the first principal component have been removed, and
so on. The zero correlation property means that princi-
pal components are statistically unrelated, or orthogonal.
It is usually found that much of the information in the
original m correlated bands is expressible in terms of
the first p of the full set of m principal components,
where p is less than m. This property of PCA is use-
ful in generating a false-colour composite image. If the
image set consists of more than three bands then the
problem arises of selecting three bands for display in
red, green and blue (RGB). Since the principal compo-
nents of the image set are arranged in order of variance
(which is generally assumed to correlate with informa-
tion, but may also include a noise component) then the
first three principal components can be used as the RGB
components of a false-colour composite image. No lin-
ear combination (i.e. weighted sum) of the original bands
can contain more information than is present in the first
three principal components. Another use of PCA is in
reducing the amount of calculation involved in automatic
classification (Chapter 8) by basing the classification on
p principal components rather than on m spectral bands.
In addition, the p principal component images require
less storage space than the m-band multispectral image
from which they were derived. Hence, PCA can also be
considered to be a data compression transformation.

Rather than maximize the variance of the principal
components, we could choose another criterion such as
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maximizing the signal to noise ratio (SNR). The standard
principal components procedure, despite popular belief,
does not remove noise. If we can estimate the level of
noise in the data then we could extract components that
are arranged in order of decreasing SNR. This modifica-
tion of PCA, which we will call noise-adjusted PCA, is
described in Section 6.4.2.

Section 6.5 deals with a transformation that is con-
cerned with the representation of the colour information
in a set of three coregistered images representing
the RGB components of a colour image. Theories of
colour vision are summarized in Section 5.2 where it
is noted that the conventional RGB colour cube model
is generally used to represent the colour information
content of three images. The hue–saturation-intensity
(HSI) hexcone model is considered in Section 6.5 and its
applications to image enhancement and to the problem
of combining images from different sources (such as
radar and optical images) are described.

The transforms and operations described above act
on two or more image bands covering a given area.
Section 6.6 introduces a method of examining the
information content of a single-band greyscale image in
terms of its frequency components. The discrete Fourier
transform (DFT) provides for the representation of image
data in terms of a coordinate framework that is based
upon spatial frequencies rather than upon Euclidean
distance from an origin (i.e. the conventional Cartesian
or xy coordinate system). Image data that have been
expressed in frequency terms are said to have been trans-
formed from the image or spatial domain to the frequency
domain. The frequency-domain representation of an
image is useful in designing filters for special purposes
(described in Chapter 7) and in colour coding the scale
components of the image.

A related transformation, called the discrete wavelet
transform (DWT), represents an attempt to bridge the gap
between the spatial and frequency domains, for it decom-
poses the input signal (which may be one-dimensional,
like a spectrum collected by a field spectrometer, or
two-dimensional, like an image) in terms of wavelength
(1D) or space (2D) and scale simultaneously. One
major use of wavelets is to remove noise from (i.e.
‘denoise’) one- and two-dimensional signals. Data
from the instruments carried by the Pléiades platform
(Section 2.3.7.3) will be downlinked in compressed form,
using a wavelet compression algorithm with an average
compression factor of 4 (http://directory.eoportal.org/get_
announce.php?an_id=8932). Wavelet-based denoising is
described in Chapter 9, while the basics of the wavelet
transform are considered in Section 6.7.

With the increasing availability of imaging spectrometer
data sets (Section 9.3) that are composed of measure-
ments in many tens or hundreds of spectral bands, methods

of analysing and extracting information from the shape
of spectral reflectance curves have been developed. An
example is the derivative operation. The first derivative
measures the slope of the spectral reflectance curve, while
the second derivative measures the change in slope steep-
ness. Both measures are useful in locating wavelengths
of interest on the spectral reflectance curve, for example
the position of the ‘red edge’ in a vegetation spectrum.
These and other advanced methods of analysing imaging
spectrometer data are described in Chapter 9.

6.2 Arithmetic Operations

The operations of addition, subtraction, multiplication
and division are performed on two or more coregistered
images of the same geographical area (Section 4.3).
These images may be separate spectral bands from a
single multispectral data set or they may be individual
bands from image data sets that have been collected
at different dates. Addition of images is really a form
of averaging for, if the dynamic range of the output
image is to be kept equal to that of the input images,
rescaling (usually division by the number of images
added together) is needed. Averaging can be carried out
on multiple images of the same area in order to reduce
the noise component. Subtraction of pairs of images is
used to reveal differences between those images and
is often used in the detection of change if the images
involved were taken at different dates.

Multiplication of images is rather different from the
other arithmetic operations for it normally involves the
use of a single ‘real’ image and a binary image made
up of ones and zeros. The binary image is used as a
mask, for those image pixels in the real image that are
multiplied by zero also become zero, while those that
are multiplied by one remain the same.

Division or ratioing of images is probably the arith-
metic operation that is most widely applied to images
in geological, ecological and agricultural applications
of remote sensing, for the division operation is used
to detect the magnitude of the differences between
spectral bands. These differences may be symptomatic
of particular land cover types. Thus, a NIR : red ratio
might be expected to be close to 1.0 for an object which
reflects equally in both of these spectral bands (for
example a cloud top) while the value of this same ratio
will be well above one if the NIR reflectance is higher
than the reflectance in the visible red band, for example
in the case of vigorous vegetation.

6.2.1 Image Addition

If multiple, coregistered, images of a given region are
available for the same time and date of imaging then
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addition (averaging) of the multiple images can be used
as a means of reducing the overall noise contribution.
A single image might be expressed in terms of the
following model:

G(x, y) = F(x, y) + N(x, y)

where G(x, y) is the recorded image, F(x,y) the true
image and N(x,y) the random noise component. N(x, y)

is often hypothesized to be a random Normal distribution
with a mean of zero, since it is the sum of a number
of small, independent errors or factors. The true signal,
F(x,y), is constant from image to image. Therefore,
addition of two separate images of the same area taken
at the same time might be expected to lead to the
cancellation of the N(x,y) term for, at any particular
pixel position (x,y), the value N(x,y) is as likely to
be positive as to be negative. Image addition, as noted
already, is really an averaging process. If two images
G1(i,j) and G2(i,j) are added and if each has a dynamic
range of 0–255 then the resulting image Gsum(i, j) will
have a dynamic range of 0–510. This is not a practicable
proposition if the image display system has a fixed,
8-bit, resolution. Hence it is common practice to divide
the sum of the two images by two to reduce the dynamic
range to 0–255. The process of addition is carried out
on a pixel-by-pixel basis as follows:

Gsum(i, j) = (G1(i, j) + G2(i, j))/2

The result of the division is normally rounded to the
nearest integer. Note that if the operation is carried out
directly on images stored on disk then the dynamic range
may be greater than 0–255, and so the scaling factor of
2 will have to be adjusted accordingly. Images stored in
the computer display memory have a dynamic range of
0–255. However, take care – recall from the discussion
in Section 5.3 that the application of a contrast stretch
will cause the pixel values in the display memory to
be changed, so adding together two contrast-enhanced
images does not make sense. Always perform arithmetic
operations on images that have not been contrast
enhanced. A further difficulty is that images with a
dynamic range of more than 0–255 are scaled before
being written to display memory. The scaling used is
automatic, and depends on the image histogram shape
(Section 3.2.1). Any arithmetic operation carried out on
images with an extended dynamic range (i.e. greater
than 0–255) that have been scaled to 0–255 for display
purposes is likely to be meaningless. The operation
should be carried out on the full range images stored on
disk, not on their scaled counterparts.

If the algorithm described in the previous paragraph
is applied then the dynamic range of the summed image
will be approximately the same as that of the two input
images. This may be desirable in some cases. However,

it would be possible to increase the range by performing
a linear contrast stretch (Section 5.3.1) by subtracting a
suitable offset o and using a variable divisor d:

G′(i, j) = (G1(i, j) + G2(i, j) − o)/d

The values of o and d might be determined on the basis
of the user’s experience, or by evaluating Gsum(i,j) at a
number of points systematically chosen from images G1

and G2. Image G′ will have a stretched dynamic range in
comparison with the result of the straight ‘division by 2’.

Other methods of removing noise from images include
the use of the DWT to estimate a ‘noise threshold’
which is then applied to the data series (such as a one-
dimensional reflectance spectrum or a two-dimensional
image) in order to remove additive noise of the kind
described above. The wavelet transform is considered
further in Section 6.7 and Chapter 9.

6.2.2 Image Subtraction

The subtraction operation is often carried out on a pair
of coregistered images of the same area taken at differ-
ent times. The purpose is to assess the degree of change
that has taken place between the dates of imaging (see,
for example Dale, Chandica and Evans, 1996). Image
subtraction or differencing is also used to separate image
components. In Chapter 9, for example the wavelet trans-
form is used to separate the signal (information) in an
image from the noise. The difference between the origi-
nal and de-noised image can be found by subtracting the
denoised image from the original image.

Image differencing is performed on a pixel-by-pixel
basis. The maximum negative difference (assuming
both images have a dynamic range of 0–255) is
(0–255 =) − 255 and the maximum positive difference
is (255 − 0 =) + 255. The problem of scaling the
result of the image subtraction operation onto a 0–255
range must be considered. If the value 255 is added
to the difference then the dynamic range is shifted to
0–510. Next, divide this range by 2 to give a range
of 0–255. Variable offsets and multipliers can be used
as in the case of addition (Section 6.2.1) to perform a
linear contrast-stretch operation. Formally, the image
subtraction process can be written as:

Gdiff(i, j) = (255 + G1(i, j) − G2(i, j)/2

using the same notation as previously. If interest is
centred on the magnitude rather than the direction of
change then the following method could be used:

Gabsdiff(i, j) = |G1(i, j) − G2(i, j)|
The vertical bars |.| denote the absolute value (regardless
of sign). No difference is represented by the value 0 and
the degree of difference increases towards 255. Note the
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remarks above (Section 6.2.1) on the logic of applying
arithmetic operations to images with a dynamic range
other than 0–255.

A difference image Gdiff(i,j) tends to have a his-
togram that is Normal or Gaussian in shape with the
peak at a count of 127 (if the standard scaling is used, in
which zero difference translates to a pixel value of 127),
tailing off rapidly in both directions. The peak at a count
of 127 represents pixels that have not changed while the
pixels in the histogram tails have changed substantially.
The image Gabsdiff(i,j) has a histogram with a peak at
or near zero and a long tail extending towards the higher
values. A density-sliced difference image is shown in
Figure 6.2c (the histogram of this difference image is
shown in Figure 6.1). Differences in TM/ETM+ band 2
are shown. Figures 6.2a,b show respectively the TM
band 4, 3, 2 false-colour composite for 1984 and the
ETM+ band 4, 3, 2 false-colour composite for 1993.
The bright areas of the false-colour composite images
(which have been enhanced by a 5–95% linear stretch)
are desert while the red areas are vegetation. Areas of
red in Figure 6.2c are those where the 1984 band 2 pixel
values are lower than the corresponding pixel values in
the 1993 image. These negative change areas represent
vegetation present in 1993 but not in 1984 at the bottom
of the difference image, and also a change from brackish
lagoon to deeper clearer water in the top left corner of
the same image. Areas of brown, dark green, light green
and blue show least change (the areas have remained
desert over the period 1984–1993), but yellow areas
are those where the pixel values in band 2 for 1993 are

0 63 127 190 255

Figure 6.1 Histogram of difference between 1993 and 1984
images of Alexandria, Egypt (see Figure 6.2) , after scaling
to the 0–255 range. An indicated difference value of 127
equates to a real difference of zero. Histogram x-axis values
lower than 127 indicate negative differences and values above
127 indicate positive differences. In practice the modal class
is close to, but not exactly, 127 as a result of differences
in illumination geometry and atmospheric conditions. The
corresponding colour wedge is shown in Figure 6.2d.

greater than those for 1984. These scattered yellow areas
are located in the area covered by vegetation in 1984
and may represent ploughed fields or land that has been
allowed to revert to desert.

Jupp and Mayo (1982) provide an interesting example
of the use of image subtraction. They use a four-band
Landsat MSS image to generate a classified (labelled)
image (Chapter 8) in which a single-band image is
generated, with each pixel in the image being given a
numerical label to indicate the land cover class to which
it belongs. These labels are determined on the basis of
the spectral characteristics of each pixel. For example,
labels of 1, 2 and 3 could be used to indicate forest,
grassland and water. The mean values of the pixels in
each class in every band are computed, to produce a
table of k rows and p columns, with k being the number
of classes and p the number of spectral bands used in
the labelling process. A new image set is then generated,
with one image per spectral band. Those pixels with the
label i in the classified image are given the mean value
of class i. This operation results in a set of p ‘class
mean value’ images. A third image set is then produced,
consisting of p residual images which are obtained by
subtracting the actual pixel value recorded in a given
spectral band from the corresponding value in the ‘mean’
image for that pixel. Residual images can be combined
for colour composite generation. The procedure is
claimed to assist in the interpretation and understanding
of the classified image, as it highlights pixels that differ
from the mean value of all pixels allocated the same
class. This could be useful in answering questions such
as: ‘have I omitted any significant land cover classes?’
or ‘why is class x so heterogeneous?’

6.2.3 Image Multiplication

Pixel-by-pixel multiplication of two remotely-sensed
images is rarely performed in practice. The multiplication
operation is, however, a useful one if an image of interest
is composed of two or more distinctive regions and if
the analyst is interested only in one of these regions.
Figure 6.3a shows a Landsat-2 MSS band 4 (green)
image of part of the Tanzanian coast south of Dar-
es-Salaam. Variations in reflectance over the land area
distract the eye from the more subtle variations in the
radiance upwelling from the upper layers of the ocean.
The masking operation can eliminate variations over the
distracting land region. The first step is the preparation
of the mask that best separates land and water, using the
NIR band (Figure 6.3b) since reflection from water bod-
ies in the NIR spectral band is very low, while reflection
from vegetated land areas is high, as noted in Section 1.3.
A suitable threshold is chosen by visual inspection of the
image histogram of the NIR pixel values. A binary mask
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Figure 6.2 (a) Landsat TM false colour composite (bands 4, 3 and 2) of a (1984) sub-image of Alexandria, Egypt, after a linear
contrast stretch. (b) Corresponding ETM+ image for 1993. (c) Density sliced difference image based on band 2 images. (d)
Colour wedge for difference image. These colours are also used in the histogram shown in Figure 6.1. Landsat data courtesy
NASA/USGS.

image is then generated from the NIR image by labelling
with ‘255’ those pixels that have values below the thresh-
old (Figure 6.3c). Pixels whose values are above the
threshold are labelled ‘1’, so the mask image displays as
a black-and-white image with the masked area appearing
white. The second stage is the multiplication of the image
shown in Figure 6.3a and the mask image (Figure 6.3c).
Multiplication by 1 is equivalent to doing nothing,
whereas multiplication by 0 sets the corresponding pixel

in the masked image to 0. Using the above procedure, the
pixels in the Tanzanian coast band 4 image that represent
land are replaced by zero values, while ‘ocean’ pixels
are unaltered. Application of the density slice procedure
produces the image shown in Figure 6.3d. In practice,
the pixel values in the two images (mask and band 4 in
this example) are not multiplied but are processed by a
simple logical function: if the mask pixel is zero then
set the corresponding image pixel to zero, otherwise do
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(a) (b)

(c) (d)

Figure 6.3 Illustrating the use of image multiplication in creating a land/sea mask that enables the full range of the display
to be used to represent variations in green light penetration depth in a region of the Tanzanian coast, south of Dar es Salaam.
(a) Landsat MSS Band 4 (green), (b) Landsat MSS Band 7 (near infrared), (c) Land/sea mask created from near infrared band
(b). Land is shown in white. (d) Masked and density sliced green band (a). The sixth line banding phenomenon is prominent.
Landsat data courtesy NASA/USGS.

nothing. Some software packages use the two extremes
(0 and 255) of the range of pixel values to indicate ‘less
than’ and ‘greater than’ the threshold, respectively.

6.2.4 Image Division and Vegetation Indices

The process of dividing the pixel values in one image
by the corresponding pixel values in a second image

is known as ratioing. It is one of the most commonly
used transformations applied to remotely-sensed images.
There are two reasons why this is so. One is that cer-
tain aspects of the shape of spectral reflectance curves of
different Earth-surface cover types can be brought out
by ratioing. The second is that undesirable effects on
the recorded radiances, such as that resulting from vari-
able illumination (and consequently changes in apparent
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Figure 6.4 The ratio of a pixel value at near-infrared wave-
lengths (around 1.0 µm) to the corresponding pixel value in
the red region of the spectrum (0.6–0.7 µm) will be large
if the area represented by the pixel is covered by vigorous
vegetation (solid curve). It will be around 1.0 for a soil pixel,
but less than 1.0 for a water pixel. In effect, the IR/R ratio is
measuring the slope of the spectral reflectance curve between
the infrared and red wavelengths. Inspection of the curves
shown in this figure shows that the curve for vegetation has a
very significant slope in this region.

upwelling radiance) caused by variations in topography
can be reduced. Figure 6.4 shows the spectral reflectance
curves for three cover types. The differences between the
curves can be emphasized by looking at the gradient or
slope between the red and the NIR bands, for example
bands 3 (red) and 4 (NIR) in a Landsat ETM+ image,
or bands 3 (NIR) and 2 (red) of the SPOT HRV image
set. The shape of the spectral reflectance curve for water
shows a decline between these two points, while that
for vegetation shows a substantial increase. The spectral
reflectance curve for soil increases gradually between the
two bands. If a pixel value in the NIR band is divided by
the equivalent value in the red band then the result will
be a positive real number that exceeds 1.0 in magnitude.
The same operation carried out on the curve for water
gives a result that is less than 1.0, while the soil curve
gives a value somewhat higher than 1.0. The greater the
difference between the pixel values in the two chosen
bands the greater the value of the ratio.

The two images may as well be subtracted if this were
the only result to be derived from the use of ratios.
Figure 6.5 shows a hypothetical situation in which the
irradiance at point B on the ground surface is only 50%
of that at A due to the fact that one side of the slope is
directly illuminated by the Sun. Subtraction of the values
in the two bands at point A gives a result that is double
that which would be achieved at point B even if both
points are located on the same ground-cover type. How-
ever, the ratios of the two bands at A and B are the same
because the topographic effect has been largely cancelled
out in this instance. This is not always the case, as shown
by the discussion below.

Sun

Pixel values:
Near-infrared: 160
Red:                  60
Ratio IR/R = 2.666

Pixel values:
Near-infrared:   75 
Red:                  28
Ratio IR/R = 2.678

Figure 6.5 Ratio of pixel values in the near-infrared region
to the corresponding pixel value in the visible red region of
the spectrum. The ratios for the illuminated and shaded slopes
are very similar, although the pixel values differ by a factor of
more than 2. Hence an image made up of IR : R ratio values
at each pixel position will exhibit a much-reduced shadow or
topographic effect.

One of the most common spectral ratios used in stud-
ies of vegetation status is the ratio of the NIR to the
equivalent red band value for each pixel location. This
ratio exploits the fact that vigorous vegetation reflects
strongly in the NIR and absorbs radiation in the red wave-
band (Section 1.3.2.1). The result is a greyscale image
that can be smoothed by a low-pass filter (Section 7.2)
and density-sliced (Section 5.4.1) to produce an image
showing variation in biomass (the amount of vegetative
matter) and in LAI as well as the state of health (physio-
logical functioning) of plants (Dong et al., 2003; Hansen
and Schjoerring, 2003; Lu, 2006; Serrano, Filella and
Peñuelas, 2000). Smith, Steven and Colls (2004) discuss
the use of vegetation ratios to detect plant stress resulting
from gas leaks. A critical analysis of vegetation indices
is given by Myneni et al. (1995).

More complex ratios involve sums of and differences
between spectral bands. For example, the Normalized
Difference Vegetation Index (NDVI), defined in terms
of the NIR and red (R) bands as:

NDVI = NIR − R

NIR + R

is preferred to the simple R : NIR ratio by many workers
because the ratio value is not affected by the absolute
pixel values in the NIR and R bands.

Figure 6.6b, d show the NDVI and IR/R images for the
(false colour) image of the Nottingham area (Figure 6.6a).
On the basis of visual evidence, the difference between
the simple ratio and the NDVI is not great. However, the
fact that sums and differences of bands are used in the
NDVI rather than absolute values may make the NDVI
more appropriate for use in studies where comparisons
over time for a single area are involved, since the NDVI
might be expected to be influenced to a lesser extent
by variations in atmospheric conditions (but see below).
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Figure 6.6 (a) SPOT HRV false colour composite image of the Nottingham area. (b) NDVI image in pseudocolour
(c) Pseudocolour wedge for (b), (d) Near-infrared : red ratio image in pseudocolour. (e) colour wedge for (d). Permission
to use the data was kindly provided by SPOT image, 5 rue des Satellites, BP 4359, F 331030, Toulouse, France.

Sensor calibration issues, discussed in Section 4.6, may
have a significant influence on global NDVI calcula-
tions based on the NOAA AVHRR. Gutman and Ignatov
(1995) show how the difference between pre- and post-
launch calibrations lead to unnatural phenomena such as
the ‘greening of deserts’.

The derivation of ‘better’ vegetation indices is an
active research area. Perry and Lautenschlager (1984)
argue that various ratios are functionally equivalent.
The simple ratio and NDVI, plus other band ratios,
are all affected by external factors such as the state of
the atmosphere, illumination and viewing angles and
soil background reflectance. This is one reason why
NDVI-composite images derived from multiple NOAA

AVHRR require careful analysis. These images are
produced by selecting cloud-free pixels from a number
of images collected over a short period (a week or a
month) to produce a single image from these selected
pixels. Because of the orbital characteristics of the
NOAA satellite it is probable that the NDVI values
for adjacent pixels have been collected at different
illumination and viewing angles. See Section 1.3.1 for
a discussion of the bidirectional reflectance properties
of Earth surface materials. Further discussion of the
problem of estimating vegetation characteristics from
remotely-sensed data is contained in Section 9.3, where
the use of high spectral resolution (imaging spectrometer)
data is discussed.
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A class of indices called soil adjusted vegetation
indices (SAVIs) has been developed, and there are
quite a number to choose from (the original SAVI, the
Transformed Soil-Adjusted Vegetation Index, TSAVI,
the Global Environment Monitoring Index, GEMI and
a number of others). Bannari et al. (1995b), Rondeaux
(1995) and Rondeaux, Steven and Baret (1996) pro-
vide an extensive review. Steven (1998) discusses the
Optimized Soil-Adjusted Vegetation Index (OSAVI) and
shows that the form:

OSAVI = NIR − R

NIR + R + 0.16

minimizes soil effects. Readers interested in pursuing
this subject should refer to Baret and Guyot (1991),
Huete (1989), Pinty, Leprieur and Verstraete (1993) and
Sellers (1989). Leprieur, Kerr and Pichon (1996) assess
the comparative value of the different vegetation indices
using NOAA AVHRR data. Assali and Menenti (2000)
and Jakubauskas, Legates and Kastens (2001) illustrate
the analysis of temporal sequences of NDVI data using
a Fourier-based approach (Section 6.6). Canisius, Turral
and Molden (2007) also use a Fourier-based approach
using time series of NDVI values derived from AVHRR
data, as do Roerink et al. (2003). Jönsson and Eklundh
(2004) provide a computer program for analysis of
time-series of satellite sensor data. McMorrow et al.
(2004) assess the use of hyperspectral data (Section 9.3)
for characterizing upland peat composition. Haboudane
et al. (2002, 2004) also use hyperspectral data. Carlson
and Ripley (1997) relate NDVI to fractional vegetation
cover and LAI. Gillies, Carlson and Cui (1997) and
Nishida et al. (2003) describe a relationship between
NDVI, surface temperature and soil moisture content.
As NOAA-AVHRR is being phased out and as new
sensors such as MODIS become established so the
intercalibration of vegetation indices from different
sensors becomes an important issue (Sakamoto et al.,
2005; Steven et al., 2003; van Leeuwen et al., 2006).
Other references include Bannari et al. (1995b), Baret
and Guyot (1991), Gao et al. (2000), Gilabert et al.,
(2002), Gitelson et al. (2002), Haboudane et al. (2004),
Hobbs and Mooney, (1990), Liang (2004, 2007), Pinty,
Leprieur and Verstraete (1993), Tucker (1979) and van
der Meer, van Dijk and Westerhof (1995).

If ratio values are to be correlated with field obser-
vations of, for example LAI or estimates of biomass, or
if ratio values for images of the same area at different
times of the year are to be compared, then some thought
should be given to scaling of the ratio values. Ratios are
computed as 32-bit real (floating-point) values. Scaling
is necessary only to convert the computed ratio values
to integers on the range 0–255 for display purposes, as
explained in Section 3.2.1. If the user wishes to correlate
field observations and ratio values from remotely-sensed

images then unscaled ratio values should be used. Most
image processing software packages calculate the NDVI
value at each pixel position and provide one of two
options. First, as the NDVI is known to range between
+ and −1, the calculated NDVI values are arranged so
that the lowest possible NDVI value (−1) is recorded in
the display memory of the computer as 0 (zero) and the
highest possible NDVI value (+1) is recorded as 255.
Thus, an NDVI value of zero is transformed to the 8-bit
value 127. Two sets of images taken at different times
can be compared directly using this scaling method, since
the full range of the NDVI is transformed to the full
8-bit range of 0–255. A second option allows the user
to scale the range NDVIMIN –NDVIMAX (the minimum
and maximum NDVI values appearing in the image)
onto the range 0–255. Since the values of NDVIMIN and
NDVIMAX will generally differ from image to image,
the results of this scaling operation are not directly com-
parable. The issue of scaling 16- and 32-bit integers and
32-bit real values onto a 0–255 range in order to display
the image on a standard PC is considered in Section 3.2.

It was noted above that one of the reasons put forward
to justify the use of ratios was the elimination of variable
illumination effects in areas of topographic slope. This, of
course, is not the case except in a perfect world. Assume
that the variation in illumination at point (i,j ) can be
summarized by a variable c(i,j) so that, for the pixel at
location (i, j ), the ratio between channels q and p is
expressed as:

R(i, j) = c(i, j)v(q, i, j)

c(i, j)(v(p, i, j)
= v(q, i, j)

v(p, i, j)

where v(q, i, j) is the radiance from pixel located at
point (i, j ) in channel q. The term c(i, j) is constant for
both bands q and p and therefore cancels out. If there
were an additive as well as a multiplicative term then the
following logic would apply:

R(i, j) = c(i, j)v(q, i, j) + r(q)

c(i, j)v(p.i.j) + r(p)

and it would be impossible to extract the true ratio
v(q, i, j)/v(p, i, j) unless the terms r(p) and r(q) were
known or could be estimated. The terms r(p) and r(q)

are the atmospheric path radiances for bands p and q

(Section 1.2.5), which are generally unknown. They
are also unequal because the amount of scattering in
the atmosphere increases inversely with wavelength.
Switzer, Kowalik and Lyon (1981) consider this problem
and show that the atmospheric path radiances must be
estimated and subtracted from the recorded radiances
before ratioing. A frequently-used method, described
in Section 4.4.2, involves the subtraction of constants
k(p) and k(q) which are the minimum values in the
histograms of channels p and q respectively; these values
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might be expected to provide a first approximation to
the path radiances in the two bands. Switzer, Kowalik
and Lyon (1981) suggest that this ‘histogram minimum’
method overcorrects the data. Other factors, such as the
magnitude of diffuse irradiance (skylight) and reflection
from cross-valley slopes, also confuse the issue. It is
certainly not safe to assume that the ‘topographic effect’
is completely removed by a ratio operation. Atmospheric
effects and their removal, including the ‘histogram
minimum’ method, are considered in Chapter 4.

The effects of atmospheric haze on the results of ratio
analyses are studied in an experimental context by Jack-
son, Slater and Pinter (1983). These authors find that, for
turbid atmospheres, the NIR/red ratio was considerably
less sensitive to variations in vegetation status and they
conclude that:

The effect (of atmospheric conditions) on the ratio is so
great that it is questionable whether interpretable results
can be obtained from satellite data unless the atmospheric
effect is accurately accounted for on a pixel-by-pixel
basis’ (p. 195).

The same conclusion was reached for the NDVI. Hol-
ben and Kimes (1986) also report the results of a study
involving the use of ratios of NOAA AVHRR bands 1
and 2 under differing atmospheric conditions. They find
that the NDVI is more constant than individual bands.

Other problems relate to the use of ratios where there is
incomplete vegetation coverage. Variations in soil reflec-
tivity will influence ratio values, as discussed above. The
angle of view of the sensor and its relationship with solar
illumination geometry must also be taken into consider-
ation if data from off-nadir pointing sensors such as the
SPOT HRV or from sensors with a wide angular field
of view such as the NOAA AVHRR are used (Barns-
ley, 1983; Wardley, 1984; Holben and Fraser, 1984). In
order to make his data comparable over time and space,
Frank (1985) converted the Landsat MSS digital counts
to reflectances (as described in Section 4.6) and used a
first-order correction for solar elevation angle based on
the Lambertian assumption (Section 1.3.1; Figure 1.4;
Section 4.5). Useful contributions to the study of vege-
tation indices are Huete et al. (2002), who compare veg-
etation indices derived from MODIS data at two spatial
resolutions. Gitelson et al. (2002) review the use of veg-
etation indices to estimate vegetation fractions. Liang
(2005, 2007) gives a thorough review of methods of
estimating land surface characteristics, while Haboudane
et al. (2004) and Gong et al. (2003) focus on indices
derived from hyperspectral data (Section 9.3). The paper
by Kowalik, Lyon and Switzer (1983) is still worth read-
ing for an account of the impact of additive radiance

terms to the calculation of vegetation indices. Baret and
Buis (2008) provide a recent review.

6.3 Empirically Based Image Transforms

Experience gained during the 1970s with the use of
Landsat MSS data for identifying agricultural crops,
together with the difficulties encountered in the use of
ratio transforms (Section 6.2) and principal component
transforms (Section 6.4), led to the development of image
transforms based on the observations that (i) scatter plots
of Landsat MSS data for images of agricultural areas
show that agricultural crops occupy a definable region
of the four-dimensional space based on the Landsat
MSS bands and (ii) within this four-dimensional space
the region occupied by pixels that could be labelled as
‘soil’ is a narrow, elongated ellipsoid. Pair-wise plots of
Landsat MSS bands fail to reveal these structures fully
because they give an oblique rather than a ‘head-on’
view of the sub-space occupied by pixels representing
vegetation. Kauth and Thomas (1976) propose a trans-
formation that, by rotating and scaling the axes of the
four-dimensional space, would give a more clear view
of the structure of the data. They called their transform
the Tasselled Cap since the shape of the region of
the transformed feature space that was occupied by
vegetation in different stages of growth appeared like a
Scottish ‘bobble hat’. Other workers have proposed other
transforms; perhaps the best known is the PVI which
was based on a similar idea to that of the Tasselled Cap,
namely, that there is a definite axis in four-dimensional
Landsat MSS space that is occupied by pixels represent-
ing soils, ranging from soils of low reflectance to those
of high reflectance (see also Baret, Jacquemond and
Hanocq, 1993). These two transformations are described
briefly in the next two subsections.

6.3.1 Perpendicular Vegetation Index

A plot of radiance measured in the visible red band
against radiance in the NIR for a partly vegetated area
will result in a plot that looks something like Figure 6.7.
Bare soil pixels lie along the line S1 –S2, with the degree
of wetness of the soil being higher at the S1 end of
the ‘soil line’ than at the S2 end. Vegetation pixels
will lie below and to the right of the soil line, and the
perpendicular distance to the soil line was suggested by
Richardson and Wiegand (1977) as a measure which
was correlated with the green LAI and with biomass.
The formula used by Richardson and Wiegand (1977)
to define the PVI is based on either Landsat-1–3 MSS
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Figure 6.7 The ‘soil line’ S1 –S2 joins the position of the
expected red and near-infrared reflectance for wet soils (S1)
with that for dry soils (S2). Vigorous vegetation shows high
reflectance in the near-infrared (horizontal axis) and low
reflectance at visible red wavelengths. Point P therefore rep-
resents a pixel that has high near-infrared and low visible red
reflectance. The PVI measures the orthogonal distance from P
to the soil line (shown by line PO).

band 7 or 6, denoted by PVI7 and PVI6, respectively.
Note that this rendition of the PVI is now of historical
interest. It is examined here for illustrative purposes
only. Bands 6 and 7 of the Landsat MSS covered NIR
regions and band 5 covered the visible green waveband.

PVI7 =
√

(0.355MSS 7 − 0.149MSS 5)2

+(0.355MSS 5 − 0.852MSS 7)2

PVI6 =
√

(0.498MSS 6 − 0.487MSS 5 − 2.507)2

+(2.734 + 0.498MSS 5 − 0.543MSS 6)2

Neither of these formulae should be used on Land-
sat MSS images without some forethought. First, the
PVI is defined as the perpendicular distance from the
soil line (Figure 6.7). Richardson and Wiegand (1977)
equation for the soil line is based on 16 points repre-
senting soils, cloud and cloud shadows in Hidalgo and
Willacy Counties, Texas, USA, for four dates in 1975. It
is unlikely that such a small and geographically limited
sample could adequately define the soil line on a univer-
sal basis. A locally valid expression relating ‘soil’ pixel
values in Landsat MSS bands 5 and 7 (or 5 and 6) of the
form X5 = c + X7 is needed. Second, the Richardson
and Wiegand equation is based on the assumption that the
maximum digital count in Landsat MSS bands 4 (green),
5 (red) and 6 (NIR) is 127 with a maximum of 63 in Land-
sat MSS band 7 (NIR). Landsat MSS images supplied by
ESA are normally system-corrected and the pixel values
in all four Landsat MSS bands are expressed on a 0–255
scale. Landsat TM and ETM+ images are recorded on a

0–255 scale, so this problem should not arise. The PVI
equations listed above do not, however, apply to ETM+
or TM images.

The PVI has been used as an index that takes into
account the background variation in soil conditions which
affect soil reflectance properties. Jackson, Slater and Pin-
ter (1983) demonstrate that the PVI is affected by rainfall
when the vegetation cover is incomplete. However, they
considered it to be ‘moderately sensitive’ to vegetation
but was not a good detector of plant stress. The effects of
atmospheric path radiance on the PVI were reported as
reducing the value of the index by 10–12% from a clear
to a turbid atmospheric condition. This is considerably
less than the 50% reduction noted for a NIR : red ratio.

The PVI is not now widely used. It is described here so
as to introduce the concept of the ‘soil line’. Nowadays,
the Tasselled Cap or KauthThomas transformation is gen-
erally preferred, as it can be modified to deal with data
from different sensors. However, its formulation depends
on the definition of the soil line using empirical data.

6.3.2 Tasselled Cap (Kauth–Thomas)
Transformation

The PVI (Section 6.3.1) uses spectral variations in two
of the four Landsat MSS bands, and relates distance
from a soil line in the two-dimensional space defined by
these two bands as a measure of biomass or green LAI.
Kauth and Thomas (1976) use a similar idea except their
model uses all four Landsat MSS bands. Their procedure
has subsequently been extended to higher-dimensional
data such as that collected by the Landsat TM and
ETM+ instruments. The simpler four-band combination
is considered first. In the four-dimensional feature
space defined by the Landsat MSS bands, Kauth and
Thomas (1976) suggest that pixels representing soils
fall along an axis that is oblique with respect to each
pair of the four MSS axes. A triangular region of the
four-dimensional Landsat MSS feature space is occupied
by pixels representing vegetation in various stages of
growth. The Tasselled Cap transform is intended to
define a new (rotated) coordinate system in terms of
which the soil line and the region of vegetation are more
clearly represented. The axes of this new coordinate
system are termed ‘brightness’, ‘greenness’, ‘yellowness’
and ‘nonesuch’. The brightness axis is associated with
variations in the soil background reflectance. The green-
ness axis is correlated with variations in the vigour of
green vegetation while the yellowness axis is related to
variations in the yellowing of senescent vegetation. The
‘nonesuch’ axis has been interpreted by some authors
as being related to atmospheric conditions. Due to the
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manner in which these axes are computed they are
statistically uncorrelated, so that they can be represented
in the four-dimensional space defined by the four
Landsat MSS bands by four orthogonal lines. However,
the yellowness and nonesuch functions have not been
widely used and the Tasselled Cap transformation has
often been used to reduce the four-band MSS data to
two functions, brightness and greenness. For further
discussion of the model, see Crist and Kauth (1986).

The justification for this dimensionality-reduction
operation is that the Tasselled Cap axes provide a
consistent, physically based coordinate system for the
interpretation of images of an agricultural area obtained
at different stages of the growth cycle of the crop. Since
the coordinate transformation is defined a priori (i.e. not
calculated from the image itself) it will not be affected
by variations in crop cover and stage of growth from
image to image over a time-series of images covering
the growing season. The principal components transform
(Section 6.4) performs an apparently similar operation;
however, the parameters of the principal components
transform are computed from the statistical relationships
between the individual spectral bands of the specific
image being analysed. Consequently, the parameters
of the principal components transform vary from one
multispectral image set to another as the correlations
among the bands depend upon the range and statistical
distribution of pixel values in each band, which will
differ from an early growing season image to one
collected at the end of the growing season.

If the measurement for the j th pixel on the i th Tas-
selled Cap axis is given by uj , the coefficients of the i th
transformation by ri and the vector of measurements on
the four Landsat MSS bands for the same pixel by xj

then the Tasselled Cap transform is accomplished by:

uj = r′
ixj + c

In other words, the pixel values in the four MSS bands
(the elements of xj ) are multiplied by the corresponding
elements of ri to give the position of the j th pixel with
respect to the i th Tasselled Cap axis, u. The constant c

is an offset which is added to ensure that the elements
of the vector u are always positive. Kauth and Thomas
(1976) use a value of 32.

The vectors of coefficients ri are defined by Kauth and
Thomas (1976) as follows:

r1 = {0.433, 0.632, 0.586, 0.264}
r2 = {−0.290,−0.562, 0.600, 0.491}
r3 = {−0.829, 0.522, −0.039, 0.194}
r4 = {0.223, 0.012, −0.543, 0.810}

These coefficients assume that Landsat MSS bands
4–6 are measured on a 0–127 scale and band 6 is

measured on a 0–63 scale. They are also calibrated
for Landsat-1 data and slightly different figures may
apply for other Landsat MSS data. The position of
the r1 axis was based on measurements on a small
sample of soils from Fayette County, Illinois, USA. The
representativeness of these soils as far as applications in
other parts of the world is concerned is open to question.

Crist (1983) and Crist and Cicone (1984a, 1984b)
extend the Tasselled Cap transformation to data from the
six reflective bands of Landsat TM datasets. Data from
the Landsat TM thermal infrared channel (conventionally
labelled band 6; see Section 2.3.6) are excluded. They
found that the brightness function r1 for the Landsat
MSS Tasselled Cap did not correlate highly with the
Landsat TM Tasselled Cap equivalent, though Landsat
MSS greenness function r2 did correlate with the
Landsat TM greenness function. The TM data was found
to contain significant information in a third dimension,
identified as wetness. The coefficients for these three
functions are given in Table 6.1.

The brightness function is simply a weighted average
of the six TM bands, while greenness is a visible/NIR
contrast, with very little contribution from bands 5 and
7. Wetness appears to be defined by a contrast between
the mid-infrared bands (5 and 7) and the red/NIR bands
(3 and 4). The three Tasselled Cap functions can be con-
sidered to define a three-dimensional space in which the
positions of individual pixels are computed using the
coefficients listed in Table 6.1.

The plane defined by the greenness and brightness
functions is termed by Crist and Cicone (1984a) the
‘plane of vegetation’ while the functions brightness
and wetness define the ‘plane of soils’ (Figure 6.8).
A Tasselled Cap transform of the 1993 ETM+ image of
Alexandria, Egypt, is shown in Figure 6.9.

Several problems must be considered. The first is the
now familiar problem of dynamic range compression that,
in the case of the Tasselled Cap transform, assumes an
added importance. One of the main reasons for supporting
the use of the Tasselled Cap method against, for example
the principal components technique (Section 6.4) is that
the coefficients of the transformation are defined a priori ,
as noted above. However, if these coefficients are applied
blindly, the resulting Tasselled Cap coordinates will not
lie in the range 0–255 and will thus not be displayable
on standard image processing equipment. The range and
frequency distribution of Tasselled Cap transform values
varies from image to image, however. The problem is to
define a method of dynamic range compression that will
adjust the Tasselled Cap transform values on to a 0–255
range without destroying interimage comparability.
Because the values of the transform are scene dependent
it is unlikely that a single mapping function will prove
satisfactory for all images but if an image-dependent
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Table 6.1 Coefficients for the Tasselled Cap functions ‘brightness’, ‘greenness’ and ‘wetness’ for
Landsat Thematic Mapper bands 1–5 and 7.

TM band 1 2 3 4 5 7

Brightness 0.3 037 0.2 793 0.4 343 0.5 585 0.5 082 0.1 863

Greenness −0.2 848 −0.2 435 −0.5 436 0.7 243 0.0 840 −0.1 800

Wetness 0.1 509 0.1 793 0.3 299 0.3 406 −0.7 112 −0.4 572

Wetness

Brightness

Plane of
vegetation

G
re

en
ne

ss

Plane of soils

Figure 6.8 The Tasselled Cap transformation defines three
fixed axes. Image pixel data are transformed to plot on these
three axes (greenness, brightness and wetness) which jointly
define the Plane of Vegetation and the Plane of Soils. See text
for discussion. Based on Crist, E.P. and Cicone, R.C., 1986,
Figure 3. Reproduced with permission from American Society
for Photogrammetry and Remote Sensing, Manual of Remote
Sensing.

mapping function is selected then interimage comparison
will be made more difficult. Crist (personal communi-
cation) suggests that the range of Tasselled Cap function
values met with in agricultural scenes will vary between
0 and 350 (brightness), −100 and 125 (greenness) and
−150 to 75 (wetness). If interimage comparability is
important, then the calculated values should be scaled
using these limits. Otherwise, the functions could be
evaluated for a sample of pixels in the image (for
example 25% of the pixels could be selected) and the
sample minimum and maximum values (xmin and xmax)
calculated. The following formula can then be applied to
the pixel values x to give the Tasselled Cap values y.

y = x − xmin

xmax − xmin
× 255

where y is the scaled value (0–255) and x is the raw
value. In order to prevent over- and undershoots, a
check should be made for negative y values (which are
set to zero) or values of y that are greater than 255
(these are set to 255). Problems of scaling are discussed

Figure 6.9 Tasselled Cap image derived from 1993 ETM+
image of Alexandria, Egypt, shown in Figure 6.2b. Brightness
is shown in red – with the sandy desert area being clearly
delineated. Greenness is allocated to the green band, and
wetness to the blue band. The water areas are clearly identified
in the top left corner of the image, while the agricultural areas
(shown in red on Figure 6.2b) are shown in shades of cyan, a
mixture of green (greenness) and blue (wetness). More detail
of field boundaries and roads and tracks can be seen on
this image, compared to Figure 6.2b. Landsat data courtesy
NASA/USGS.

in more detail in Section 3.2.1. As the cost of disk
storage has fallen substantially over the past few years,
it is now more likely that the output from the Tasselled
Cap procedure is represented in the form of 32-bit real
values, which can be manipulated in accordance with
the requirements of any particular problem.

A second problem which interferes with the compar-
ison of multidate Tasselled Cap images is the problem
of changes in illumination geometry and variations in
the composition of the atmosphere. Both of these factors
influence the magnitude of the ground-leaving radiance
from a particular point, so that satellite-recorded radi-
ances from a constant target will change even though
the characteristics of the target do not change. These
problems are addressed in a general way in Chapter 4
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(Sections 4.4 and 4.5); they are particularly important
in the context of techniques that endeavour to provide
the means to carry out comparisons between multitem-
poral images. One solution is proposed by Huang et al.
(2002c), whose use of apparent reflection is noted in
Section 4.6. These authors use procedures similar to those
described below to compute Tasselled Cap coefficients
from Landsat TM apparent reflectance data.

Like the PVI, the Tasselled Cap transform relies upon
empirical data for the determination of the coefficients
of the brightness axis (the soil line in the terminology of
the PVI). It was noted above that the Kauth and Thomas
(1976) formulation of the MSS Tasselled Cap was based
on a small sample of soils from Fayette County, Illinois,
USA. The TM brightness function is also based on a
sample of North American soils, hence applications of
the transformation to agricultural scenes in other parts
of the world may not be successful if the position of the
brightness axis as defined by the coefficients given above
does not correspond to the reflectance characteristics of
the soils in the local area. Jackson (1983) describes a
method of deriving Tasselled Cap-like coefficients from
soil reflectance data, using Gram-Schmidt (GS) orthog-
onal polynomials. He uses reflectance data in the four
Landsat MSS bands for dry soil, wet soil, green and
senesced vegetation to derive coefficients for three func-
tions representing brightness, greenness and yellowness.
Where possible, the coefficients of the orthogonal, Tas-
selled Cap-like functions should be calculated for the area
of study as they may differ from those provided by Crist
and Cicone (1984a, 1984b) and listed above. Lobser and
Cohen (2007) and Zhang et al. (2002) extend the con-
cept of the Tasselled Cap to MODIS data, while Horne
(2003) supplies Tasselled Cap coefficients for the four
bands of IKONOS multispectral scanner data. Dymond,
Mladenoff and Radeloff (2002) illustrate the use of the
TM Tasselled Cap in forestry applications. Arbia, Grif-
fith and Haining (2003) examine spatial error propagation
when linear combinations of spectral bands are computed,
using the case of vegetation indices – including Tasselled
Cap – as an example.

6.4 Principal Components Analysis

6.4.1 Standard Principal Components Analysis

Adjacent bands in a multi- or hyperspectral remotely-
sensed image are generally correlated. Multiband
visible/NIR images of vegetated areas exhibit negative
correlations between the NIR and visible red bands and
positive correlations among the visible bands because
the spectral reflectance characteristics of vegetation
(Section 1.3.2.1) are such that as the vigour or greenness
of the vegetation increases the red reflectance diminishes

and the NIR reflectance increases. The presence of corre-
lations among the bands of a multispectral image implies
that there is redundancy in the data. Some information is
being repeated. It is the repetition of information between
the bands that is reflected in their intercorrelations. If
two variables, x and y, are perfectly correlated then
measurements on x and y will plot as a straight line
sloping upwards to the right (Figure 6.10a). Since the
positions of the points shown along line AB occupy only
one dimension, the relationships between these points
could equally well be given in terms of coordinates on
line AB . Even if x and y are not perfectly correlated there
may be a dominant direction of scatter or variability, as
in Figure 6.10b. If this dominant direction of variability
(AB ) is chosen as the major axis then a second, minor,
axis (CD) could be drawn at right-angles to it. A plot
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Figure 6.10 (a) Plot of two variables, x and y, which are
perfectly correlated (r = 1.0). The (x, y) points lie on a straight
line between A and B. Although this is a two-dimensional plot,
all the points lie on a one-dimensional line. One dimension
is therefore redundant. (b) In contrast to the plot shown in (a),
this distribution of (x, y) points does not lie along a single
straight line between A and B. There is some scatter in a
second, orthogonal, direction CD. The distance relationships
between the points would be the same if we used AB as the
x-axis and CD as the y-axis, though the numerical coordinates
of the points would change.
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using the axes AB and CD rather than the conventional
x and y axes might, in some cases, prove more revealing
of the structures that are present within the data. Further-
more, if the variation in the direction CD in Figure 6.10b
contains only a small proportion of the total variability
in the data then it may be ignored without too much loss
of information, resulting in data compression.

This example shows that we must draw a basic
distinction between the number of variables (e.g. spectral
bands) in an image data set and the intrinsic dimen-
sionality of that data set. In Figure 6.10a the number
of variables is two (x and y) but the dimensionality of
the data as shown by the scatter of points is one. In
Figure 6.10b the dimensionality is again effectively one,
although the number of observed variables is, in fact,
two. In both examples the use of the single axis AB
rather than the x and y axes accomplishes two aims:
(i) a reduction in the size of the data set since a single
coordinate on axis AB replaces the two coordinates on
the x and y axes and (ii) the information conveyed
by the set of coordinates on AB is greater than the
information conveyed by the measurements on either the
x or the y axes individually. In this context information
means variance or scatter about the mean; it can also
be related to the range of states or levels in the data, as
shown in the discussion of entropy in Section 2.2.3.

Multispectral image data sets generally have a dimen-
sionality that is less than the number of spectral bands.
For example, it is shown in Section 6.3.2 that the four-
band Landsat MSS Tasselled Cap transform produces
two significant dimensions (brightness and greenness)
while the six-band Landsat TM Tasselled Cap transform
defines three meaningful functions (dimensions). The
purpose of principal (n.b., not ‘principle’!) components
analysis is to define the number of dimensions that
are present in a data set and to fix the values of the
coefficients which specify the positions of that set of
axes which point in the directions of greatest variability
in the data (such as axes AB and CD in Figure 6.10b).
These axes or dimensions of variability are always
uncorrelated. A principal components transform of a
multispectral image (or of a set of registered multitem-
poral images; see Sections 6.8 and 6.9) might therefore
be expected to perform the following operations:

• estimate the dimensionality of the data set and
• identify the principal axes of variability within

the data.

These properties of PCA (sometimes also known as
the Karhunen-Loève transform) might prove to be use-
ful if the data set is to be compressed, for example for
transmission over a slow connection. Also, relationships
between different groups of pixels representing different

land cover types may become clearer if they are viewed
in the principal axis reference system rather than in terms
of the original spectral bands, especially as the variance
of the data set is concentrated in relatively fewer principal
components. Variance is often associated with informa-
tion. The data compression property is useful if more
than three spectral bands are available. A conventional
RGB colour display system relates a spectral band to
one of the three colour inputs (RGB). The Landsat TM
provides seven bands of data, hence a decision must be
made regarding which three of these seven bands are to
be displayed as a colour composite image. If the basic
dimensionality of the TM data is only three then most of
the information in the seven bands will be expressible
in terms of three principal components. The principal
component images could therefore be used to generate
a RGB false-colour composite with principal component
number 1 shown in red, number 2 in green and number
3 in blue. Such an image contains more information than
any combination of three spectral bands.

The positions of the mutually perpendicular axes of
maximum variability in the two-band data set shown in
Figure 6.10b can be found easily by visual inspection
to be the lines AB and CD . If the number of variables
(spectral bands) is greater than three then a geometric
solution is impracticable and an algebraic procedure must
be sought. The direction of axis AB in Figure 6.10b is
defined by the sign of the correlation between variables
x and y; high positive correlation results in the scatter of
points being restricted to an elliptical region of the two-
dimensional space defined by the axes x and y. The line
AB is, in fact, the major or principal axis of this ellipse
and CD is the minor axis. In a multivariate context, the
shape of the ellipsoid enclosing the scatter of data points
in a p-dimensional space is defined by the variance-
covariance matrix computed from p variables or spectral
bands. The variance in each spectral band is proportional
to the degree of scatter of the points in the direction par-
allel to the axis representing that variable, so that it can
be deduced from Figure 6.11a that for the circular distri-
bution the variances of variables X and Y (represented
by GH and EF) are approximately equal. The covariance
defines the shape of the ellipse enclosing the scatter of
points. Figure 6.11a shows two distributions. One (green
outline) has a high positive covariance while the other
(blue outline) has a covariance of zero. The mean of each
variable gives the location of the centre of the ellipse (or
ellipsoid in a space of dimensionality higher than two).
Thus, the mean vector and the variance-covariance matrix
define the location and shape of the scatter of points in
a p-dimensional space. The information contained in the
variances and covariances of a set of variables is used
again in the definition of the maximum likelihood clas-
sification procedure that is described in Section 8.4.2.3.
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Figure 6.11 (a) The ellipse is characterized in the two dimen-
sional space defined by variables X and Y by long axis AB
and short axis CD, which define the two orthogonal direc-
tions of maximum scatter. The circle shows equal scatter in all
directions from the centre, so the positions of its axes EF and
GH are purely arbitrary – there is no direction of maximum
variance. In the case of the ellipse, the direction of slope of
line AB indicates that there is a strong positive correlation
between the two variables while its shape shows that one
variable has a larger variance than the other. The lack of a
preferred orientation of scatter in the case of the circle indi-
cates a zero correlation with the two variables X and Y having
equal variances. (b) Matrix multiplications in PCA. See text
for discussion.

The relationship between the correlation matrix and
the variance–covariance matrix sometimes leads to
confusion. If the p variables making up the data set
are measured on different and incompatible scales (for
example three variables may be measured, respectively,
in metres above sea level (elevation), in millibars
(barometric pressure) and kilograms (weight)) then
unit changes in the variances of these variables are
not directly comparable – how many metres are equal
to 1000 millibars? The importance of the variance in
defining the scatter of points in a particular direction has
already been stressed, so it is clear that if the variance is
to be used in defining the shape of the ellipsoid enclosing
the scatter of points in the p-dimensional space then the
scales used to measure each variable must be comparable.

To illustrate this point, consider what would be the out-
come (in terms of the shape of the enclosing ellipsoid)
if the three variables mentioned earlier were measured in

feet above sea level (rather than metres), inches of mer-
cury (rather than millibars) and weight in ounces (rather
than kilograms). Not only would the variance of each
of the variables be altered but the shape of the enclos-
ing ellipsoid would also change. The degree of change
would not be constant in each dimension, and the shape
of the second ellipsoid based on imperial units would
not be related in any simple fashion to the shape of
the first ellipsoid, based on metric units. Consequently,
the lengths and orientations of the principal axes would
change. It is in these circumstances that the correlation
coefficient rather than the covariance is used to measure
the degree of statistical association between the spectral
bands. The correlation is simply the covariance measured
for standardized variables. To standardize a variable the
mean value is subtracted from all the measurements and
the result is divided by the standard deviation. This oper-
ation converts the raw measurements to standard scores
or z-scores, which have a mean of zero and a variance of
unity. The off-diagonal elements of the correlation matrix
are the covariances of the standard scores and the diag-
onal elements are the variances of the standard scores,
which are by definition always unity. Since the shape of
the ellipsoid enclosing the scatter of data points is altered
in a complex fashion by the standardization procedure
it follows that the orientation and lengths of the princi-
pal axes, such as AB and CD in Figure 6.10b, will also
change. The effects of the choice of the sample variance-
covariance matrix S or the correlation matrix R on the
results of the principal components operation are consid-
ered below, and an illustrative example is provided.

The principal components of a multispectral image
set are found by algebraic methods that are beyond the
scope of this book (see Jolliffe (2002), Mather (1976) or
Richards and Jia (2005) for a more detailed discussion, or
Jackson (1991) for an easier introduction). The procedure
can be illustrated easily, however. What we are seeking
is a transformation matrix that will rotate and shift the
xy axes of the Figure 6.11a to the positions AB and CD
(the long axes of the yellow ellipse). This transforma-
tion matrix has p rows and npc columns (Figure 6.11b)
where p is the number of images in the multispectral or
hyperspectral data set and npc is the number of principal
component images that are to be calculated. The image
data matrix, X, is postmultiplied by P to give the matrix
of principal component images, T. Matrix X has m rows
and p columns, where m is the number of pixels in each
image. There are npc columns in matrix T, each column
holding a principal component image with m pixels. The
value of npc lies between 1 and p. To find the (i,j )th ele-
ment of T, multiply the elements of row j of matrix X
by the corresponding elements of column j of matrix P.

The elements of the transformation matrix P are deter-
mined by the principle of maximum variance. That is,
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the transformation from X into T must ensure that the
variance of Principal Component 1 is the largest of any
linear combination of coefficients pij . But this criterion
could be met by setting all the elements of P to infin-
ity. So we add the extra stipulation that

∑p

i=1 p2
ij = 1 or,

in other words, the sums of the squares of the elements
of any column j of P add to 1.0. Fortunately, a matrix
procedure called eigenvalue/eigenvector extraction pro-
vides exactly what we want. The matrix P is the matrix
of unit eigenvectors of the correlation matrix R or of
the variance-covariance matrix S of the raw data, X. So
the PCA operation is simple: calculate R or S, obtain its
eigenvectors P and carry out the matrix multiplication XP
as shown in Figure 6.11b. The eigenvalues � associated
with the eigenvectors give the variance of the correspond-
ing principal component image, The eigenvalues are nor-
mally arranged in descending order of magnitude, and it
is commonly found that the variances of the first two or
three principal component images account for more than
90% of the total variation in X, the original image set.

It follows from the previous paragraph that standard-
ized units of variance must be used if the features (bands)
are measured on incompatible scales. The calculation of
the correlation matrix R includes data standardization. If,
as may be the case with radiance data rather than DNs, the
variables are all measured in terms of the same units (such
as mW cm2 sr−1) then standardization is unnecessary and,
indeed, undesirable for it removes the effects of changes
in the degree of variability between the bands. In such
cases, the matrix S of variances and covariances is used.

If the principal component images are to be displayed
on a screen, then they must be scaled to fit the range
0–255. This scaling problem has already been discussed
earlier in this chapter in the context of band ratios and
the Tasselled Cap transform. Given that the principal
component images will not generally be integers in the
range 0–255, the most effective method of scaling is to
store the principal component images as 32-bit real num-
bers, and use one of the methods of scaling described in
Chapter 3 to convert these real numbers to a 0–255 range
when required (see Figure 3.6). When comparing prin-
cipal component images produced by different computer

programs, it is always wise to determine the nature of the
scaling procedure used in the generation of each image.
Reference to Figure 3.6b,c shows how the effective visu-
alizaation of the results of PCA can be achieved.

If all available bands are input to the principal compo-
nents procedure then, depending on whether the analysis
is based on interband correlations or covariances, the
information contained in a subset of bands may be under-
represented, as a result of the spectral resolution of the
sensor. For example, the Landsat ETM+ has one ther-
mal infrared band (out of seven) whereas ASTER has
4 out of 13 (Table 2.4). Relative to the ASTER data
set, the information content of the thermal infrared band
will be under-represented in the Landsat ETM+ dataset.
Siljestrőm et al. (1997) use a procedure that they call
selective principal components analysis , which involves
the division of the bands into groups on the basis of their
intercorrelations. For TM data, these authors find that
bands 1, 2 and 3 are strongly intercorrelated and are dis-
tinct from bands 5 and 7. Band 4 stands alone. They carry
out PCA separately on bands (1, 2, 3) and bands (5, 7) and
use the first principal component from each group, plus
band 4, to create a false-colour image, which is then used
to help in the recognition of geomorphological features.

Table 6.2 gives the correlation matrix for the six reflec-
tive (visible plus NIR and mid-infrared) bands (numbered
1–5 and 7) of a Landsat TM image of the Littleport area
shown in Figure 6.12a. Correlations rather than covari-
ances are used as the basis for the principal components
procedure because the digital counts in each band do not
relate to the same physical units (that is a change in level
from 30 to 31, for example, in band 1 does not represent
the same change in radiance as a similar change in any
other band. See Section 4.6 for details of the differences
in calibration between TM bands. High positive corre-
lations among all reflective bands except band 4 (NIR)
can be observed. The lowest correlation between any pair
of bands (excluding band 4) is +0.660. The correlations
between band 4 and the other bands are negative. This
generally high level of correlation implies that the radi-
ances in each spectral band except band 4 are varying
spatially in much the same way. The negative correlation

Table 6.2 Correlations among Thematic Mapper reflective bands (1–5 and 7) for the Littleport TM image. The means
and standard deviations of the six bands are shown in the rightmost two columns.

TM band 1 2 3 4 5 7 Mean Standard deviation

1 1.000 0.916 0.898 −0.117 0.660 0.669 65.812 8.870

2 0.916 1.000 0.917 −0.048 0.716 0.685 29.033 5.652

3 0.898 0.917 1.000 −0.296 0.757 0.819 26.251 8.505

4 −0.117 −0.048 −0.296 1.000 −0.161 −0.474 93.676 24.103

5 0.660 0.716 0.757 −0.161 1.000 0.883 64.258 18.148

7 0.669 0.685 0.819 −0.474 0.883 1.000 23.895 11.327
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(a) (b)
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Figure 6.12 (a) False colour composite image (ETM+ bands 4, 3, 2) of the Littleport area of eastern England. The two parallel
lines running up from the lower right corner to the top centre are drainage channels. The R. Ouse is the deep blue line running
vertically from the bottom right. Clouds and shadows are apparent mainly in the upper centre of the image. Fields of growing
crops and pasture are coloured red. Ploughed fields are cyan, as is the village of Littleport in the bottom centre. Landsat data
courtesy NASA/USGS. (b) Principal components 1–3 of the correlation matrix between the six reflective bands of the Littleport
TM subimage. The red channel shows principal component 1, which appears to show the negative of brightness as cloud
shadow and water appear yellow. The area of land between the two drainage channels is shown in deep purple, though little
detail is present. It is difficult to give a name to the three components. (c) Principal components 4–6 of the correlation matrix of
the Littleport image. The River Ouse and the two parallel drainage channels are very clear as is some detail of the area between
the drainage channels. The image is rather noisy, though not enough to render it unusable.
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between band 4 and the optical bands can be explained
by the fact that the area shown in the image is an agri-
cultural one, and the main land cover type is vegetation.
The idealized spectral reflectance curve for vegetation
(Figure 1.21) shows the contrast between the NIR and red
channels. Vegetation ratios exploit this fact, and as the
ground cover of vegetation, and the vigour (greenness)
of the vegetation increase so the contrast between NIR
and red reflectance increases as the NIR reflectance rises
and the red reflectance falls. Hence, this negative corre-
lation between band 4 and other bands can be partially
explained. Table 6.2 also shows the means and standard
deviations of the six bands. Note the significantly higher
standard deviations for bands 4, 5 and 7 which show that
variability of pixel values is greater in these bands than
in bands 1, 2 and 3. The mean pixel values also differ.
This is a result of the nature of the ground cover and the
calibration of the TM sensor.

The eigenvalues and scaled eigenvectors, or principal
component loadings, derived from the correlation matrix
measure the concentration of variance in the data in six
orthogonal directions (Table 6.3, Figure 6.11a). Over 70%
of the variability in the data lies in the direction defined
by the first principal component. Column 1 of Table 6.3
gives the relationship between the first principal compo-
nent and the six TM bands; all bands except the NIR have
entries that are greater than 0.87, while the NIR band has
an entry of −0.309. This indicates (as was inferred from
the correlation matrix) that there is considerable overlap
in the information carried by the different channels, and
that there is a contrast between the NIR and the other
bands. The image produced by the first principal compo-
nent (Figure 6.12b, red channel) summarizes information
that is common to all channels. It can be seen to be a
weighted average of five of the six TM bands contrasted
with the NIR band.

The second principal component of the Littleport
image set (Figure 6.12a, green channel) is dominated
by the contribution of the NIR band. There is a small
contribution from the three visible bands. Between them,
principal components 1 and 2 account for over 88% of the
variability in the original six-band data set. A further 8%
is contributed by principal component 3 (Figure 6.12b,
blue channel), which appears to be highlighting a con-
trast between the infrared and the visible bands. Visual
analysis of the principal component images shown in
Figure 6.12b appears to indicate that principal compo-
nents 1 and 2 may be picking out differences between
different vegetation types in the area, while principal
component 3 is related to water content of the soil.

Principal components 4–6 (Figure 6.12c) together con-
tain only 3.1% of the variation in the data. If the noise
present in the image data set is evenly distributed among
the principal components then the lower-order (higher
numbered) principal components might be expected to
have a lower SNR than the higher-order principal compo-
nents. On these grounds it might be argued that principal
components 4–6 are not worthy of consideration. This
is not necessarily the case. While the contrast of these
lower-order principal component images is less than that
of the higher-order components, there may be patterns of
spatial variability present that should not be disregarded,
as Figure 6.12c shows. The sixth principal component
shown in Figure 6.12c is clearly spatially non-random.
Townshend (1984) gives a good example of the utility
of low-order principal components. His seventh princi-
pal component accounted for only 0.08% of the vari-
ability in the data yet a distinction between apple and
plum orchards and between peaty and silty-clay soils was
brought out. This distinction was not apparent on any
other component or individual TM band, nor was it appar-
ent from a study of the principal component loadings. It

Table 6.3 Principal component loadings for the six principal components of the Littleport TM image.
Note that the sum of squares of the loadings for a given principal components (column) is equal to the
eigenvalue. The percent variance value is obtained by dividing the eigenvalue by the total variance (six
in this case because standardized components are used – see text) and multiplying by 100.

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

TM band 1 0.899 0.242 −0.288 0.223 0.002 −0.002

TM band 2 0.914 0.303 −0.182 −0.143 −0.095 −0.103

TM band 3 0.966 0.033 −0.165 −0.117 0.086 0.134

TM band 4 −0.309 0.924 0.214 −0.006 0.076 −0.001

TM band 5 0.871 0.019 0.470 0.038 −0.124 0.059

TM band 7 0.904 −0.285 0.267 0.009 0.148 −0.094

Eigenvalue 4.246 1.086 0.481 0.085 0.059 0.041

% variance 70.77 18.10 8.02 1.42 0.99 0.68

Cumulative % variance 70.77 88.88 96.90 98.32 99.31 100.00
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is important to check principal component images by eye,
using one’s knowledge of the study area, rather than rely
solely upon the magnitudes of the eigenvalues as an indi-
cator of information content, or on inferences drawn from
the principal component loadings.

Do not be misled, however, by the coherent appearance
of the lower-order principal component images. Figure
6.12c (blue channel) shows the sixth and last principal
component derived from the Littleport TM image data
set. This principal component accounts for only 0.68% of
the total (standardized) variance of the image data set, yet
it is interpretable in terms of spatial variation. It should be
borne in mind that the information expressed by this prin-
cipal component has been (i) transformed from a 32-bit
real number into a count on the 0–255 range, as described
in Section 3.2.1 and (ii) subjected to a histogram equaliza-
tion contrast stretch. Yet, if the first principal component
were expressed on a 0–255 scale and the ranges of the
other principal components adjusted according to their
associated eigenvalue, then principal component 6 would
have a dynamic range of just 0–10.

The use of lower-order (higher numbered) components
depends on the aims of the project. If the aim is to cap-
ture as much as possible of the information content of the
image set in as few principal components as possible then
the lower-order principal components should be omitted.
If the PCA is based on the correlation matrix is used
then the ‘eigenvalue greater than 1’ (or ‘eigenvalue – 1’)
criterion could be used to determine how many principal
components to retain. If an individual standardized band
of image data has a variance of one then it might be
possible to argue that all retained principal components
should have a variance of at least one. If this argument
were used then only the first two principal components
of the Littleport image set would be retained, and 11% of
the information in the image data set would be traded for
a reduction of 66.66% in the image data volume. On the
other hand, one may wish merely to orthogonalize the
data set (that is express the data in terms of uncorrelated
principal components rather than in terms of the original
spectral bands) in order to facilitate subsequent process-
ing. For example, the performance of the feed-forward
artificial neural net classifier, discussed in Chapter 8, may
perform better using uncorrelated inputs. In such cases,
all principal components should be retained. It is impor-
tant to realize that the aims of a project should determine
the procedures followed, rather than the reverse.

The example used earlier in this section is based on the
eigenvalues and eigenvectors of the correlation matrix,
R. We saw earlier that the principal components of the
variance-covariance (S) and correlation (R) matrices are
not related in a simple fashion. Consideration should
therefore be given to the question of which of the two
matrices to use. Superficially it appears that the image

data in each band are comparable, all being recorded
on a 0–255 scale. However, reference to Section 8.4.3
shows that this is not so. The counts in each band can
be referred to the calibration radiances for that band,
and it will be found that:

1. The same pixel value in two different bands equates
to different radiance values.

2. If multidate imagery is used then the same pixel
value in the same band for two separate dates may
well equate to different radiance values because of
differences in sensor calibration over time.

The choice lies between the use of the correlation
matrix to standardize the measurement scale of each band
or conversion of the image data to radiances followed by
PCA of the variance-covariance matrix (Singh and Har-
rison, 1985). However, if multidate imagery is used the
question of comparability is of great importance.

Figure 6.13a,b and Tables 6.4 and 6.5 summarize the
results of a principal components transform of the Little-
port TM image data set based on the variance-covariance
matrix (S) rather than the correlation matrix (R). Com-
pare the results for the analysis based on the correlation
matrix, described above and summarized in Table 6.2 and
Figure 6.12. The effects of the differences in the vari-
ances of the individual bands are very noticeable. Band
4 has a variance of 580.95, which is 47.56% of the total
variance, and as a consequence band 4 dominates princi-
pal components 1 and 2. As in the correlation example,
the first principal component is a contrast between band 4
and the other five bands, but this time the loading on band
4 is the highest in absolute terms rather than the lowest
and the percentage of variance explained by the first
principal component is 58.22 rather than 70.77. Principal
component two, accounting for 35.35% of the total vari-
ance rather than 18.10% in the correlation case, is now
more like a weighted average. The false-colour compos-
ite made up of principal components 1–3 (Figure 6.13a)
appears, from visual inspection, to contain more
detail than the corresponding image using correlations
(Figure 6.12b). The higher-order principal components
are much less important even than they are when the
analysis is based on correlations, and the corresponding
principal component images are noisier. Which result is
‘better’ depends, of course, on the user’s objectives. The
aim of PCA should be to generate a set of images that
are more useful in some way than are the untransformed
images, rather than to satisfy the pedantic requirements
of statistical theory. Nevertheless, the point is clear:
the principal components of S, the variance-covariance
matrix, are quite different from the principal components
of R, the correlation matrix. Methods of dealing with
the noise that affects the lower-order (higher numbered)
principal component images are considered below.
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(a) (b)

Figure 6.13 (a) The first three principal components derived from the variance-covariance matrix of the Littleport subimage
shown in Figure 6.12a. (b) The corresponding principal components 4–6. See text for further discussion.

Table 6.4 Variance-covariance matrix for the Littleport TM image set. The last row shows the variance of the corresponding
band expressed as a percentage of the total variance of the image set. The expected variance for each band is 16.66%, but the
variance ranges from 2.61% for band 2 to 47.56% for band 4.

TM band 1 2 3 4 5 7 Mean Standard

deviation

TM 1 78.67 45.90 67.71 −25.04 106.25 67.22 65.812 8.870

TM 2 45.90 31.94 44.09 −6.51 73.45 43.87 29.033 5.652

TM 3 67.71 44.09 72.34 −60.75 116.78 78.86 26.251 8.505

TM 4 −25.04 −6.51 −60.75 580.95 −70.32 −129.52 93.676 24.103

TM 5 106.25 73.45 116.78 −70.32 329.37 181.56 64.258 18.148

TM 7 67.22 43.87 78.86 −129.52 181.56 128.30 23.895 11.327

Percentage variance 6.44 2.61 5.92 47.56 26.96 10.50 16.666 15.90

Table 6.5 Principal component loadings for the six principal components of the Littleport TM
image, based on the covariance matrix shown in Table 6.3a.

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

TM band 1 0.531 0.593 0.575 −0.491 −0.168 −0.018

TM band 2 0.502 0.674 0.477 −0.034 0.139 0.215

TM band 3 0.707 0.530 0.421 0.057 0.178 −0.085

TM band 4 −0.834 0.552 0.000 0.019 −0.001 −0.002

TM band 5 0.664 0.714 −0.211 −0.070 0.006 −0.003

TM band 7 0.684 0.438 −0.064 0.233 −0.055 0.013

Eigenvalue 711.19 431.87 61.20 9.69 5.52 2.05

% Variance 58.22 35.35 5.01 0.79 0.45 0.17

Cumulative % variance 58.22 93.58 98.59 99.38 99.83 100.00
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In Section 6.3.2 the relationship between the principal
components and the Tasselled Cap transformations is
discussed. It was noted that the principal components
transform is defined by the characteristics of the inter-
band correlation or covariance structure of the image,
whereas the Tasselled Cap transformation is based on
external criteria, namely, the pre-defined position of the
soil brightness, greenness and wetness axes. In other
words, the positions of the Tasselled Cap axes are
defined mathematically by pre-determined coefficients
such as those listed in Table 6.1, whereas the coefficients
of the principal components transform are derived from
the correlation (R) or variance-covariance (S) matrix of
the data set, which varies from image to image. Because
the results of a PCA are image-specific it follows that
principal component transformed data values cannot
be directly compared between images as the principal
components do not necessarily have the same pattern
of principal component loadings. While PCA is useful
in finding the dimensionality of an image data set and
in compressing data into a fewer number of channels
(for display purposes, for example) it does not always
produce the same components when applied to different
image data sets of the same area.

The use of PCA in measuring change in multitem-
poral image sets and in merging images with different
properties such as high-resolution panchromatic and
lower resolution multispectral images is considered in
Sections 6.8 and 6.9.

Further reading and case studies of the use of PCA
applied to remotely-sensed data are provided by Avena,
Ricotta and Volpe (1999), who consider the spatial
structure of a multispectral data set, Soares Galveno,
Pizarro and Neves Epiphanio (2001), who study tropical
soils, Huang and Antonelli (2001), who use PCA to
compress high-resolution data, Blackburn and Milton
(1997), who consider PCA in ecological studies, while
Crósta et al. (2003) apply PCA to an ASTER image set
to identify key alteration minerals. Kaewpijit, Le Moigne
and El-Ghazawi (2003) compares PCA and wavelets
(Section 6.7) in a study of data compression. Jolliffe
(2002) and Jackson (1991) are standard texts – the latter
is less demanding of the reader. Hsieh (2008) introduces
the concept of non-linear PCA while Chitroub (2005)
shows how PCA can be performed by an artificial
neural network (Section 8.4.3). This latter method is
especially useful with high-dimensional data because
the variance-covariance matrix becomes large, and
the number of samples per matrix element reduces,
thus increasing the error associated with each element
of the variance-covariance matrix. In addition, the
calculation of the eigenvalues and eigenvectors of the
variance-covariance matrix (or the correlation matrix) is
subject to rounding error, as described in Chapter 3.

Other references to the use of PCA in remote sensing
are given in Sections 6.8 and 6.9 in which the prob-
lems of change detection and data fusion, respectively,
are presented.

6.4.2 Noise-Adjusted PCA

The presence of noise that tends to dominate over
the signal in lower-order (higher numbered) principal
component images is mentioned a number of times in the
preceding section. Some researchers, for example Green
et al. (1988) and Townshend (1984), note that some
airborne thematic mapper data do not behave in this way.
Roger (1996) suggests that the principal components
method could be modified so as to eliminate the noise
variance. This ‘noise-adjusted’ PCA would then be
capable of generating principal component images that
are unaffected by noise. The method presented here
and incorporated into the MIPS software is similar in
principle to the ‘noise-adjusted PCA’ of Green et al.
(1988) and Roger (1996). It is described in more detail
in Tso and Mather (2009), while Nielsen (1994) gives a
definitive account.

Standard PCA extracts successive principal compo-
nents in terms of the ‘maximum variance’ criterion. Thus,
if we assume that every variable (feature or spectral band)
xj entered in the PCA has a mean of zero, then we
could define principal component number one as that
linear combination of the variables that maximizes the

expression
p∑

i=1

n∑
j=1

x2
j i , where xji is an element of the data

matrix that consists of n observations (pixels) measured
on p spectral bands. The second and subsequent princi-
pal components are defined in terms of the same criterion,
but after the variance attributable to higher-order (lower
numbered) principal components has been removed.

Using this idea, principal components are seen as lin-
ear combinations of the original variables xj , with the
coefficients of the linear combination being defined so
that the maximum variance criterion is satisfied. A linear
combination of variables xj is simply a weighted sum
of the xij and the coefficients of the linear combination
are the weights. There are an infinite number of pos-
sible weights – PCA determines the set that satisfies the
desired criterion, that of maximum variance, as explained
in Section 6.4.1.

What if we use a criterion other than that of maximum
variance? Could there be another set of weights that
satisfies the new criterion? This new criterion could be
expressed in words as ‘maximize the ratio of the signal
variance to the noise variance’, which we will express

mathematically as
σ 2

S
σ 2

N
which is the ratio of signal vari-

ance (σ 2
S ) to noise variance (σ 2

N). Two questions arise at
this point: first, is there a procedure that could maximize
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the new criterion? Second, how do we calculate σ 2
S and

σ 2
N? The answer to the first question is ‘yes’, and it is

described later in this section. The second question is,
in fact, more difficult. We can easily compute the sums

of squares given by the expression
p∑

i=1

n∑
j=1

x2
j ibecause

the values of X(= xji) are known. However, we need a
method that will separate the individual measurements
xij into two parts, the first part representing the ‘signal’
part of each x (i.e. xS) and the second representing the
noise contribution (i.e. xN ). This idea could be written
as x = xS + xN . If any two of these terms are known
then the other can be calculated. Unfortunately, though,
only x – the pixel value x- is known.

One way out of this paradox is to consider the nature
of ‘noise’. If we can think a single-valued spatial data set
(such as a digital elevation model or DEM, Figure 2.12)
as consisting of the sum of spatial variability over dif-
ferent scales, then – for a DEM covering a hilly area at
a map scale of 1 : 100 000 or smaller – we see patterns
that relate to the regional disposition of hills and val-
leys and may be able to draw some conclusions about
the structure of the area as a whole; for example we may
deduce from the fact that the valleys radiate from a cen-
tral point, which is also the highest point, that the area has
a dome-like structure. Alternatively, if the rivers form a
trellis-like pattern, as in parts of the Appalachian Moun-
tains in the eastern United States, then we may conclude
that the drainage pattern is controlled by the nature of the
underlying rocks, which consist of alternating hard and
soft bands.

In both of these instances it is the regional-scale pattern
of hills and valleys on which our attention is focussed.
No consideration is given to the presence of small hum-
mocks on valley floors, or the numerous tiny gullies that
are located near the heads of the main valleys. Those
phenomena are too small to be of relevance at a map
scale of 1 : 100 000, so they are ignored. They repre-
sent ‘noise’ whereas the regional pattern of hills and
valleys represents the ‘signal’ or information at this spa-
tial scale. One way of measuring the noise might be to
take the difference in height between a given cell in
the DEM and the cells to the north and east, respec-
tively. If the cell of interest lies on a flat, plateau-like,
area with no minor relief features, then these horizontal
and vertical differences in elevation would be close to
zero. In the hummocky valley bottoms and the gullied
valley heads these local differences in height would be
larger. Since the hummocks and gullies represent noise
at our chosen scale of observation, we might think of
using vertical and horizontal differences to quantify or
characterizenoise.

The MIPS procedure Noise Reduction Transform

(accessed from the Transform menu) uses this simple

idea to separate values x into the signal (xS) and noise
(xN) components. First, the covariance matrix C of the
full dataset (consisting of n pixels per band, with p bands)
is computed. Next, the horizontal and vertical pixel dif-
ferences in each of the p bands are found, and their
covariance matrices calculated and combined to produce
the noise covariance matrix CN. The covariance matrix of
the signal, CS, is found by subtracting CN from C. Now
we can define the criterion to be used in the calcula-
tion of the coefficients of our desired linear combination;
it is simply ‘maximize the ratio CS/CN’, meaning: our
linear combinations of the p bands will be ordered in
terms of decreasing SNR rather than in terms of decreas-
ing variance (as in PCA). Mathematical details of how
this is done are beyond the scope of this book, but the
algorithm is essentially the same as that used in the mul-
tiple discriminant analysis technique, described in Mather
(1976).

The outcome is a set of coefficients for p linear combi-
nations of the p spectral bands, ranked from 1 (the high-
est SNR) to p (the lowest SNR). These coefficients are
applied to the data in exactly the same way as described
above for standard principal components. Now, however,
the resulting images should be arranged in order of the
ratio of signal to noise variance, rather than in terms
of total variance, as shown in Figure 6.14 in which the
first and sixth noise-reduced principal components are
displayed. To help you compare the results, the image
used in this example is the same as that used at the end
of Section 6.4.1 (Figures 6.12 and 6.13).

6.4.3 Decorrelation Stretch

Methods of colour enhancement are the subject of
Chapter 5.2. The techniques discussed in that chapter
include linear contrast enhancement, histogram equal-
ization and the Gaussian stretch. All of these act upon a
single band of the false colour image at a time and thus
must be applied separately to the RGB components of
the image. As noted in Section 6.4.1, PCA removes the
correlation between the bands of an image set by rotating
the axes of the data space so that they become oriented
with the directions of maximum variance in the data,
subject to the constraint that these axes are orthogonal. If
the data are transformed by PCA to a three-dimensional
space defined by the principal axes, and are ‘stretched’
within this space, then the three contrast stretches will
be at right angles to each other. In RGB space the three
colour components are likely to be correlated, so the
effects of stretching are not independent for each colour
(Gillespie et al., 1986).

Decorrelation stretching requires the three bands mak-
ing up the RGB colour composite images to be subjected
to a PCA, a stretch applied in the principal components
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(a) (b)

Figure 6.14 Noise reduction transform for the Littleport image. (a) noise-reduced components 1–3 in RGB and (b) noise-reduced
components 4–6 in RGB. Compare with Figures 6.12 and 6.13.

space, and the result transformed back to the original
RGB space. The result is generally an improvement in
the range of intensities and saturations for each colour,
with the hue remaining unaltered (Section 6.5 provides a
more extended discussion of these properties of the colour
image). Poor results can be expected when the RGB
images do not have approximately Gaussian histograms,
or where the image covers large, homogeneous areas.

The decorrelation stretch, like PCA, can be based
on the covariance matrix S or the correlation matrix R
(Section 6.4.1). Use of R implies that all three bands are
given equal weight. If the stretch is based on S, each
band is weighted according to its variance. The following
description uses the notation R to indicate either the
correlation or the covariance matrix. Essentially, the
principal component images y are calculated from
the eigenvector matrix E and the raw images X using
the relationship T = XP, and the inverse transform is
X = TP−1 (Section 6.4.1; Figure 6.11b; Alley, 1995;
Campbell, 1996; Jackson, 1991; Rothery and Hunt,
1990). Since E is an orthogonal matrix, it follows that
E′ = E−1.

Alley (1995) uses a stretching parameter based upon
the eigenvalues plus a shift to convert the raw decorre-
lation stretched values onto a 0–255 scale. Each decor-
relation stretched band is given a mean of 127 and a
standard deviation of 50. Clipping may be required if
transformed values are negative or exceed 255 in value.

This configuration does not necessarily produce optimum
results. As in the case of standard PCA, and other image
transforms which operate in the domain of real num-
bers, the scaling of the result back to the range 0–255
is logically simple but practically difficult. The method
suggested above for the Tasselled Cap transform involves
calculating the maximum and minimum of the raw trans-
formed values, then scaling this range onto the 0–255
scale using offsets and stretching parameters. Where the
stretch is being applied to an image displayed on screen
this method is reasonably fast and usually gives a good
result (see Figure 6.15). Further consideration of the pro-
cedure is provided by Guo and Moore (1996) and Camp-
bell (1996). The latter author presents a detailed analy-
sis of the decorrelation stretch process. Ferrari (1992),
Rowan and Mars (2003) and White (1993) illustrate the
use of the method in geological image interpretation.
Krause et al. (2004) use PCA and decorrelation stretch
in a geographical information system (GIS)-based study
of coastal north Brazil. The widespread acceptance of the
decorrelation stretch procedure is shown by its inclusion
as a standard product for data collected by the ASTER
sensor carried by the Terra satellite. Figure 6.15c shows
a decorrelation-stretched TM image of part of the coast-
line of eastern England. Detail over the water areas is
increased in comparison to the false-colour composite
and the HSI transform (see next section), but the HSI
stretch gives more detail over land.
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(a) (b)

(c)

Figure 6.15 (a) Landsat TM bands 4, 3, 2 false colour composite of the coastline of The Wash, eastern England, after a 5–95%
linear contrast stretch. (b) The Wash image after a HSI transform. The saturation and intensity are stretched linearly and the
hue is left unchanged. (c) The Wash image after a decorrelation stretch based on the covariance matrix. Landsat data courtesy
NASA/USGS.

6.5 Hue-Saturation-Intensity
(HSI) Transform

Details of alternative methods of representing colours are
discussed in Section 5.2 where two models are described.
The first is based on the RGB colour cube. The differ-
ent hues generated by mixing RGB light are character-
ized by coordinates on the RGB axes of the colour cube
(Figure 5.3). The second representation uses the HSI hex-
cone model (Figure 5.4) in which hue, the dominant
wavelength of the perceived colour, is represented by
angular position around the top of a hexcone, saturation

or purity is given by distance from the central, vertical
axis of the hexcone and intensity or value is represented
by distance above the apex of the hexcone. Hue is what
we perceive as colour (such as mauve or purple). Sat-
uration is the degree of purity of the colour, and may
be considered to be the amount of white mixed in with
the colour. As the amount of white light increases so the
colour becomes more pastel-like. Intensity is the bright-
ness or dullness of the colour. It is sometimes useful to
convert from RGB colour cube coordinates to HSI hex-
cone coordinates, and vice versa. The RGB coordinates
will be considered to run from 0 to 1 (rather than 0–255)
on each axis, while the coordinates for the hexcone model
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will consist of (i) hue expressed as an angle between 0
and 360◦ and (ii) saturation and intensity on a 0–1 scale.
Note that the acronym IHS (intensity–hue–saturation) is
sometimes used in place of HSI.

The application of the transform for colour enhance-
ment is straightforward. The three-band image to be
processed is converted to HSI representation, and a
linear contrast stretch is applied to the saturation and/or
the intensity components. The HSI data are then con-
verted back to RGB representation for display purposes.
Figure 6.15b shows an image of part of The Wash
coastline of eastern England after a HSI transformation.
The red colour of the growing crops in the fields is
enhanced relative to the linear contrast stretched version
(Figure 6.15a) but some of the detail of the sediment in
the water is lost.

The HSI transformation has been found to be par-
ticularly useful in geological applications, for example
Jutz and Chorowicz (1993) and Nalbant and Alptekin
(1995). Further details of the HSI transform are given in
Blom and Daily (1982), Foley et al. (1997), , Hearn and
Baker (1997), Pohl and van Genderen (1998) and Mulder
(1980). Terhalle and Bodechtel (1986) illustrate the use
of the transform in the mapping of arid geomorphic fea-
tures, while Gillespie et al. (1986) discuss the role of the
HSI transform in the enhancement of highly correlated
images. Massonet (1993) gives details of an interesting
use of the HSI transform in which the amplitude, coher-
ence and phase components of an interferometric image
(Chapter 9) are allocated to HSI, respectively, and the
inverse HSI transform applied to generate a false colour
image that highlights details of coherent and incoherent
patterns. Schetselaar (1998) discusses alternative repre-
sentations of the HSI transform, and Andreadis et al.
(1995) give an in-depth study of the transform. Phillip
and Rath (2002) consider different colour spaces, includ-
ing HSI, and Pitas (1993) lists C routines for the RGB
to HSI colour transform. Yet another useful source is
Plataniotis and Venetsanopoulos (2000) who also give
formulae for the transformation from RGB colour space
to HSI colour space and back. Not all the formulae are
identical, which is a potential source of confusion.

The HSI transform can be used to combine the spectral
detail of an RGB colour composite image with the spatial
detail of a geometrically registered panchromatic image
in a process called image fusion. This topic is considered
in Section 6.9.

6.6 The Discrete Fourier Transform

6.6.1 Introduction

The coefficients of the Tasselled Cap functions, and the
eigenvectors associated with the principal components,

define coordinate axes in the multidimensional data
space containing the multispectral image data. These
data are re-expressed in terms of a new set of coordinate
axes and the resulting images have certain properties,
which may be more suited to particular applications. The
Fourier transform operates on a single-band (greyscale)
image, not on a multispectral data set. Its purpose is
to break down the spatial variation in grey levels into
its spatial scale components, which are defined to be
sinusoidal waves with varying amplitudes, frequencies
and directions. The coordinates k1 and k2 of the two-
dimensional space defined by the axes U , V in which
these scale components are represented are given in
terms of frequency (cycles per basic interval). This rep-
resentation is called the frequency domain (Figure 6.16b)
whereas the normal row/column coordinate system in
which images are normally expressed is termed the
spatial domain (Figure 6.16a). The Fourier transform
is used to convert a single-band image from its spatial
domain representation to the equivalent frequency
domain representation, and vice versa.

The idea underlying the Fourier transform is that the
greyscale values forming a single-band image can be
viewed as a three-dimensional intensity surface, with
the rows and columns defining two axes (x and y

in Figure 6.16a) and the grey level intensity value at
each pixel giving the third (z) dimension. A series of
waveforms of increasing frequency and with different
orientations is fitted to this intensity surface and the
information associated with each such waveform is cal-
culated. The Fourier transform therefore provides details
of (i) the frequency of each of the scale components
(waveforms) fitted to the image and (ii) the proportion of
information associated with each frequency component.
Frequency is defined in terms of cycles per basic interval
where the basic interval in the across-row direction is
given by the number of pixels on each scan line, while
the basic interval in the down-column direction is the
number of scan lines. Frequency could be expressed
in terms of metres by dividing the magnitude of the
basic interval (in metres) by cycles per basic interval.
Thus, if the basic interval is 512 pixels each 20 m wide
then the wavelength of the fifth harmonic component
is (512 × 20)/5 or 2048 m. The first scale component,
conventionally labelled zero, is simply the mean grey
level value of the pixels making up the image. The
remaining scale components have increasing frequencies
(decreasing wavelengths) starting with 1 cycle per basic
interval, then 2, 3, . . . , n/2 cycles per basic interval
where n is the number of pixels or scan lines in the
basic interval.

This idea can be more easily comprehended by means
of an example using a synthetic one-dimensional data
series. This series consists of the sum of four sine waves
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Figure 6.16 (a) Spatial domain representation of a digital image. Pixel P has coordinates (i, j ) with respect to the image row
and column coordinate axes, or (i
x, i
y) metres, where 
x and 
y are the dimensions of the image pixels in the row and
column direction, respectively. (b) Frequency-domain representation, showing the amplitude spectrum of the image. The value
at P is the amplitude of a sinusoidal wave with frequency U = k1 and V = k2 cycles per basic interval in the u and v directions,
respectively. The wavelength of this sinusoidal wave is proportional to the distance d. The orientation of the waveform is along
direction AB. Point Q (-U , -V ) is the mirror image of point P.

that differ in frequency and amplitude. Sine wave 1
(Figure 6.17a) has an amplitude of 1.0 (see annotation
on the y-axis) and completes one cycle over the basic
interval of 0–6.28 radians (360◦), so its frequency is
1 Hz. The second, third and fourth sine waves (Figure
6.17b, c and d) have amplitudes of 2.0, 3.0 and 3.0 (note
the y-axis annotation) respectively, and frequencies of
2, 3 and 32 Hz. These sine waves were calculated at 256
points along the x-axis, and Figure 6.17e shows the result
of adding up the values of sine waves 1–4 at each of these
256 points. It is difficult to discern the components of this
composite sine wave by visual analysis. However, the
discrete forward Fourier transform (Figure 6.17f) clearly
shows the frequencies (horizontal axis) and amplitudes
(vertical axis) of the four component sine waves. Note
that Figure 6.17f shows only the first 40 harmonics out
of a possible n/2 = 256/2 = 128 harmonics. These fre-
quency/amplitude diagrams show the amplitude spectrum
(sometimes called the power spectrum in the engineering
literature). Other small frequency components are visible
in the amplitude spectrum; these result from the fact
that the series is a discrete one, measured at 256 points,
which gives only 8 points to define each of the sinusoids
in Figure 6.17d. In the following paragraphs we will
use the term scale component to indicate a significant
harmonic (i.e. one with a relatively large amplitude). The
sum of the amplitudes is equal to the variance of the data.

6.6.2 Two-Dimensional Fourier Transform

If this simple example were extended to a function defined
over a two-dimensional grid then the differences would be
that (i) the scale components would be two-dimensional

waveforms and (ii) each scale component would be
characterized by orientation as well as by amplitude.
The squared amplitudes of the waves are plotted against
frequency in the horizontal and vertical directions to
give a two-dimensional amplitude spectrum, which is
interpreted much in the same way as the one-dimensional
amplitude spectrum shown in Figure 6.17f, the major
differences being:

1. The frequency associated with the point [k1, k2] in
the two-dimensional amplitude spectrum is given by:

k12 =
√

k2
1 + k2

2

where the basic intervals given by each axis of the
spatial domain image are equal, or by:

k12 =
√

k1/n1
t1 + k2/n2
t2

where the basic intervals in the two spatial dimen-
sions of the image are unequal. In the latter case,
n1
t1 and n2
t2 are the lengths of the two axes,
n1 and n2 are the number of sampling points along
each axis, and 
t1 and 
t2 are the sampling inter-
vals. This implies that frequency is proportional to
distance from the centre of the amplitude spectrum
which is located at the point [0, 0] in the centre of
the amplitude spectrum diagram (Rayner, 1971).

2. The angle of travel of the waveform whose ampli-
tude is located at point (k1, k2) in the amplitude
spectrum is perpendicular to the line joining the
point (k1, k2) to the centre (DC) point of the
spectrum (0, 0). This point is illustrated in Figure
6.18b, which shows the two-dimensional amplitude
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Figure 6.17 (a) Sinusoidal curve with an amplitude (variance) of 1.0 (y-axis) performing one cycle in the basic interval (i.e.
-2π ) sampled at 256 points (x-axis). (b) As (a) but with two cycles per basic interval and an amplitude of 2.0. (c) As A with
three cycles per basic interval and an amplitude of 3.0. (d) As (a) but with 32 cycles per basic interval and an amplitude of 3.0.
(e) The sum of the sinusoids (a–d) inclusive. (f) The one-dimensional Fourier transform of (e) showing harmonic number 1 having
an amplitude of 1.0, harmonic 2 with an amplitude of 2, harmonic 3 with an amplitude of 3 and harmonic 32 also with an
amplitude of 3. There is evidence of leakage around harmonic 32, as adjacent harmonics should be nonzero. This leakage is
due to the relatively poor definition of the sinusoid with 32 cycles per basic interval. At a sampling rate of 256 there are only
eight points describing each cycle. Only the first 40 harmonics are shown.

spectrum of an 512 × 512 pixel image made up
of a set of horizontal lines spaced 16 rows apart.
These lines are represented digitally by rows of
1s against a background of 0s (Figure 6.18a). The
amplitude spectrum shows a set of symmetric points
running horizontally through the origin (centre point
or DC). The points are so close that they give the
appearance of a line. They represent the amplitudes
of the waveforms reconstructed from the parallel,

horizontal lines which could be considered to lie
on the crests of a series of sinusoidal waveforms
progressing down the image from top to bottom.
Since the direction of travel could be topbottom or
bottomtop the amplitude spectrum is symmetric and
so the two points closest to the DC represent the
amplitudes of the set of waves whose wavelength
is equal to the spacing between the horizontal lines.
The two points further out from the DC represent a
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(a) (b)

(c) (d)

Figure 6.18 The left-hand images (a and c) show the spa-
tial domain representation of two patterns (horizontal lines
spaced 16 rows apart and vertical lines spaced 32 columns
apart). The right-hand images show the frequency domain
representation of the two patterns. The frequency domain rep-
resentation used here is the logarithm of the two-dimensional
amplitude spectrum.

spurious waveform, which has a wavelength equal
to double the distance between the horizontal lines.
Such spurious waveforms represent a phenomenon
termed aliasing (Rosenfeld and Kak, 1982; Gonzales
and Woods, 2007; Figure 6.19) which can be defined
as the case in which several different frequency
curves fit all or some of the available data points. It
is a result of sampling a continuous signal.

Figure 6.20 may help to illustrate some of these ideas.
Figure 6.20a shows a two-dimensional sine wave orien-
tated in a direction parallel to the x-axis of the spatial
domain coordinate system. Figure 6.20b shows another
sine wave, this time oriented parallel to the y-axis, and
Figure 6.20c shows the result of adding these two sine
waves together to generate an undulating surface.

The two-dimensional amplitude spectrum of a com-
posite sine wave is shown in Figure 6.21b. Figure 6.21a
shows the pattern of high and low values (peaks and
troughs – the same pattern as in Figure 6.20c but in the
form of an image. In an ideal world, with an infinite sam-
ple (rather than the 512 × 512 grid used here) we might
expect that the frequency-domain representation would
show four high values located above and below and to
the right and left of the DC at a distance from the DC
that is proportional to the frequency of the sine waves

(i.e. the number of times that the complete sine wave is
repeated in the x direction (or the y direction, since the
two axes are equal). The caption to Figure 6.21 explains
why this is not the case, for the amplitude in the diag-
onal directions of Figure 6.21a is greater then either the
vertical or horizontal amplitude.

Calculation of the amplitude spectrum of a two-
dimensional digital image involves techniques and
concepts that are too advanced for this book. A sim-
plified account will be given here. Fourier analysis
is so called because it is based on the work of Jean
Baptiste Joseph, Baron de Fourier, who was Governor
of Lower Egypt and later Prefect of the Departement of
Grenoble during the Napoleonic era. In his book Theorie
Analytique de la Chaleur , published in 1822, he set
out the principles of the Fourier series which has since
found wide application in a range of subjects other than
Fourier’s own, the analysis of heat flow. The principle
of the Fourier series is that a single-valued curve (i.e.
one which has only a single y value for each separate
x value) can be represented by a series of sinusoidal
components of increasing frequency. The form of these
sinusoidal components is given by

f (t) = a0 +
∑

n

an cos nω t+
∑

n

bn sin nω t

in which f (t) is the value of the function being approx-
imated at point t, ω is equal to 2π /T and T is the length
of the series. The term a0 represents the mean level
of the functions and the summation terms represent the
contributions of a set of sine and cosine waves of increas-
ing frequency. The fundamental waveform is that with a
period equal to T seconds, or a frequency of ω Hz. The
second harmonic has a frequency of 2ω, while 3ω is the
frequency of the third harmonic, and so on.

The ai and bi terms are the cosine and sine coeffi-
cients of the Fourier series. It can be seen in the formula
above that the coefficients ai are the multipliers of the
cosine terms and the bi are the multipliers of the sine
terms. Sometimes the sine and cosine terms are jointly
expressed as a single complex number, that is, a num-
ber which has ‘real’ and ‘imaginary’ parts, with the form
(ai + jbi). The ‘a’ part is the real or sine component, and
b is the imaginary or cosine component. The term j is
equal to

√−1. Hence, the ai and bi are often called the
real and imaginary coefficients. We will not use complex
number notation here. The coefficients a and b can be
calculated by a least-squares procedure. Due to its con-
siderable computing time requirements this method is no
longer used in practice. In its place, an algorithm called
the fast Fourier transform (FFT) is used (Bergland, 1969;
Gonzales and Woods, 2007; Lynn, 1982; Pavlidis, 1982;
Pitas, 1993; Ramirez, 1985). The advantage of the FFT
over the older method can be summarized by the fact
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Figure 6.20 (a) Two-dimensional sine wave running parallel to the x-axis. (b) Sine wave running parallel to the y-axis.
(c) Composite formed by summing the values of the sine waves shown in (a) and (b).
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(a) (b)

Figure 6.21 (a) Image of composite sine waves shown in Figure 6.20c. (b) The corresponding amplitude spectrum. This
example is curious in that one might think that the dominant orientations were vertical and horizontal, but not diagonal. Closer
inspection of Figure 6.21a shows that the horizontal/vertical pattern is either dark-intermediate-dark or light-intermediate-light,
whereas the diagonal pattern is dark-light-dark or light-dark-light. In other words, the amplitude or range of the diagonal pattern
is greater than that of the horizontal/vertical pattern, and this is reflected in the frequency domain representation in (b). If you go
back to Figure 6.20c you will appreciate that the diagonal pattern has a greater amplitude than the horizontal or vertical pattern,
even though the image is constructed by the addition of waveforms running parallel to the x- and y-axes respectively.

that the number of operations required to evaluate the
coefficients of the Fourier series using the older method
is proportional to N2 where N is the number of sample
points (length of the series) whereas the number of oper-
ations involved in the FFT is proportional to N log2N .
The difference is brought out by a comparison of columns
(ii) and (iii) of Table 6.6. However, in its normal imple-
mentation the FFT requires than N (the length of the
series) should be a power of 2. Singleton (1979a) gives
an algorithm that evaluates the FFT for a series of length
N that need not be a power of 2 while Bergland and
Dolan (1979) provide a Fortran program listing of an
algorithm to compute the FFT in a very efficient manner.

Once the coefficients ai and bi are known the ampli-
tude of the i th harmonic at any point (u, v) is com-
puted from

Ai =
√

a2
i + b2

i

which is numerically equivalent to the complex number
abs(a + bj), and the phase angle (the displacement of the
first crest of the sinusoid from the origin, measured in
radians or degrees) is defined as

θ = tan−1(bi/ai)

Generally, only the amplitude information is used.

Table 6.6 Number of operations required to compute the
Fourier transform coefficients a and b for a series of length N
(column (i)) using least-squares methods (column (ii)) and
the Fast Fourier Transform (FFT) (column (iii)). The ratio of
column (ii) to column (iii) shows the magnitude of the
improvement shown by the FFT. If each operation took 0.01
second then, for the series of length N = 8096, then the
least-squares method would take 7 days, 18 h and 26 min.
The FFT would accomplish the same result in 17 min 45 s.

(i) (ii) (iii) (iv)

N N2 N log2 N (ii)/(iii)

2 4 2 2.00

4 16 8 2.00

16 256 64 4.00

64 4 096 384 10.67

128 16 384 896 18.29

512 262 144 4 608 56.89

8 096 67 108 864 106 496 630.15

The procedure to calculate the forward Fourier
transform (it is, in fact, the forward DFT) for a two-
dimensional series, such as a greyscale image, involves
the following steps:

1. Compute the Fourier coefficients for each row of the
image, storing the coefficients ai and bi in separate
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two-dimensional arrays. The coefficients form two-
dimensional arrays of real numbers, or they can be
considered to form a single two-dimensional com-
plex array. The former representation is used here.

2. Compute the Fourier transform of the columns of
the two matrices composed, respectively, of the ai

and bi coefficients to give the Fourier coefficients
of the two-dimensional image. There are two sets of
coefficients, corresponding to the ai and bi terms.

Step 2 requires that the two coefficient matrices are
transposed; this is a very time-consuming operation if
the image is large. Singleton (1979b) describes an effi-
cient algorithm for the application of the FFT to two-
dimensional arrays. Example 6.1 illustrates the procedure
for calculating the Fourier transform of an image.

6.6.3 Applications of the Fourier Transform

As noted already, the main use of the Fourier transform
in remote sensing is in frequency-domain filtering
(Section 7.5). For example, Lei et al. (1996) use the
Fourier transform to identify and characterize noise
in MOMS-02 panchromatic images in order to design
filters to remove the noise. Hird and McDermid (2009)
compare methods of noise reduction, including Fourier
transforms, in one-dimensional time series of NDVI
data. Other applications include the characterization of
particular terrain types by their Fourier transforms
(Leachtenauer, 1977), and the use of measures of het-
erogeneity of the grey levels over small neighbourhoods
based on the characteristics of the amplitude spectra
of these neighbourhoods. If an image is subdivided
into 32 × 32 pixel subimages and if each subimage
is subjected to a Fourier transform then the sum of
the amplitudes in the area of the amplitude spectrum
closest to the origin gives the low-frequency or smoothly
varying component while the sum of the amplitudes in
the area of the spectrum furthest away from the origin
gives the high-frequency, rapidly changing component.
These characteristics of the amplitude spectrum have
also been used as measures of image texture, which
is considered further in Section 8.7.1. Fourier-based
methods have also been used to characterise topographic
surfaces (Brown and Scholz, 1985), in the calculation of
image-to-image correlations during the image registration
process (Section 4.3.4), in analysis of the performance of
resampling techniques (Shlien, 1979; Section 4.3.3) and
in the derivation of pseudocolour images from single-
band (mono) images (Section 5.4). De Souza Filho et al.
(1996) use Fourier-based methods to remove defects
from optical imagery acquired by the Japanese JERS-1
satellite. Temporal sequences of vegetation indices
(Section 6.2.4) are analysed using one-dimensional

Fourier transforms by Olsson and Ekhlund (1994), and
a similar approach is used by Menenti et al. (1993),
Assali and Menenti (2000), Canisius, Turral and Molden
(2007) and Roerink et al. (2003).

In the derivation of a pseudocolour image the low
frequency component (Figure 7.13) is extracted from the
amplitude spectrum and an inverse Fourier transform
applied to give an image that is directed to the red
monitor input. The intermediate or midrange frequencies
are dealt with similarly and directed to the green input.
The blue input is derived from the high-frequency
components, giving a colour rendition of a black-and-
white image in which the three primary colours (RGB)
represent the low, intermediate and high frequency or
scale components of the original monochrome image.
Blom and Daily (1982) and Daily (1983) describe and
illustrate the geological applications of a variant of this
method using synthetic-aperture radar images. Their
method is based on the observation that grey level
(tonal) variations in synthetic aperture radar images
can be attributed to two distinct physical mechanisms.
Large-scale features (with low spatial frequency) are
produced by variations in surface backscatter resulting
from changes in ground surface cover type. High spatial
frequencies correlate with local slope variations, which
occur on a much more rapid spatial scale of variability.
The amplitude spectrum of the SAR image is split into
these two components (high and low frequencies) using
frequency-domain filtering methods that are described
in Section 7.5. The result is two filtered amplitude
spectra, each of which is subjected to an inverse Fourier
transform to convert from the frequency back to the
spatial domain. The low-pass filtered image is treated as
the hue component in HSI colour space (Section 6.5) and
the high-pass filtered image is treated as the intensity
component. Saturation is set to a value that is constant
over the image; this value is chosen interactively until
a pleasing result is obtained. The authors suggest that
the pseudocolour image produced by this operation
is easier to interpret than the original greyscale SAR
image. Further details of image merging are given in
Section 6.9.

6.7 The Discrete Wavelet Transform

6.7.1 Introduction

The idea of representing the information content of an
image in the spatial domain and the frequency domain
is introduced in Section 6.6. These two representations
give different ‘views’ of the information contained in the
image. The DFT is presented in that same section as a
technique for achieving the transformation of a grey scale
(single-band) image from the spatial domain of (row,
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column) coordinates to the frequency domain of (ver-
tical frequency, horizontal frequency) coordinates. While
the frequency domain representation contains information
about the presence of different waveforms making up the
grey scale image, it does not tell us where in the image
a specific waveform with a particular frequency occurs;
its is assumed that the ‘frequency mix’ is the same in all
parts of the image. Another disadvantage of the frequency
domain representation is the need to assume statistical
stationarity, which requires that the mean and variance of
the pixel values are constant over all regions of the image.
In addition, the DFT assumes that the image repeats itself
in all directions to infinity.

The DFT has a number of useful applications in the
analysis of remotely-sensed images. These are elaborated
in Section 6.6 and 7.5. In this section, the DWT is intro-
duced. It augments, rather than replaces, the DFT because
it represents a compromise between the spatial and fre-
quency domain representations. It is impossible to mea-
sure exactly both the frequencies present in a grey scale
image and the spatial location of those frequencies (this
is an extension of Heisenberg’s Uncertainty Principle).
It is, however, possible to transform an image into a
representation that combines frequency bands (ranges of
frequencies) and specific spatial areas. For example, the
Windowed Fourier Transform generates a separate ampli-
tude spectrum for each of a series of sub-regions of the
image and thus provides some idea of the way in which
the frequency content of the data series changes with
time or space. The Windowed Fourier Transform does
not have the flexibility of the DWT, which is generally
preferred by statisticians.

An outline of the DWT is provided in Section 6.7.1.
Details of the use of the DWT in removing noise from
the reflectance spectra of pixels (i.e. one-dimensional
signals) and images (two-dimensional signals) are given
in Section 9.3.2. The derivation of the two-dimensional
DWT is described in Section 6.7.2. For a more advanced
treatment, see Addison (2002), Mallat (1998) and Starck,
Murtagh and Bijaou (1998). Strang (1994) provides a
gentler introduction.

6.7.2 The One-Dimensional Discrete
Wavelet Transform

There are a number of ways of presenting the concept
of the wavelet transform. The approach adopted in this
section is more intuitive than mathematical, and it uses
the idea of cascading low-pass and high-pass filters
(such filters are discussed in Section 7.1). Briefly stated,
a low-pass filter removes or attenuates high frequencies
or details, producing a blurred or generalized output.
A high-pass filter removes the slowly changing back-
ground components of the input data, producing a
result that contains the details without the background.
Examples of low-pass and high-pass filters are shown in
Figure 6.22. The wavelet transform can be considered as
a sequence of (high-pass, low-pass) filter pairs, known
as a filter bank, applied to a data series x that could, for
example be a reflectance spectrum sampled or digitized
over a given wavelength range. Note that the samples
are assumed to be equally spaced along the x-axis, and
the number of samples (n) is assumed to be a power of
2, that is n = 2j , where j is a positive integer.

(a) (b)

Figure 6.22 Landsat band 4 greyscale image of part of the Red Sea Hills after (a) a low-pass filter and (b) a high-pass filter have
been applied. Filtering is discussed in Chapter 7. A low pass filter removes detail whereas a high-pass filter enhances detail.
Landsat data courtesy NASA/USGS.
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Example 6.1: The Fourier Transform

This example has the aim of demonstrating how the Fourier amplitude spectrum is computed, and how it is
interpreted. The example is continued in Section 7.5, where frequency-domain filtering is discussed.

Example 6.1 Figure 1 shows a false colour image of an area of the Red Sea Hills in Sudan east of Port Sudan.
The area experiences an arid climate, so surface materials are mainly bare rock and weathering products such as
sand (bright area near the lower left corner). The region was tectonically active in the past and a number of fault
lines are visible. The aim of this example is to show how to apply the Fourier transform to convert the representation
of the image information from the spatial to the frequency domain.

Example 6.1 Figure 1. Landsat-5 TM image of part of the Red Sea Hills, Sudan. This false colour image has band 7 in the
red channel, band 5 in the green and band 3 in the blue channel. It has been enhanced by a linear 5–95% stretch.

If you are using MIPS then the steps are as follows. Other systems such as ERDAS, ENVI and MATLAB will
have similar commands. First, ensure that the file sudanhi.inf is available. Copy it from the CD to your hard
drive if necessary, and follow the steps outlined below:

1. Use View Display Image, select sudanhi.inf, and display band 5 of this image set as a greyscale image.
The dimensions of the image are 1024 × 1024 pixels.

2. Choose Filter Fourier Transform Forward Transform. The log of the amplitude spectrum of the
image is displayed in a new window.

The log of the amplitude spectrum is shown above as Example 6.1 Figure 2. The origin of the frequency domain
is the centre of the image, and the units of measurement are cycles per basic interval in the u and v (horizontal and
vertical directions). The lengths of the u and v axes are both equal to 1024 pixels, which is the basic interval, so the
brightness levels of the four nearest pixels to the origin, which is at the centre of the image, that is the pixels that
are above, below, left and right of the central pixel (DC) represent the proportion of total image information at the
lowest possible spatial frequency of one cycle per basic interval (equal to a wavelength 1024 × 30 m or 30.720 km)
in the horizontal and vertical directions. The second closest pixels in the same directions show the information
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present at spatial frequencies of two cycles per basic interval or a spatial wavelength of 512 × 30 m or 15.360 km.
Recall from Figure 6.17 that a complex one-dimensional curve can be reconstructed from its Fourier transform.
The same applies to surfaces – the band 5 Sudan image can be reconstructed from the amplitude spectrum shown
in Example 6.1 Figure 2.

Example 6.1 Figure 2. Logarithm of the Fourier amplitude spectrum of the image shown in Example 6.1 Figure 1.

The amplitude spectrum is interpreted in terms of spatial frequencies or wavelengths only in circumstances in
which a particular frequency is to be identified. For example, the Landsat TM and ETM+ sensors gather image
data in 16-line sections, and so there may be evidence of a peak in the amplitude spectrum at a spatial wavelength
of 16 × 30 = 480 m, which corresponds to a frequency of 1024/16 = 64 (1024 is the vertical or v axis length).
Bright points positioned on the v axis at 64 pixels above and below the centre point of the amplitude spectrum
would indicate the presence of a strong contribution to image variance at frequencies corresponding to a spacing
of 16 lines on the image.

More generally, the shape of the amplitude spectrum can give some indication of the structures present in the
image. Figure 6.18 illustrates the shape of the Fourier amplitude spectrum for two extreme cases – of vertical and
horizontal lines. Hence, we would expect to see some evidence of directionality in the spectrum if the features in
the image area had any preferred orientation. Another use of the amplitude spectrum is to quantify the texture of the
image (Section 8.7.1). An image with a fine texture would have a greater proportion of high frequency information
compared with an image with a coarse texture. Therefore, the ratio of high frequency components (those that are
further from the origin that a given distance d1, for example) to low frequency components (those closer to the
origin than a specified distance d2) can be used to measure the texture of an image or a sub-image. Usually, a
small moving window of size 32 × 32 pixels is passed across the image, the ratio of high to low frequencies is
computed, and this value is assigned to the centre pixel in the window.

The amplitude spectrum is also used as a basis for filtering the image (Chapter 7). Filtering involves the selective
removal or enhancement of specific frequency bands in the amplitude spectrum, followed by an inverse Fourier
transform to convert the filtered information back to the spatial domain. This procedure is illustrated in Chapter 7
using the Sudan image (Example 6.1 Figure 1) as an example.
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The steps involved in the one-dimensional DWT are
as follows:

1. Apply a low-pass filter to the full data series x of
length n (where n is a power of 2). If n is not a power
of 2, pad the series with zeros to extend its length
to the next higher power of 2. Take every second
element of x to produce a series x1 of length n/2.

2. Apply a high-pass filter to the full data series x,
padding with zeros as in step 1 if necessary. Take
every second element of the result, to produce a set
of n/2 high-pass filter outputs comprising the first
level of the detail coefficients, d1, of length n/2.

3. Take the result from step 1, which is a data series x1

of length n/2 that has been smoothed once. Apply
a low-pass filter. Take every second element of the
result to produce a series x2 of length n/4.

4. Apply a high-pass filter to the output from step 1.
Take every second element of the result, to give a
vector d2 of length n/4. Vector d2 forms the second
level of detail coefficients.

5. Repeat the low-pass/high-pass filter operation on the
output of step 3. Continue filtering and decimating
until the length of the resulting data series is one.

These operations are sometimes termed subband cod-
ing and the sequence of high pass and low pass filters is
known as a quadrature mirror filter. The operations are
shown schematically in Figure 6.23.

The wavelet or detail coefficients formed at steps 2, 4,
and so on (i.e. vectors d1, d2, d3, . . . , dn/2 using the nota-
tion introduced above) can be interpreted as follows. The

Data series

Level 1 detail coefficients

Level 2 detail coefficients

Level 3 detail 
coefficients

High pass filter

Low pass filter

Down-sample by 2

Figure 6.23 Illustrating the calculation of wavelet coefficients for a one-dimensional series of measurements. Levels 1, 2 and 3
are shown but the procedure continues until down-sampling by two results in a series containing only a two elements.

vector d1 represents the detail (plus noise) in the original
image. Vector d2 characterizes the detail (plus noise) in
the once-smoothed image. Vectors d3, d4, . . ., dn contain
the detail (plus noise) derived by filtering the twice-
smoothed, thrice-smoothed and n-times smoothed image.
There are n/2 elements in d1, n/4 elements in d2, n/8
elements in d3, and so on, as the series length is halved
at each step. Thus, for an original series length n of 32,
the number of detail coefficients is 16 + 8 + 4 + 2 + 2.
The last two coefficients are somewhat different from the
others, but that need not concern us here. Each subset of
the n = 32-point raw data sequence, with a length of 16,
8, 4 and 2, is derived from an increasingly smoothed
series, the effect of down-sampling being to make the
series sampled further and further apart. If the location
of the samples is plotted, a time-scale diagram such as
that shown in Figure 6.24 is produced. If the input data
series is formed of the elements of a reflectance spectrum,
then the time dimension is replaced by wavelength.

In a data series of length 512, the 256 coefficients
at level 1 are derived from the original (raw) series.
The 128 coefficients at level 2 come from the series
after one smoothing, the 64 coefficients at level 3 are
extracted from the twice-smoothed series, and so on. As
progressive smoothing implies a continual reduction in
high-frequency content, it follows that the representation
of the data with the largest high frequency content is
level 1, and that with the lowest high-frequency content
is level 9. The higher frequencies are sampled at a higher
rate than the low frequencies, which is logical as high
frequencies vary more quickly in time and space than
do low frequencies. An alternative way of representing
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Figure 6.24 Time-scale graph for a one-dimensional series
of length 256 points. The raw data can be considered to be
level 0. Dyadic sampling is applied so that at level 1 the
number of detail coefficients is 128, reducing to 64 at level
2, and so on. See Figure 6.25 for an alternative representation
of this process. Note that when remote sensing data are used
then the time axis will normally be replaced by wavelength.

Level 1 detail coefficientsLevel 2Level 3

Level 5

Levels m-1 to 6

4

Figure 6.25 Assume that the data series length is n = 2m. There are m - 1 sets of detail coefficients. The n/2 highest-level
(1) detail coefficients are shown on the right. The number of detail coefficients decreases by a factor of 2 at each level, so that
the number of level 2 coefficients is n/4, the number of level 3 coefficients is (n/8), and so on.

the wavelet detail coefficients is to place them in the order
shown in Figure 6.25.

The sampling pattern in Figure 6.24 is termed dyadic
(from the Greek word for ‘two’) because the sample size
is reduced by a factor of 2 at each level. Some authors
refer to this process as decimation.1 The magnitudes of
the dyadic samples can be represented in a time-scale dia-
gram by placing the wavelet detail coefficients in ‘layers’
from top to bottom, as shown in Figure 6.26.

Probably the best way to discover what wavelets are,
and how they work, is to look at some examples. We

1Decimation implies a reduction by a ratio of 1 : 10 (as in the ancient
Roman military punishment, revived in 71 AD by the Roman general
Crassus after his men had fled before Spartacus’s army of slaves, and
described by Plutarch in The Life of Crassus: ‘ . . . five hundred that
were the beginners of the flight, he divided into fifty tens, and one of
each was to die by lot , thus reviving the ancient Roman punishment of
decimation . . . ’ – had he killed one in every two he would have had no
army left).
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Figure 6.26 Wavelet detail coefficients are arranged in the
time-scale diagram to show their extent (in time, horizontally)
and in scale (vertically). Each box corresponds to one coef-
ficient, with the number of coefficients being reduced by a
factor of 2 at each level. The highest-level coefficients have
the greatest sampling frequency in time, but cover the greatest
extent in scale.

begin with a very simple sine wave, shown in Figure 6.27.
This sine wave repeats 40 times over the basic interval of
512 samples so its frequency is 40 Hz. The coefficients
resulting from a DWT applied to the data of Figure 6.27
are shown in Figure 6.28. The number of levels for
n = 512 is nine. All levels of detail coefficients show a
symmetry that mirrors the symmetry of the sine wave.

Figure 6.29 shows the DFT of the same sine wave
data shown in Figure 6.27. Since there is only a single
frequency (40 Hz) present in the data, the Fourier ampli-
tude spectrum – not unexpectedly – shows a single spike
centred at a frequency of 40 Hz. The narrow spread of
values around 40 Hz in the Fourier amplitude spectrum
is the result of the fact that a continuous function (a sine
wave) has been sampled at a specific spacing.

The second example is an extension of the first.
Figure 6.30 shows a composite sine wave, formed by
adding together two sine waves with frequencies of 40
and 80 Hz, respectively. The DFT of the data shown in
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Figure 6.27 Sine wave with frequency of 40 Hz calculated for 512 points. The amplitude of the sine wave is given by the
vertical axis, and sample number is shown on the horizontal axis.

Figure 6.28 Time (horizontal axis) – scale (vertical axis) dis-
play of wavelet detail coefficients for a sine wave of frequency
40 Hz, shown in Figure 6.27. The sine wave was sampled at
512 points, so there are nine levels of detail coefficients.

Figure 6.30 is given in Figure 6.31. Again, the Fourier
representation is adequate, as it correctly shows two
spikes centred at 40 and 80 Hz. The result of the DWT is
not shown, because it also represents the data adequately.
A more complicated signal is generated by the Chirp
function, which is a sine wave with frequency increasing
with time (Figure 6.32), unlike the sine wave data,
which are uniform, symmetric and repeat to infinity. The
Fourier amplitude spectrum simply indicates a number
of frequency components in the approximate range
1–50 Hz. It does not pick out the change in frequency
of the sine waves as time (represented by the x-axis)
increases (Figure 6.33). However, the higher levels of
detail coefficients generated by the DWT (Figure 6.34)
show a pattern of increasing frequency from left to right,
which gives a more realistic visual representation of the
variation in the data set than does the DFT.
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Figure 6.29 Fourier amplitude spectrum of the sine wave
shown in Figure 6.27. The presence of a periodic component
with a frequency of 40 Hz is apparent. The horizontal axis is
time, and the vertical axis measures variance.

If we take the two sine waves shown in Figure 6.30
but, rather than adding them together at each of the
512 sample points, we sample the 40 Hz sine wave at
points 1–256 and sample the 80 Hz sine wave at points
257–512, then the result is a separated pair of sine waves
(Figure 6.35). Interestingly, the amplitude spectrum of
the series shown in Figure 6.35 that is produced by the
Fourier transform (see Figure 6.36) is identical to that
shown in Figure 6.31, which was generated from the
data shown in Figure 6.30. This result shows that the
Fourier transform cannot define where in the data series
a particular frequency occurs. It uses a universal basis
function (i.e. based on the full data series) composed of
sine and cosine waves repeating to infinity, whereas the
DWT uses a localized basis function (as the filters deal
with the data 2, 4, 8, 16, . . . , points at a time). The DWT
is thus said to have compact as opposed to universal
support. The DWT result for the data of Figure 6.34
is shown in Figure 6.37, and it is apparent that the
higher-level DWT coefficients show a clear distinction
between the left and right halves of the data series.
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Figure 6.30 Composite wave formed by adding two sine waves with frequencies of 40 and 80 Hz respectively.
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Figure 6.31 Fourier amplitude spectrum of the composite sine wave shown in Figure 6.30. Both components (with frequencies
of 40 and 80 Hz, respectively) are identified.
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Figure 6.32 The Chirp function.
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Figure 6.33 Fourier amplitude spectrum of the Chirp func-
tion (Figure 6.32).
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Figure 6.34 Time-scale plot of wavelet transform detail coef-
ficients for Chirp function (Figure 6.32). Time is represented
by the x-axis and scale by the y-axis, with the finest scale at
the top and the coarsest scale at the bottom.

6.7.3 The Two-Dimensional Discrete
Wavelet Transform

The two-dimensional DWT is calculated in the same
way as the two-dimensional DFT, that is by perform-
ing a one-dimensional DWT along the rows of the image
to give an intermediate matrix, and then applying the
one-dimensional DWT to the columns of this interme-
diate matrix. The size of the image is m rows and n

columns, where both m and n are powers of 2. The
lowest-level detail coefficients – which contain the most
detail – form the right-hand end of the one-dimensional
DWT output vector (Figure 6.35) while the lowest level
detail coefficients are located at the left-hand end of the
one-dimensional DWT output. If you think about m such
output vectors lying horizontally and being intersected
by n vectors lying vertically then the highest level detail
in the vertical direction forms the lower part of the out-
put image while the highest level detail in the horizontal
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Figure 6.35 The same two sine waves as in Figure 6.30.
However, in this example, the first sine wave forms the left
half of the series (samples 1–256) and the second sine wave
is on the right (samples 257–512).
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Figure 6.36 Fourier amplitude spectrum of the data shown
in Figure 6.35. This spectrum is identical to the one shown in
Figure 6.31, though the input data are different.

direction forms the right-hand part of the output image.
The result is that the highest level of ‘horizontal’ detail
coefficients dominates the upper right quadrant of the out-
put image, the highest level ‘vertical’ detail coefficients
dominates the lower left quadrant of the output image,
and highest level horizontal and vertical coefficients inter-
act in the lower right quadrant of the output image. The
‘once-smoothed’ image (reduced in resolution by a factor
of 2) is located in the upper left quadrant of the output,
where the lowest-level horizontal and vertical detail coef-
ficients interact. The third level has horizontal, vertical
and diagonal components with the upper left quadrant
containing the thrice-smoothed image (Figure 6.37).

The second-level decomposition acts on the coeffi-
cients contained in the upper right quadrant of the first
level decomposition. This upper left quadrant is con-
verted by row-column operations to a set of subquadrants.
This process can be repeated until the sub-quadrants are
only 1 pixel in size, or it can be stopped at any point.

The importance of the two-dimensional DWT is that
the direction (horizontal, vertical or diagonal) of the detail
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Figure 6.37 Wavelet time-scale diagram of the two sine
waves shown in Figure 6.35.
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Figure 6.38 Disposition of ‘horizontal’ (H), ‘vertical’ (V)
and ‘Diagonal’ (D) wavelet detail coefficients in the two-
dimensional DWT. Three levels of decomposition are shown,
indicated by subscripts 1, 2 and 3. The thrice-smoothed image
occupies the top left cell of the third level.

coefficients at each hierarchical level are clearly defined.
The highest-level detail coefficients (indicated by Hi , Vi

and Di in Figure 6.38) can be extracted and processed
for particular purposes. For example, noise present in the
image can be estimated and removed using procedure
described in Section 9.3.2.2.2. The information present in
the higher-level detail coefficients can be used to charac-
terise the texture present in an image. Texture can range
from smooth to rough, and is a measure of the local
variability of grey levels (Section 8.7.1).

Applications of wavelets in image processing are given
by Ranchin and Wald (1993) and Prasad and Iyengar
(1997). Du, Guindon and Cihlar (2002) use wavelets to
remove haze in high-resolution images, while wavelets
are used to smooth interferograms (Section 9.2) by
Braunich, Wu and Kong (2000). Blackburn (2007a) uses
the wavelet transform in a study of reflectance spectra.
The same author (Blackburn, 2007b) uses wavelets in
a study of plant pigments. The use of wavelets as a
cosmetic procedure (removal of striping, Section 4.2.2)
is described by Torres and Infante (2001). An interesting
application uses wavelets to combine panchromatic
and multispectral images (a technique known as ‘pan
sharpening’ or ‘image fusion’; see also Section 6.9,
where the use of the HSI transform in image fusion
is described). Lu et al. (2007) use one-dimensional
wavelets to denoise temporal sequences of MODIS
products. The use of two-the dimensional DWT in image
‘denoising’ is discussed in Chapter 9.

6.8 Change Detection

6.8.1 Introduction

One of the main advantages of remotely-sensed data pos-
sesses is that collection of data takes place repeatedly
over time. For example, the Landsat-7 satellite has a rep-
etition cycle of 16 days, whereas NOAA AVHRR views
the Earth’s surface every 24 hours (Chapter 2). Of course,
cloud cover is a problem in some areas of the world
and several years may pass before the combination of
a satellite overpass and a clear day arrives. The use of
radar (ASAR, PALSAR, Radarsat-1 and -2, TerraSAR-X
and COSMO/Skymed, for instance) can overcome cloud
problems but radar imagery is not as well understood as
optical images.

The importance of change detection applications in
remote sensing is demonstrated by the volume of litera-
ture that surveys the available methods and sets out the
relative merits of each. The books edited by Lunetta and
Elvidge (1998) and Khorram et al. (1999) include con-
tributions dealing with methods of detecting and measur-
ing change. Recent reviews are by Coppin et al. (2004),
Lu et al. (2004), Rogan and Chen (2004) and Sui et al.
(2008). Hansen et al. (2008) consider change in tropi-
cal forests between 2000 and 2005 using multitemporal
remotely-sensed data.

The first problem in change detection is to acquire
a pair of images separated by a suitable time period.
This time period may range from minutes (in the case of
geostationary satellite images, where cloud movement is
monitored to get an estimate of wind speed) to days or
weeks (when crops are monitored over the growing sea-
son) or even years (for the application of interferometric
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methods of determining elevation, as described in
Chapter 9). Where there is a strong seasonal effect, as
in the temperate regions of the world such as Western
Europe, New Zealand and countries with a Mediter-
ranean climate it is best to ensure that the two image sets
to be used in change detection are captured at the same
time of year. Even so, differing weather condition in
the weeks before data acquisition may generate apparent
changes that are due primarily to the antecedent weather.

Differences between two image sets for the same
area may thus reflect seasonal changes, changes due
to antecedent weather conditions and apparent changes
that are introduced by differences in sensor calibration,
atmospheric effects and viewing/illumination geometry.
Some methods that are based on correlations do not
need correction for atmospheric path radiance as the
means of all the image bands are set to zero; however,
absorption and other effects are not accounted for. To
be able to compare like with like, the two image data
sets to be compared should be atmospherically and
radiometrically corrected, and differences of illumination
should also be accounted for. The methods to achieve
these corrections are described in Chapter 4. Paolini
et al. (2006) study the effects of radiometric corrections
on change detection, while Song et al. (2001) provide
useful advice on the need for atmospheric correction in
change detection studies.

A further preprocessing step is accurate geometrical
correction; resolving differences due to inadequate geo-
metrical correction, for example registering one image to
the other, is a vital preprocessing step. Brown, Foody and
Atkinson (2007) consider misregistration error in change
detection using airborne imagery, a topic that is also
reviewed by Gong, Ledrew and Miller (1992) who dis-
cuss the effects of misregistration of images (Chapter 4)
on the subtraction process, and present methods to reduce
these effects, which will appear erroneously on the dif-
ference image as areas of change.

In this section, three methods of change detection are
described. Descriptions of other methods, which may be
more or less suited to a particular application, are pro-
vided by Canty (2007) (with ENVI/IDL code). Khorram
et al. (1999) and contributors to Lunetta and Lyon (2004)
and Stehman and Wickham (2006) discuss the impor-
tant issue of accuracy estimation in change detection.
Kontoes (2008) gives an example of the use of change
vector analysis (Lambin and Strahler, 1994a, 1994b;
Lambin, 1996). Lunetta et al. (2006) give an example of
change detection using MODIS data, while Serra, Pons
and Sauri (2003) use postclassification change detection.
Sesnie et al. (2008) discuss classification and change
detection in complex neotropical environments. Stehman,
Sohl and Loveland (2005) examine sampling strategies
for change detection. Lu et al. (2004) list 31 different

methods of change detection and provide more than 13
pages of references. Other sources of information are
Chen et al. (2003), Collins and Woodcock (1996), Cop-
pin et al. (2004), Grey, Luckman and Holland (2003),
Johnson and Kasischke (1998), Lambin (1996), Lambin
and Strahler (1994a, 1994b), Mas (1999), Siljestrom
and Moreno (1995) and Varjo (1996). In addition, the
reviews and books mentioned in the opening paragraphs
of this section give broad overviews.

Apart from the introductory paragraphs above, this
section contains details of three examples of change
detection, using image differencing, PCA and canon-
ical correlation change detection methods. All of the
examples use the Alexandria 1984 and 1993 image data
sets shown in Figure 6.2a, b. The two datasets have
been georeferenced but no radiometric or atmospheric
corrections have been carried out.

6.8.2 NDVI Difference Image

The first example uses the NDVI images derived from
the 1984 and 1993 TM/ETM+ images of Alexandria,
Egypt. Bands 4 and 3 are used, and before the NDVI
images were calculated, their histograms were displayed
and offsets determined so that the histogram minimum
method of correcting for atmospheric path radiance
could be applied. The offsets for bands 4 and 3 of the
1984 data set are 13 and 24 respectively, while the
corresponding offsets for the 1993 data set are 16 and 25.
The resulting pseudocolour difference image is included
as Figure 6.39. The two NDVI images from which
Figure 6.39 was derived can be seen as Figure 6.40a, b.

The most noticeable thing about the two NDVI images
and the change image is their relative lack of detail com-
pared with the false colour composites shown in Figure
6.2a, b. Even careful density slicing did not permit the
use of more than five colour bands (Figure 6.39b, c).
The overall impression is that the use of just two bands
(TM/ETM+ bands 4 and 3) does not give a full picture
of the changes that have occurred between the two dates,
particularly as the measure used (the NDVI) is designed
for measuring vegetation status. For example, the airport
in the centre of the 1993 image is absent from the 1984
image. This change is not reflected in the NDVI differ-
ence image. The method may be more suited to regions
with a greater vegetation cover than that found in the
Alexandria area.

6.8.3 PCA

The technique of PCA is described in Section 6.4. In
that section it was noted that the first PC image derived
from a single-date image set is a weighted average of the
input bands, while the second PC is a contrast between
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Figure 6.39 (a) Difference between NDVI93 (Figure 6.40b)
and NDVI84 (Figure 6.40a after subtraction of offsets. (b)
Colour wedge used in pseudocolour operation on (a). (c)
Histogram of (a) using colour palette depicted in (b).

the NIR and the red bands, pointing to a component that
was identifying areas of more extensive or more luxuri-
ant vegetation in contrast to bare soil or water. In change
detection studies the two data sets being analysed are
combined forming, in this case, a 12-band image set with
the Alexandria 1984 data forming columns 1–6 and with

(a) (b)

Figure 6.40 (a) Alexandria NDVI image for 1984. (b) Alexan-
dria NDVI image for 1993. Both are contrast stretched.

the 1993 data set appended as columns 7–12 (considering
each image band as a column formed by taking rows 1,
2, 3, . . . in turn and concatenating them). This combined
data set was analysed using PCA based on the 12 × 12
correlation matrix. The use of correlation or covariance
measures involves subtraction of the mean value in each
band from all the pixel values in that band, effectively
standardizing the data for its means. This has the effect of
removing any additive effect caused, perhaps, by atmo-
spheric path radiance.

The statistics from the PCA of the combined data sets
are listed in Table 6.7 and the first six component images
form Figure 6.41. It is clear from the correlation matrix
shown in Table 4.5 that the highest correlations are those
between adjacent spectral bands (mainly in excess of
0.9). Spectral band 1 for both years (labelled 1 and 7)
shows lower correlations with all other bands than the
other bands, but the lowest correlations are between spec-
tral bands from different years, the lowest being 0.482
between 1984 band 1 and 1993 band 4 (numbered 10 in
Table 4.5). The eigenvalues are typical of those computed
from remotely-sensed image data in that the first principal
component summarizes almost 80% of the total variation
in the 12 images. The second principal component cap-
tures another 11% and the first six principal components
together account for 99.4% of the total variability. Six
component images were calculated using the weights in
Table 6.7, which gave the images shown in Figure 6.41.

Study of the weights (eigenvectors) from which
the principal component images were calculated and
the corresponding images reveals that component 1
(Figure 6.41a) is a weighted average of all 12 bands.
It shows the infrastructure present as well as the desert
surface. Because all 12 weights have negative values, the
areas that are bright in the original images (Figure 6.2)
are dark in principal component 1 while dark areas
in the original images become bright in the principal
component image. Though the weights indicate that this
principal component is a weighted average component,
the different regions within the area of the image are
brought out clearly. As noted earlier, the desert surface
is dark while the infrastructure present in both years
(1984 and 1993) is bright. The infrastructure developed
between 1984 and 1993 appears as mid-grey. There are
some interesting patterns over the desert surface and
roads and field boundaries are clear in both the bright
and mid-grey regions. Overall, principal component 1
appears to provide a good single-band summary of the
regions of change in the two images.

The weights associated with principal component 2
show a clear contrast between bands 1–6 (1984) and
bands 7–12 (1993), with the 1984 image being bright
and the 1993 image being dark. Visual analysis of the
corresponding principal component image (Figure 6.41b)
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Table 6.7 Correlation matrix, eigenvalues and eigenvectors of the combined 1984 and 1993 Alexandria images. The first six
bands are TM bands for 1984. Bands 7–12 are the six TM bands for 1993. See Figure 6.41 for the first six principal component
images.

Combined 1984 and 1993 correlation matrix

1 2 3 4 5 6 7 8 9 10 11 12

1 1.000

2 0.964 1.000

3 0.926 0.988 1.000

4 0.794 0.894 0.914 1.000

5 0.665 0.783 0.830 0.902 1.000

6 0.679 0.797 0.845 0.890 0.989 1.000

7 0.725 0.711 0.678 0.661 0.614 0.609 1.000

8 0.708 0.727 0.710 0.711 0.674 0.673 0.981 1.000

9 0.674 0.714 0.712 0.733 0.727 0.726 0.952 0.988 1.000

10 0.482 0.577 0.602 0.742 0.815 0.780 0.745 0.801 0.845 1.000

11 0.572 0.646 0.664 0.737 0.794 0.784 0.856 0.910 0.949 0.915 1.000

12 0.588 0.652 0.667 0.713 0.757 0.760 0.875 0.929 0.961 0.867 0.987 1.000

Eigenvalues and associated variance (individual and cumulative)

PC Eigenvalue %variance Cumulative PC Eigenvalue % variance Cumulative
% variance %var

1 9.555 0.796 0.796 7 0.331 0.276 0.997

2 1.308 0.109 0.905 8 0.134 0.111 0.998

3 0.780 0.650 0.970 9 0.782 0.652 0.999

4 0.134 0.111 0.981 10 0.377 0.314 0.999

5 0.845 0.704 0.988 11 0.320 0.267 0.999

6 0.728 0.607 0.994 12 0.209 0.174 1.000

Eigenvectors (weights) for the first six principal components

1 2 3 4 5 6

1 −0.264 0.369 0.405 0.048 −0.257 −0.374

2 −0.284 0.375 0.205 0.028 0.087 −0.167

3 −0.287 0.377 0.089 −0.081 0.185 −0.135

4 −0.292 0.262 −0.173 0.426 0.534 0.475

5 −0.288 0.152 −0.445 −0.154 −0.337 0.162

6 −0.288 0.173 −0.416 −0.381 −0.305 0.148

7 −0.284 −0.243 0.391 0.091 −0.377 0.344

8 −0.297 −0.253 0.281 0.011 −0.047 0.271

9 −0.302 −0.269 0.156 −0.086 0.062 −0.397

10 −0.277 −0.270 −0.333 0.675 −0.226 −0.316

11 −0.297 −0.304 −0.116 −0.157 0.261 −0.238

12 −0.295 −0.309 −0.026 −0.377 0.361 −0.184
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Figure 6.41 (a–f) The first six principal components of the combined 1984 and 1993 Alexandria dataset. See Table 6.7 for the
associated statistics.

shows that this distinction is not as clear-cut as one might
expect. New developments between 1984 and 1993 show
up as lighter areas (including the airport that appears near
the image centre). Both the desert surface and the old
infrastructure appear dark, with considerable structural
detail appearing. What appears to be a building in the
extreme top left of the image appears white. This build-
ing cannot be seen on principal component 3, which has a
pattern of weights that contrast the visible spectrum (with

positive weights, thus appearing in lighter shades of grey
on the image) with the NIR spectral bands, with negative
weights. Older areas of development appear bright, while
the darkest areas correspond to new infrastructure.

One could analyse the remaining principal components
in a similar way before coming to the conclusion that
the dimensions of change (i.e. new infrastructure such as
the airport and new buildings, changes in the patterns or
structures visible on the desert surface (light coloured in
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Figure 6.42 Principal components of change for the Alexan-
dria image; principal components 1–3 are shown in red, green
and blue respectively. The image has been subjected to a his-
togram equalization contrast stretch and to a process called
sharpening, which is described in more detail in Chapter 7.

Figure 6.2)) are not adequately summarized by a single
principal component image. Figure 6.42 shows a much
more revealing picture produced by combining principal
components 1, 2 and 3 into a false-colour image that
has been enhanced by the use of a histogram equaliza-
tion contrast stretch and by the application of a process
called sharpening (described in Chapter 7) that brings
out fine details in an image. The composite image shows
the extent of development in a pink colour, with new
developments being seen in light green. This light green
surrounds areas of new development shown in pink and
delineates the contiguous area of new development in the
lower part of the image. Patterns on the desert surface
appear in blue/green and brown tones, and the airport
built between 1984 and 1993 standing out in green. The
building in the extreme top left corner, mentioned above,
is shown in cyan. The colour combination of principal
components 1–3 is more informative in terms of the
location and pattern of change than any of the principal
components alone, and would provide a valuable input to
a GIS-based study of change.

Examples of the use of PCA in change detection are
provided by Henebry (1997), Koch (2000), Li and Yeh
(1998), and Siljestrom and Moreno (1995).

6.8.4 Canonical Correlation Change Analysis

Canonical correlation change analysis (CCCA for short)
is a novel image processing technique that is described

in Nielsen’s (1994) PhD thesis, though the canonical
correlation procedure has been used in conventional mul-
tivariate analysis for many years (e.g. Cooley and Lohnes,
1962; Timm, 2002; Rencher, 2002). A recent use of the
technique in remote sensing is Zhang et al. (2007). The
mathematics can appear daunting, but the underlying con-
cepts can be understood easily. Consider one of the prin-
cipal component images shown in Figure 6.41; it has been
generated by finding a set of axes that individually maxi-
mize the variance remaining in the image set after earlier
principal components have been extracted. The first prin-
cipal component image is derived by taking, for every
pixel in the dataset, the sum of (weight (1) times pixel
value in band 1) + (weight (2) times pixel value in band
2), and so on for all bands. The weights are shown in
Table 6.7, and they are computed so that they have the
property of maximum variance. In other words, no other
combination of weights could produce an image that had
a higher variance than principal component 1, subject to
the constraint that the sum of squares of the weights is
unity. A principal component is therefore defined as a
weighted sum of the raw image data, with the maximum
variance property.

CCCA uses two image sets, not one; in this section we
have concentrated on the Alexandria images of 1984 and
1993, which we will call X and Y respectively. If we
define the desired property to be maximum correlation
not maximum variance, we can set out the problem: find
a weighted linear combination of the bands of X that has
the highest correlation with the corresponding weighted
linear combination of the bands of Y. In a sense we do
two PCAs on X and Y but use the maximum correlation
criterion rather than maximum variance. The first princi-
pal component images for X and Y would then have the
highest correlation of any other possible linear combina-
tion of X and Y.

The output from the application of CCCA to the 12-
band Alexandria image sets (X and Y) consists mainly
of (i) the values of the canonical correlations between
the each of the six canonical images of X and the corre-
sponding six canonical images of Y and (ii) 12 greyscale
images in order band 1–6 of X and band 1–6 of Y so
that in the composite data set the first canonical image
pair is numbered 1 and 7, the second 2 and 8, and so
on. One might be tempted to think that the canonical
image pair with the lowest correlation would show the
areas of greatest difference (i.e. change) but the following
example may give food for thought.

Table 6.8 shows the results of a CCCA of the two
Alexandria data sets. The first three images derived
from the corresponding weight vectors (also shown in
Table 6.8) all have canonical correlations above 0.5 in
magnitude. Little can be said about Table 6.8 other than
that; the weight vectors are included to reassure the
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Table 6.8 Canonical correlations and column eigenvectors (weights) for Alexandria
1984 TM and 1993 ETM+ images. See text for discussion. Figures 6.43 and 6.44 show
the images corresponding to these weights.

Eigenvalues Canonical correlations

1 0.768 0.876

2 0.601 0.775

3 0.362 0.602

4 0.229 0.479

5 0.025 0.158

6 0.000 0.017

Matrix of right-hand vectors (TM 1984)

TM band 1 2 3 4 5 6

1 −0.063 1.729 −2.445 −5.858 0.652 −1.881

2 1.817 1.270 1.875 10.787 −5.176 8.564

3 −1.372 −1.626 1.206 −3.390 6.477 −9.786

4 −0.854 −0.255 −0.634 −0.407 −2.533 −1.499

5 −1.059 1.214 −3.155 4.276 6.445 6.030

6 0.753 −1.687 3.420 −5.640 −6.145 −1.415

Matrix of left-hand vectors (TM 1993)

ETM band 1 2 3 4 5 6

1 0.315 1.244 −0.408 −1.962 0.210 5.046

2 −0.272 2.250 −0.817 −0.110 −3.313 −13.060

3 0.702 −2.719 1.670 2.875 5.492 7.029

4 −0.242 −0.028 0.310 1.172 −2.753 2.085

5 −2.330 1.356 −5.892 1.453 4.601 −1.111

6 1.091 −1.401 5.537 −3.536 −4.139 0.283

reader that the author is not suffering from delusions.
Rather more informative are the canonical correlation
images derived from these weight vectors, shown in
Figures 6.43 and 6.44.

All the image pairs (e.g. Figure 6.43a, b) are arranged
in decreasing order of correlation. Noise is a problem in
some of the lower-correlated images. Canonical image 1
of the X (1984) dataset highlights infrastructure that
is mainly present in 1984 and not necessarily in 1993,
whereas image 1 of the Y (1993) dataset shows the
reverse, that is infrastructure that is mainly present in
1993. For instance the runway of the airport in the
middle of the desert was not paved in 1984 but a landing
strip was already there (though it is not very apparent
on the image). In 1993 the airport was finished and
the runway becomes quite visible. That runway only
appears in the images corresponding to the Y dataset.
Band 2 of the X and Y datasets (Figure 6.43c, d seem
to highlight features mainly in the desert surface. Again,

band 2 of the X dataset shows the desert features in
1984 and band 2 of the Y dataset those found in 1993.
The lower-order canonical correlation image can be
interpreted similarly, but with increasing difficulty as the
SNR becomes smaller. Figure 6.44 shows an unusual
false colour composite image in which the red band
holds the canonical correlation image for the X dataset
and the corresponding image for the Y dataset is shown
in green. A null image (composed of zeros) is placed
in the blue band so that only combinations of red and
green (i.e. shades of red, yellow and green) can be seen.
This image, like the other canonical correlation images,
shows more horizontal banding noise than do the PCA
change images (Figures 6.41 and 6.42). A comparison
between Figures 6.42 and 6.44 is left as an exercise for
the reader.

This section closes with a succinct review of the math-
ematics underlying CCCA. We begin by noting that X
represents the first data set, with npix × nl rows and
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(a) (b)

(c) (d)

Figure 6.43 Canonical correlation change images. The left-hand column of images (a), (c), (e), (g), (i) and (k) are the canonical
correlation change images computed from the X or left-hand data set (the 1984 Alexandria dataset) while the right-hand column
(b), (d), (f), (h), (j) and (l) are the corresponding images for the Y or right-hand dataset (the 1993 Alexandria dataset). See Table 6.8
for the related statistics. See Figure 6.2 for the raw images.

nbands columns, where npix , nl and nbands are the
number of pixels per row, or the image width, nl is the
number of scan lines, or the image height, and nbands
is the number of spectral bands in the image set. Matrix
Y represents the second data set in a similar fashion. If
Rxx is the matrix of correlations between the columns
of X, Ryy the correlations among the columns of Y, and
Rxy and Ryx the intercorrelations

R = R−1
yy RyxR−1

xx Rxy

between the columns of X and the columns of Y then
the eigenvalues and eigenvectors of the product matrix
R, defined as: give the canonical correlations (which are

equal to the square roots of the eigenvalues of R) and
the two sets of weight vectors that are derived from the
eigenvectors of R. The matrix product can be written as

R = R−1
yy B

where
B = RyxR−1

xx R

A routine to solve the generalized eigenvalue problem can
then be used to compute eigenvalues and eigenvectors.
Such routines can be found in libraries such as Linpack
and Eispac on the Internet. MATLAB users need to use
routine eig. The CCCA procedure is incorporated into
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(e) (f)

(g) (h)

Figure 6.43 (continued)

MIPS, which was used to process the examples given in
this section.

6.8.5 Summary

It was pointed out at the beginning of this section that
there is a large number of methods of change detection,
and one cannot take the results of one comparative analy-
sis to provide a definitive answer to the question ‘Which
methods is best?’. The characteristics of the image may
make one or other method appear ‘best’, because there
is no universal agreement on the meaning of ‘best’. In
this study, the CCCA and PCA methods performed bet-
ter than the difference of NDVI images in the sense that
infrastructure details at the two dates (1984 and 1993)

were clearly visible. For most readers, the PCA method
may be easier to comprehend. Note, however, that no
radiometric or atmospheric corrections were carried out
on the images prior to the analyses, whereas a real-world
study would be expected to incorporate both of these
corrections, as well as topographic correction in hilly
areas where shadow length may change due to differ-
ences in solar elevation angles, even if the imagery was
collected at the same time of day.

The USGS (United States Geological Survey) has
introduced a new web site called Terralook (http://
terralook.cr.usgs.gov/) which provides georeferenced
time sequences of two or more Landsat MSS, TM
and ETM+ images as well as ASTER images, both
data sets being global in coverage. Unfortunately, the
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(i) (j)

(k) (l)

Figure 6.43 (continued)

images are only available in JPEG format which is a
lossy compression method (see Chapter 3). Lecturers
and instructors may nevertheless find material here for
teaching and demonstration purposes.

6.9 Image Fusion

6.9.1 Introduction

Image fusion refers to the combination of image data
from different sources with the aim of increasing the
information content of the resulting merged image in
accordance with the principle that the whole is greater
than the sum of the parts. Often the motivation for

employing image fusion techniques is to provide a suit-
able image map for import into a GIS. Visual appearance
is therefore of considerable importance. Image fusion
includes the operation known as pan-sharpening, in
which a high-resolution panchromatic image is fused
with a lower-resolution false-colour composite image
to produce a fused image which retains the colour
(spectral) information of the false colour composite
image and combines it with the spatial sharpness of
the panchromatic image. A second example is the
fusion of a single-band SAR image with a colour
composite image. The resulting image, if the fusion
is successful, retains the colour information of the
false-colour composite and adds the information in the
SAR image, which is sensitive to surface roughness and
soil moisture variations.
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Figure 6.44 Canonical correlation image 1 for 1984 is shown
in red and canonical correlation image 1 for 1993 is shown
in green. The blue channel is set to a null image. Red areas
have changed between 1984 and 1993 (for example the desert
surface). Yellow areas are unchanged between the two dates
and green areas are those of new developments. The airport
stands out clearly, as does the new building in the top left
corner. More scanline noise seems to be apparent on this
image than on the PCA false colour image (Figure 6.43).

A number of books and review articles deal with
image fusion, including Du et al. (2007), Hyder,
Shabazian and Waltz (2002), IEEE Transactions on
Geoscience and Remote Sensing (2008), Karathanassi,
Kolokousis and Ioannidou (2007), Li, Kwok and Wang
(2002), Ling et al. (2007), Naik and Murthy (2003),
Shan and Stilla (2008), Pohl and van Genderen (1998),
Stathaki (2008) and Wald (2002). Of the range of
methods outlined in these surveys, four are chosen
to illustrate the range and diversity of image fusion
techniques. These are the HSI transform (Section 6.5),
PCA (Section 6.4), GS orthogonalization (mentioned
in Section 6.2.3 in connection with the Tasselled Cap
transform), and wavelet-based algorithms (Section 6.7).
The first four of these techniques used the ENVI
software package, while the wavelet-based method is
implemented in MIPS. These methods are illustrated
with reference to an IKONOS data set that covers part
of the United Arab Emirates. This data set is called the
UAE image in the remainder of this section. IKONOS
generates a multispectral data set at 4 m resolution
and a panchromatic image at a resolution of 1 m. The
spectral response of the IKONOS bands is shown in
Figure 6.45. The image covers an area of 2 × 2 km; thus
the multispectral images have a resolution of 500 × 500

1

0.8

0.6

0.4

0.2

R
el

at
iv

e 
S

pe
ct

ra
l R

es
po

ns
e

0
350 475 600 725 850 975

Wavelength (nm)

Figure 6.45 Relative spectral response of IKONOS bands.
The red, green and blue bands are shown in their respective
colours. The NIR band is in purple and the panchromatic band
is shown by the black curve. Note how the panchromatic band
covers a significant part of the NIR spectrum. In contrast, the
SPOT HRV panchromatic band covers only slightly more than
the visible spectrum (0.48–0.71 µm). Courtesy of GeoEye,
Inc. c© 2010. All rights reserved.

Figure 6.46 IKONOS image of part of the UAE in false
colour. The image covers an area of 2 × 2 km with a resolution
of 4 m. Courtesy of GeoEye, Inc. c© 2010. All rights reserved.

pixels and the panchromatic image is 2000 × 2000 pixels
in size (Figures 6.46 and 6.47).

The first stage in the process of pan-sharpening is
the geometric rectification of the low-resolution mul-
tispectral image and the high-resolution panchromatic
image. This stage is accomplished by resampling the
low-resolution image to give the same pixel size as the
high-resolution image. Resampling is covered in Section
4.4.3 and 4.3.4. The simplest method, nearest neighbour
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Figure 6.47 Panchromatic band (resolution 1 m) of the
IKONOS UAE image. Courtesy of GeoEye, Inc. c© 2010.
All rights reserved.

interpolation, tends to produce a blocky saw-tooth
effect and so a more complex interpolation scheme is
generally employed, even though procedures such as
bilinear interpolation tend to smooth the image rather
than sharpen it. The end-product is a registered set of
false-colour and panchromatic imagery.

The second stage in the process of pan-sharpening
is the choice of algorithm. In this section, the four
techniques listed above are compared on the basis of
both subjective and quasi-objective criteria. A number
of studies provide details of these methods, and of other
competing techniques; see Aiazzi et al. (2007), Blom
and Daily (1982), Hong and Zhang (2008b), Kalpoma
and Kudoh (2007), Liu (2000), Malpica (2007), Ranchin
(2002a, 2002b), Ranchin and Wald (2000), Tu et al.
(2004) and Zhou, Civco and Silander (1998). The four
selected methods are described in the following Sections
6.9.2–6.9.5). The results are then compared using a
number of quasiobjective methods in Section 6.9.6. The
reader should bear in mind the opening sentences of this
section, which specify that the aim of the pan-sharpening
method is to provide an image map for importing into
a GIS. Other applications are listed by Karathanassi,
Kolokousis and Ioannidou (2007).

6.9.2 HSI Algorithm

The HSI transform is useful in two ways: first, as a
method of image enhancement and, second, as a means
of combining co-registered images from different sources.
The first of these applications is described in Section 6.5.

In terms of image fusion applications, the forward trans-
form of the geometrically rectified and resampled mul-
tispectral image is computed and the HSI components
are extracted. The intensity component is replaced by
the registered panchromatic image and the result back-
transformed to RGB colour space. The method is easy
to understand and is widely used. It is less successful
than other methods when the panchromatic band does not
overlap the visible and NIR bands. In the implementation
used here, the pan-sharpened image is reconstituted in 8-
bit representation (0–255). The remaining four methods
convert the output image to the 11 bit representation of
the input IKONOS images.

6.9.3 PCA

Applications of PCA to remotely-sensed data normally
result in a first principal component that is a weighted
average of al bands in the data set. This common variation
can be considered to represent variations in brightness or
intensity. Pan sharpening using PCA replaces PC1 with
the panchromatic image and then performs an inverse
PCA on the result. Inverse PCA is used in the decorrela-
tion stretch procedure (Section 6.4.3). The success of the
method depends on the validity of the assumption that
PC1 represents brightness or intensity.

6.9.4 Gram-Schmidt Orthogonalization

The GS orthogonalization procedure is simply a method
of transforming a matrix so that its columns are orthog-
onal (i.e. they are uncorrelated). This method is patented
by the Eastman Kodak Company and is available in
the ENVI software package. It is similar in principle to
the PCA method in that the low-resolution multispectral
image is orthogonalized (but via the GS procedure rather
than using an eigenvalue–eigenvector transform) and the
panchromatic band substituted for the first GS vector.
An inverse transform is then carried out to generate the
final result.

6.9.5 Wavelet-Based Methods

Figure 6.38 shows a three-level wavelet decomposition
of an image. The first level decomposition would simply
have a degraded image in the top left quadrant. The quad-
rants labelled H1, D1 and V1 are the first-level horizontal,
diagonal and vertical detail images. In its simplest form,
wavelet-based pan-sharpening involves the computation
of a level 1 transform for each of the three components
of the resampled multispectral image and for the
panchromatic image. One or more of the H1, D1 or V1
components is then replaced by the corresponding com-
ponent of the panchromatic image and an inverse wavelet
transform applied. The result should incorporate the



Image Transforms 199

(a) (b)

(c) (d)

Figure 6.48 Pan-sharpened images using the IKONOS multispectral and panchromatic images shown in Figures 6.46 and 6.47.
Note that these images are 2000 × 2000 pixels in size and reproduction on a printed page reduces the apparent resolution. See
Figure 6.49 for examples of full-resolution subimages. (a) HSI transform, (b) Principal components transform, (c) Gram-Schmidt
transform and (d) wavelet transform.

once-smoothed multispectral image and the panchromatic
detail. As implemented in MIPS, a choice of mother
wavelets is required. For the purposes of this exercise, a
Daubechies-4 wavelet was used and all three quadrants of
detail coefficients in the false-colour image were replaced
by their panchromatic equivalents (Figure 6.37, upper
and lower right and lower left quadrants). See Amolins,
Zhang and Dare (2007) and Pajares and de la Cruz
(2004) for reviews of the use of wavelets in image fusion.

Garguet-Duport et al. (1996), Yocky (1996) and Zhou,
Civco and Silander (1998) also provide more details.

6.9.6 Evaluation – Subjective Methods

Bearing in mind the fact that it is specified in the
opening sentences of this section that the pan-sharpened
image is computed for visual analysis, the first criterion
to be used in selecting a method is the degree of success
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achieved by the pan-sharpening process as seen by the
user. Printed images are rarely a completely satisfactory
method of reproducing what is seen on screen, so the fol-
lowing descriptions might appear to be too imaginative.
The explanation for this is the fact that the comparison
is based on the images seen on screen. The four pan-
sharpened images are reproduced as Figure 6.48a–d. The
original 4 m resolution image is shown in Figure 6.46.

The first thing one notices is the relative lack of
colour in the HSI transformed image in Figure 6.48a. As
explained above, this may be because this image was out-
put in 8-bit format while all of the others are expressed
in terms of 11 bits. The remaining (pan-sharpened) are
shown in Figure 6.48b–d. At this scale it is not possible
to distinguish between the images on grounds of quality.
It should be noted that the 8-bit image was subjected to
a 5% linear contrast stretch, while the remaining images
were converted from 11-bit representation to the 8-bit
representation that is required for image display via the
use of the equal class frequency transformation. This
is an example of what was referred to in Chapter 3,
where it was noted that image enhancement procedures
could be performed automatically by the software and a
misleading impression could thereby be obtained.

Figure 6.49 shows a selection of full-scale subimages,
beginning with the 4-m multispectral image and the 1-m
panchromatic image. Now it is possible to see that sub-
stantial differences between the results of the different
techniques are present. In terms of visual appearance,
the PCA and GS methods outperform the rest, while the
wavelet method produces the worst performance, with
the blocky appearance of the nearest-neighbour resam-
pled image being very apparent. The HSI image is rather
subdued in comparison to the results of the PCA and GS
methods. In the next section, quantitative measures of
quality are applied and it is interesting to note how objec-
tive methods can mislead whereas the eye rarely does.

6.9.7 Evaluation – Objective Methods

Karathanassi, Kolokousis and Ioannidou (2007) give
details of a number of quantitative measures that they
use to evaluate a number of pan-sharpening algorithms.
Of these, the mean, standard deviation, correlation and
entropy are used here. The concept of entropy was
introduced in Section 2.2.3; it gives an estimate of
the number of bits of information needed to represent
the image. Table 6.9 lists the mean values, standard
deviations and entropy measures for the 1 m resampled
false-colour composite image (it is labelled ‘RGB
resampled’ as the descriptors of the display channels are
used rather than the wavebands of the image displayed
in that channel. The images (represented by the columns

of Table 6.9) are all in 11-bit integer format except the
HSI result, which is represented in terms of 8-bit pixels.
The means and standard deviations of all of the images
approximate the mean and standard deviation of the
RGB resampled image. This is as a result of histogram
matching being applied to the image product. The
minimum and maximum values of the RGB resampled
image are taken and the histogram of the pan-sharpened
image resulting from the application of the PCA or
GS algorithm (discount the HSI as it is only 8 bits) is
stretched so that its histogram minimum and maximum
values equate to that of the input image. This is to
ensure that the overall brightness of the original and
pan-sharpened image are approximately equal. This
procedure was not applied to the output from the wavelet
algorithm, so its mean and standard deviation over all
three input bands are higher than the RGB resampled
image. However, if we take entropy as an indication of
quality then the wavelet results are clearly the best, with
an entropy of about 9.25 bits compared with 8.75–8.98
for the other methods, excluding HSI, which has a range
of entropy values of about 7.75. Thus, on the basis of
a quantitative information measure, the wavelet method
is best.

Correlation of images has also been used as a measure
of quality. One might think that the higher the correlation
gets, the better the fit. In fact the RGB resampled image
suffers, as we have seen, from saw-tooth patterns as a
result of the use of the nearest neighbour interpolation
method. It comes as no surprise, then, to find that the
correlation between the RGB values of the entropy image
and those of the RGB resampled image are highest, and
approach 1.0 whereas the other methods are correlated at
a level of 0.9 or so (Table 6.10). However, the reason for
the high correlation of the wavelet results is the fact that
they too demonstrate a saw-tooth pattern. It would seem
that a higher correlation with the RGB resampled image
is not a good guide to quality. The worst performer of
the techniques used in this experiment has the highest
scores on the information measure (entropy) as well as
the highest correlation with the false colour resampled
multispectral image.

Given that the primary motivation for performing the
pan-sharpening operation is to produce an image map
that can act as a background layer in a GIS, the sub-
jective method of evaluation – that is look and see – is
preferable to any quantitative measure of quality. Of the
methods used here, the GS and PCA procedures are both
acceptable in that the effects of resampling are not visu-
ally apparent and the colours match quite closely those
of the original multispectral image.

References to various aspects of data fusion include
Amarsaikhan and Douglas (2004) on classification, Cetin
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(a) (b)

(c) (d)

(e) (f)

Figure 6.49 Pan-sharpening illustrated using a 350 × 350 chip from the IKONOS MSS and panchromatic images shown in
figures 6.46 and 6.47. (a) IKONOS MSS image (4 m resolution), (b) IKONOS panchromatic image (1 m resolution), (c) Hue,
saturation and intensity (HSI) transform, (d) Principal Components transform, (e) Gram-Schmidt transform, (f) Wavelet transform.
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Table 6.9 Summary statistics for the data fusion example. The mean, standard deviation and entropy of the resampled
multispectral image (RGB resampled) and for the four fusion methods (Gram-Schmidt, principal components,
hue-saturation-intensity and wavelet) are shown. See text for elaboration.

RGB resampled Gram-Schmidt PCA HSI Wavelet

Mean SD Entropy Mean SD Entropy Mean SD Entropy Mean SD Entropy Mean SD Entropy

R 444 125 8.95 444 130 8.98 444 130 8.97 112 54 7.63 512 156 9.26

G 463 124 8.94 463 122 8.90 463 122 8.90 117 59 7.73 545 148 9.20

B 512 113 8.79 512 111 8.75 512 111 8.75 115 60 7.74 490 136 9.06

Table 6.10 Columns show the correlation between the four fusion methods and the red, green and blue bands of the
resampled multispectral false colour image.

Red band (resampled) Green band (resampled) Blue band (resampled)

RGB resampled 1.00 1.00 1.00

Gram-Schmidt 0.92 0.90 0.90

PCA 0.92 0.91 0.90

HSI 0.87 0.91 0.91

Wavelet 0.99 0.99 0.98

and Musaoglu (2009) on hyperspectral data fusion,
Hyder, Shabazian and Waltz (2002) on multisensor
fusion, the IEEE special issue on data fusion IEEE
Transactions on Geoscience and Remote Sensing (2008),
Kalpoma and Kudoh (2007) on IKONOS image fusion,
the PE&RS special issue on remote sensing data fusion
Shan and Stilla (2008), Ranchin (2002a, 2002b), Stathaki
(2008) on fusion algorithms, Wald (2002), and Warrender
and Augusteijn (1999) on fusion of image classifications.

6.10 Summary

A range of image transform techniques is considered in
this chapter. Arithmetic operations (addition, subtraction,
multiplication and division) have a utilitarian use – for
example image subtraction is used routinely in the sep-
aration of the high-frequency component of an image
during the filtering process (Section 7.5) while addition
is used in the method of lineament detection described
in Section 9.2. Image division, or ratioing, is one of
the most common transformations applied to remotely-
sensed images in both geological and agricultural studies
for simple band ratios reflect differences in the slopes of
the spectral reflectance curves of Earth surface materi-
als. Problems experienced with the use of ratios include
the difficulty of separating the effect of atmospheric path
radiances, and the choice of dynamic range compression
technique. Nevertheless ratio images are a widely used
and valuable tool. The empirical transformations consid-

ered in Section 6.3 were developed for use with images
of agricultural areas. One of the special problems here is
that the database on which these transformations (the PVI
and the Tasselled Cap transformation) are based is limited
and site-specific. Their unrestricted use with images from
parts of the world, other than those regions of the United
States where they were developed, is questionable.

The PCA (KarhunenLoève) transformation has a long
history of use in multivariate statistics. Even so, it is not
as well understood by the remote sensing community as
it might be. Like most parametric statistical methods it
is based on a set of assumptions that must be appreci-
ated, if not completely satisfied, if the methods are to
be used successfully. The final transformation techniques
covered in this chapter are the Fourier transform and
the wavelet transform. The level of mathematics required
to understand a formal presentation of these methods is
generally well above that achieved by undergraduate stu-
dents in geography, geology and other Earth sciences.
The intuitive explanations given in Sections 6.6 and 6.7
might serve to introduce such readers to the basic prin-
ciples of the method and allow a fuller understanding
of the frequency-domain filtering techniques described
in Section 7.5 and the de-noising procedures applied to
reflectance spectra and images in Section 9.2.

The reader should appreciate that the presentation in
the latter parts of this chapter is largely informal and
non-mathematical. Many pitfalls and difficulties are not
covered. These will, no doubt, be discovered serendipi-
tously by the reader in the course of project work.



7 Filtering Techniques

7.1 Introduction

The image enhancement methods discussed in Chapter 5
change the way in which the information content of an
image is presented to the viewer, either by altering image
contrast or by coding a grey-scale image in pseudocolour
so as to emphasize or amplify some property of the image
that is of interest to the user. This chapter deals with
methods for selectively or suppressing information at dif-
ferent spatial scales present in an image. For example,
we may wish to suppress the high-frequency noise pat-
tern caused by detector imbalance that is sometimes seen
in Landsat MSS and TM images and which results from
the fact that the image is electro-mechanically scanned
in groups of six lines (MSS) or 16 lines (TM/ETM+)
(Sections 2.3.6 and 4.2.2). On the other hand, we may
wish to emphasize some spatial feature or features of
interest, such as curvilinear boundaries between areas
that are relatively homogeneous in terms of their tone or
colour, in order to sharpen the image and reduce blurring.
The techniques operate selectively on the image data,
which are considered to contain information at various
spatial scales. The idea that a spatial (two-dimensional)
pattern, such as the variation of grey levels in a grey
scale image, can be considered as a composite of pat-
terns at different scales superimposed upon each other is
introduced in Section 6.6 in the context of the Fourier
transform. Large-scale background or regional patterns,
such as land and sea, are the basic components of the
image. These large-scale patterns can be thought of as
‘background’ with ‘detail’ being added by small-scale
patterns. Noise, either random or systematic, is normally
also present.

In symbolic terms, the information contained in an
image can be represented by the following model:

image data = regional pattern + local pattern + noise

= background + foreground (detail) + noise

= low frequencies + high frequencies + noise

Computer Processing of Remotely-Sensed Images: An Introduction, Fourth Edition Paul M. Mather and Magaly Koch
c© 2011 John Wiley & Sons, Ltd

There is no reason to suppose that noise affects only
the foreground or detail, though noise is often described
as a high-frequency phenomenon. Noise can be either
random or periodic. An example of random noise is the
speckle pattern on synthetic-aperture radar (SAR) images.
Periodic noise can be the result of a number of factors,
such as the use of an electromechanical scanner, or the
vibration from an aircraft engine.

The representation of the spatial variability of a feature
in terms of a regional pattern with local information and
noise superimposed has been widely used in disciplines
that deal with spatially distributed phenomena. Patterns
of variation are often summarized in terms of generaliza-
tions. For example, a geographer might note that, in Great
Britain, ‘mean annual rainfall declines from west to east’
in the knowledge that such a statement describes only the
background pattern, upon which is superimposed the vari-
ations attributable to local factors. In both geography and
geology, the technique of trend surface analysis has been
found useful in separating the regional and local com-
ponents of such spatial patterns (Davis, 1973; Mather,
1976). Lloyd (2006) also considers spatial variation at
different scales.

By analogy with the procedure used in chemistry lab-
oratories to separate the components of a suspension,
the techniques described in this chapter are known as
filtering . A digital filter can be used to extract a partic-
ular spatial scale component from a digital image. The
slowly varying background pattern in the image can be
envisaged as a two-dimensional waveform with a long
wavelength or low frequency; hence a filter that sepa-
rates this slowly varying component from the remainder
of the information present in the image is called a low-
pass filter . Conversely, the more rapidly varying detail
is like a two-dimensional waveform with a short wave-
length or high frequency. A filter to separate out this
component is called a high-pass filter . These two types of
filter are considered separately. Low-frequency informa-
tion allows the identification of the background pattern,
and produces an output image in which the detail has been
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smoothed or removed from the original (input) image
(hence low-pass filtering can be thought of as a form of
blurring the image). High-frequency information allows
us either to isolate or to amplify the local detail. If the
high-frequency detail is amplified by adding back to the
image some multiple of the high-frequency component
extracted by the filter then the result is a sharper, de-
blurred image. Anyone who listens to the organ music of
JS Bach will be able to identify the low frequency com-
ponents as the slowly changing low bass notes played by
the foot pedals, while the high frequency detail consists
of the shorter and much more numerous notes played on
the manuals. Bach’s music and remotely-sensed images
have something in common, for both combine informa-
tion at different scales (temporal scales in music, spatial
scales in images).

Three approaches are used to separate the scale
components of the spatial patterns exhibited in a
remotely-sensed image. The first is based upon the
transformation of the frequency domain representation
of the image into its scale or spatial frequency com-
ponents using the Discrete Fourier Transform (Section
6.6), while the second method is applied directly to
the image data in the spatial domain. A third, more
recent, development is that of the discrete wavelet
transform, which uses both frequency (scale) and spatial
representations of the data. The principles of the wavelet
transform are discussed in Section 6.7 and applications
are summarized in Chapter 9. Fourier-based filtering
methods are considered in Section 7.5. In the following
two sections the most common spatial-domain filtering
methods are described. There is generally a one-to-one
correspondence between spatial and frequency-domain
filters. However, specific filters may be easier to design
in the frequency domain but may be applied more
efficiently in the spatial domain. The concept of spatial
and frequency-domain representations is shown in
Figure 6.21. Whereas spatial-domain filters are generally
classed as either high-pass (sharpening) or as low-pass
(smoothing), filters in the frequency domain can be
designed to suppress, attenuate, amplify or pass any
group of spatial frequencies. The choice of filter type
can be based either on spatial frequency or on direction,
for both these properties are contained in the Fourier
amplitude spectrum (Section 6.6).

7.2 Spatial Domain Low-Pass
(Smoothing) Filters

Before the topic of smoothing a two-dimensional image
is considered, we will look at a simpler expression
of the same problem, which is the smoothing of a
one-dimensional pattern. Figure 7.1 shows a plot of grey

levels along a cross-section from the top left corner (0,
0) to the bottom right corner (511, 511) of the TM band
7 image shown in Figure 1.11b. Figure 7.1a shows the
cross-section for the unfiltered image, while Figure 7.1b
shows the same cross-section after the application of a
low pass (smoothing) filter. Clearly, the level of detail
has been reduced and the cross-section curve is more
generalized, though the main peaks are still apparent.
Figure 7.2 displays another plot showing grey level
value (vertical axis) against position across a scan-line
of a digital image. The underlying pattern is partially
obscured by the presence of local patterns and random
noise. If the local variability, and the random noise, were
to be removed then the overall pattern would become
more clearly apparent and a general description of
trends in the data could then be more easily made. The
solid line in Figure 7.2 is a plot of the observed pixel
values against position along the scan line, while the
dotted line and the broken line represent the output from
median and moving-average filters respectively. These
filters are described below. Both produce smoother plots
than the raw data curve, and the trend in the data is
more easily seen. Local sharp fluctuations in value are
removed. These fluctuations represent the high-frequency
component of the data and may be the result of local
characteristics or of noise. Thus, low-pass filtering is
used by Crippen (1989), Eliason and McEwen (1990)
and Pan and Chang (1992) to remove banding effects
on remotely-sensed images (Section 4.2.2), while Dale,
Chandica and Evans (1996) use a low-pass filter in
an attempt to smooth away the effects of image-to-
image misregistration.

7.2.1 Moving Average Filter

The moving average filter simply replaces a data value
by the average of the given data point and a specified
number of its neighbours to the left and to the right. If
the coordinate on the horizontal axis of Figure 7.2 is
denoted by the index j then the moving-average filtered
value at any point j is x ′

j . The procedure for calculating
x′

j depends on the number of local values around the data
point to be filtered that are used in the calculation of the
moving average. This number is always an odd, positive
integer so that there is a definite central point (thus, the
central value in the sequence 1, 2, 3 is 2 whereas there is
no specific central value in the sequence 1, 2, 3, 4). The
broken line in Figure 7.2 is based on a five-point moving
average, defined by

x′
j = (xj−2 + xj−1 + xj + xj+1 + xj+2)/5

Five raw data values represented by the vector x and
centred on point xj are summed and averaged to produce
one output value (x′

j ). If a three-point moving average
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Figure 7.1 (a) Cross-section of a Landsat TM image, with band 4 shown in red, band 3 in green and band 2 in blue.
(b) Cross-section between the same points as used in (a) after the application of a smoothing filter (a 7 × 7 median filter was used
to generate this cross-section, as described in Section 7.2.2). The reduction in detail is clearly apparent. Landsat data courtesy
NASA/USGS.
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Figure 7.2 One-dimensional data series showing the effect of and moving average (low-pass) filtering. The original data are
shown in dark blue and the data after the application of a 5 × 5 moving average filter are shown in red. Note that the first two
and last two data points in the raw data cannot be filtered.

had been used then three raw data values centred on point
j (i.e. points j − 1, j and j + 1) would be summed and
averaged to give one output value at x′

j .
If the number of data elements included in the aver-

aging process is n , then [n/2] values at the beginning
of the input series and [n/2] values at the end of the
input series do not have output values associated with
them, because some of the input terms xj−1, xj−2 and so
on will not exist for j<[n/2], just as some of the terms
xj+1, xj+2, . . . will not exist for j>N − [n/2] (the sym-
bol [.] indicates the integer part of the given expression
and N is the total number of raw data values in the (input)
series that is being filtered). The filtered (output) series
is thus shorter than the input series by n − 1 elements,
where n is the length of the filter (three point, five point,
etc.). Thus, a moving average curve, such as that shown
in Figure 7.2, will have no values at points x1 and x2 or at
xn−1 and xn. A 5 × 5 filter applied to an image will leave
an unfiltered margin of 2 pixels around the four sides of
the image. These marginal pixels are usually set to zero.

In calculating a five-point moving average for a one-
dimensional series the following algorithm might be used:
add up the input (x ) values 1–5 and divide their sum by
5 to give x′

3, the first filtered (output) value. Note that
filtered values x′

1 and x′
2 cannot be calculated; the reason

is given in the preceding paragraph. Next, add raw data
values x2 to x6 and divide their sum by 5 to give x′

4.
This procedure is repeated until output value x′

n−2 has
been computed, where n is the number of input values
(again, x′

n−1 and x′
n are left undefined). This algorithm is

rather inefficient, for it overlooks the fact that the sum of
x2 − x6 is easily obtained from the sum of x1 to x5 simply
by subtracting x1 from the sum of x1 − x5 and adding x6.
The terms x2, x3 and x4 are present in both summations,
and need not be included in the second calculation. If the

series is a long one then this modification to the original
algorithm will result in a more efficient program.

A two-dimensional moving average filter is defined in
terms of its horizontal (along-scan) and vertical (across-
scan) dimensions. Like the one-dimensional moving
average filter, these dimensions must be odd, positive and
integral. However, the dimensions of the filter need not
be equal. A two-dimensional moving average is described
in terms of its size, such as 3 × 3. Care is needed when
the filter dimensions are unequal to ensure that the order
of the dimensions is clear; the Cartesian system uses
(x , y) where x is the horizontal and y the vertical coor-
dinate, with an origin in the lower left of the positive
quadrant. In matrix (image) notation, the position of an
element is given by its row (vertical, y) and column
(horizontal, x ) coordinates, and the origin is the upper
left corner of the matrix or image. The central element
of the filter, corresponding to the element x′

j in the
one-dimensional case described earlier, is located at
the intersection of the central row and column of the
n × m filter window. Thus, for a 3 × 3 window, the cen-
tral element lies at the intersection of the second row and
second column. To begin with, the window is placed in
the top left corner of the image to be filtered (Figure 7.3)
and the average value of the elements in the area of
the input image that is covered by the filter window
is computed. This value is placed in the output image
at the point in the output image corresponding to the
location of the central element of the filter window. In
effect, the moving average filter window can be thought
of as a matrix with all its elements equal to 1; the output
from the convolution of the window and the image is the
sum of the products of the corresponding window and
image elements divided by the number of elements in
the window. If F (= fij ) is the filter matrix, G (= gij )
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Figure 7.3 Illustrating the operation of a spatial domain filter. In this example, the filter size is three rows by three columns. The
filter size is always an odd, positive integer so that there is a ‘central’ pixel (on row 2, column 2 in this case). The 3 × 3 matrix of
filter weights w1 . . . w9) is placed over a 3 × 3 patch of image pixels and the weight is multiplied by the associated pixel value.
These products are summed and the result is placed in the position in the output image that corresponds to the position of the
central cell of the weight matrix. In the case of a 3 × 3 moving average filter, with nine elements, the weights wi are all equal
to 1/9.

is the input image and O (= oij ) the output (filtered)
image then

oij =



b∑
p=−b

c∑
q=−c

gp+i,q+jfr+p,s+q


 /mn

where
b integer part of n/2
c integer part of m/2
n number of rows in filter matrix (odd number)
m number of columns in filter matrix (odd

number)
r central row in filter matrix (= [n/2])
s central column in filter matrix (= [m/2])

i , j image pixel underlying element (r , s) of filter
matrix (coordinates in row/column order)

[e] integer part of expression e.

For example, given a 5 × 3 filter matrix the value of
the pixel in the filtered image at row 8, column 15 is
given by:

o8,15 =



2∑
p=−2

1∑
q=−1

g8+p,15+qf3+p,2+q


 /15

with b = 2, c = 1, r = 3 and s = 2. Notice that the
indices i and j must be in the range b < i < (N − b + 1)

and c < j < (M − c + 1) if the image has N rows and M
columns numbered from 1 to N and 1 to M respectively.
This means that there are b empty rows at the top and
bottom of the filtered image and c empty columns at
either side of the filtered image. This unfiltered margin
can be filled with zeros or the unaltered pixels from
the corresponding cells of the input image can be
placed there.

The initial position of the filter window with respect
to the image is shown in Figure 7.3. Once the output
value from the filter has been calculated, the window is
moved one column (pixel) to the right and the operation
is repeated. The window is moved rightwards and succes-
sive output values are computed until the right-hand edge
of the filter window hits the right margin of the image.
At this point, the filter window is moved down one row
(scan-line) and back to the left-hand margin of the image.
This procedure is repeated (Figure 7.4). The window is
moved rightwards and successive output values are com-
puted until the filter window reaches the right-hand edge
of the image. At this point, the filter window is moved
down one row (scan line) and back to the left-hand mar-
gin of the image. This procedure is repeated until the
filter window reaches the bottom right-hand corner of
the input image. The output image values form a matrix
that has fewer rows and columns than the input image
because it has an unfiltered margin corresponding to the
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Figure 7.4 The filter window ABCD has moved one column
to the right from its initial position (position 1) in the top left
corner of the image and now is in position 2. The elements
of the column to be subtracted from the sum calculated at
position 1 are indicated by green shading. Those elements to
be added to the sum calculated at position 1 are indicated by
red shading.

top and bottom rows and the left and right columns of
the input matrix that the filter window cannot reach. Gen-
erally, these missing rows and columns are filled with
zeroes in order to keep the input and output images the
same size.

The effect of the moving average filter is to reduce the
overall variability of the image and lower its contrast. At
the same time those pixels that have larger or smaller
values than their neighbourhood average (think of them
as grey level peaks and troughs) are respectively reduced
or increased in value so that local detail is lost. Noise
components, such as the banding patterns evident in line-
scanned images, are also reduced in magnitude by the
averaging process, which can be considered as a smearing
or blurring operation. In cases where the overall pattern
of grey level values is of interest, rather than the details
of local variation, neighbourhood grey level averaging is
a useful technique.

Examples of 3 × 3 and 5 × 5 moving average filter
weights are given in Figure 7.5. The input to the filter
program takes the form of a two-dimensional array of
integers with a divisor that is equal to the product of
the two dimensions of the box. Thus, in Figure 7.5a the
divisor is 9, while in Figure 7.5b it is 25. If you apply
these two filters, you will see that increasing the window
size of a moving average filter results in a greater
degree of smoothing, since more pixels are included
in the averaging process. Example 7.1 illustrates the
effects of applying a moving average of 3 × 3 and
7 × 7 on an ETM+ image of part of The Wash in
eastern England.
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1/9

1/91/9
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(b)
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Figure 7.5 Moving average filter weights for (a) a 3 × 3 filter
and (b) a 5 × 5 filter. The same effect can be achieved by
using filter weights of 1, so that the weighted summation in
Figure 7.3 becomes a simple addition. The sum is then divided
by the product of the two dimensions of the filter, that is 9 in
the case of (a) and 25 for (b).

7.2.2 Median Filter

An alternative smoothing filter uses the median of
the pixel values in the filter window (sometimes called the
neighbourhood) rather than the mean. The median filter
is generally thought to be superior to the moving average
filter, for two reasons. First, the median of a set of n
numbers (where n is an odd integer) is always one of the
data values present in the set. Second, the median is less
sensitive to errors or to extreme data values. This can be
demonstrated by a simple, one-dimensional, example. If
the 9 pixel values in the neighbourhood of, and including
the point (x , y) are {3, 1, 2, 8, 5, 3, 9, 4, 27} then the
median is the central value (the fifth in this case) when
the data are ranked in ascending or descending order
of magnitude. In this example the ranked values are {1,
2, 3, 3, 4, 5, 8, 9, 27} giving a median value of 4. The
mean is 6.88, which would be rounded up to a value of
7 for display purposes, as most display systems use an
integer scale of grey levels, such as 0–255. The value
7 is not present in the original data, unlike the median
value of 4. Also, the mean value is larger than 6 of the
9 observed values, and may be thought to be unduly
influenced by one extreme data value (27), which is three
times larger than the next highest value in the set. Thus,
the median filter removes isolated extreme pixel values
or spikes, such as the value 27 in the example, which
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might represent isolated noise pixels. It also follows
that the median filter preserves edges better than a
moving-average filter, which blurs or smoothes the grey
levels in the neighbourhood of the central point of the
filter window. Figure 7.2 shows (i) a one-dimensional
sequence of values, (ii) the result of applying a moving
average of length 5 to the given data and (iii) the result
of applying a median filter also of length 5.

It is clear that, while both the median and the moving
average filters remove high-frequency oscillations, the
median filter more successfully removes isolated spikes
and better preserves edges, defined as pixels at which the
gradient or slope of grey level value changes markedly.
SAR images often display a noise pattern called speckle
(Section 2.4). This is seen as a random pattern of bright
points over the image. The median filter is frequently
used to eliminate this speckle without unduly blurring
the sharp features of the image (Blom and Daily, 1982;
Held et al., 2003).

The mean is relatively easily computed; it involves
a process of summation and division, as explained
earlier, and considerable savings of computer time can
be achieved by methods described in Section 7.2.1.
In contrast, the median requires the ranking of the
data values lying within the n × m filter window
centred on the image point that is being filtered. The
operation of ranking or sorting is far slower than that
of summation, for [n/2] + 1 passes through the data
are required to determine the median ([n/2] indicates
‘the integer part of the result of dividing n by 2’).
At each pass, the smallest value remaining in the data
must be found by a process of comparison. Using the
values given in the example in the preceding paragraph,
the value 1 would be picked out after the first pass,
leaving eight values. A search of these eight values
gives 2 as the smallest remaining value, and so on
for ([n/2] + 1 = [9/2] + 1 = 4 + 1 = 5) passes. The
differences between the summation and ranking methods
are amplified by the number of times the operation is
carried out; for a 3 × 3 filter window and a 512 × 512
image the filter is evaluated 510 × 510 = 260 100 times.
Thus, although the median filter might be preferred to
the moving average filter for the reasons given earlier, it
might be rejected if the computational cost was too high.

Fortunately, a less obvious but faster method of
computing the median value for set of overlapping filter
windows is available when the data are composed of
integers. This fast algorithm begins as usual with the
filter window located in the top left-hand corner of
the image, as shown in Figure 7.3. A histogram of the
n × m data points lying within the window is computed
and the corresponding class frequencies are stored in
a one-dimensional array. The median value is found
by finding that class (grey level) value such that the

cumulative frequency for that class equals or exceeds
[n/2] + 1. Using the data given earlier, the cumulative
class frequencies for the first few grey levels are (0) 0;
(1) 1; (2) 2; (3) 4 and (4) 5. The value in brackets is
the grey level and the number following the bracketed
number is the corresponding cumulative frequency, so
that no pixels have values of zero, whereas 4 pixels
have values of 3 or less. Since n is equal to 9, the
value of ([n/2] + 1) is 5 and no further calculation is
necessary; the median is 4. This method is considerably
faster than the obvious (brute force) sorting method
because histogram calculation does not involve any
logical comparisons, and the total histogram need not
be checked in order to find the median. Further savings
are achieved if the histogram is updated rather than
recalculated when the filter window is moved to its next
position, using a method similar to that illustrated in
Figure 7.4. First, the cumulative frequencies are reduced
as necessary to take account of the left-hand column of
the window, which is moving out of the filter, and then
the cumulative frequencies are incremented according
to the values of the new right-hand column of pixel
values, which is moving into the window. This part of
the procedure is similar to the updating of the sum of
pixel values as described in Section 7.2.1 in connection
with the moving average filter. If the fast algorithm is
used then the additional computational expense involved
in computing the median is not significant.

The concept of the median filter was introduced by
Tukey (1977) and its extension to two-dimensional
images is discussed by Pratt (1978). The fast algorithm
described above was reported by Huang, Yang and
Tang (1979), who also provide a number of additional
references. See also Brownrigg (1984) and Danielsson
(1981). Blom and Daily (1982), Chen, Ma and Li-Hui
Chen (1999), Chan, Ho and Nikolova (2005) and Rees
and Satchell (1997) illustrate the use of the median filter
applied to SAR images.

7.2.3 Adaptive Filters

Both the median and the moving average filter apply a
fixed set of weights to all areas of the image, irrespective
of the variability of the grey levels underlying the filter
window. Several authors have considered smoothing
methods in which the filter weights are calculated anew
for each window position, the calculations being based
on the mean and variance of the grey levels in the
area of the image underlying the window. Such filters
are termed adaptive filters. Their use is particularly
important in the attenuation of the multiplicative noise
effect known as speckle, which affects SAR images. As
noted in Section 7.2.2, the median filter has been used
with some success to remove speckle noise from SAR
images. However, more advanced filters will, in general,
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Example 7.1: Moving Average Filters

The purpose of this example is to evaluate the effects of changing the window size of the two-dimensional moving
average filter. The instructions to the image processing software assume you are using MIPS but you could be
using any image processing software, as all the usual brands have filtering modules.

Start MIPS and display a greyscale or false colour image of your choice. In this example, I am using a Landsat
ETM+ false-colour image of part of The Wash on the east coast of England. The original (contrast stretched)
image is shown in Example 7.1 Figure 1. Next, select Filter User Defined Filter. Select the vertical and
horizontal sizes of the filter to use as 5 × 5. The weights are shown as a 5 × 5 array of 1’s with a divisor of 25.
These weights and divisor define the 5 × 5 moving average filter. The filtered image (Example 7.1 Figure 2) is
shown in a new window.

Example 7.1 Figure 1. Contrast-stretched Landsat ETM+ false colour image of part of the The Wash in eastern England.

Example 7.1 Figure 2. The image shown in Example 7.1 Figure 1 after the application of a 5 × 5 moving average filter.



Filtering Techniques 211

Finally, choose Filter User Defined Filter again, and change the filter size to 7 × 7. Accept the default
weights and divisor, and a 7 × 7 moving average filtered image appears on the screen (Example 7.1 Figure 3).
You can try other moving average window sizes (they do not have to be square; 3 × 1 or 7 × 3 are acceptable, for
example). How would you describe (i) the general effect of the moving average filter and (ii) the specific effects
of changing window size?

Example 7.1 Figure 3. The image shown in Example 7.1 Figure 1 after the application of a 7 × 7 moving average filter.

produce superior results in the sense that they are
theoretically capable of removing speckle without
significantly degrading the high-frequency component
of the SAR image. See the texts by Oliver and Quegan
(2004) and Woodhouse (2006) for in-depth discussions
of the origins and statistical properties of speckle in
SAR imagery.

One of the best-known and simplest speckle suppres-
sion filters is the sigma filter , proposed by Lee (1983a,
1983b). This filtering method is based on the concept of
the Normal distribution. Approximately 95% of the val-
ues of observations belonging to a Normal distribution
with mean µ and standard deviation σ fall within ±2σ

of the mean value. Lee’s method assumes that the grey
level values in a single-band SAR image are Normally
distributed and, for each overlapping, rectangular win-
dow, computes estimates of the local mean x and local
standard deviation s from the pixels falling within the
window. A threshold value is computed from those pix-
els whose values lie within ±2s of the window mean x.
Pixels outside this range are not included in the calcula-
tion. The method breaks down when only a few of the
pixels in the window have values that are within ±2s

of the window mean. A parameter k is used to control

the procedure. If fewer than k pixels are selected by
the threshold (i.e. fewer than k pixels lie in the range
x ± 2s) then the procedure is aborted, and the filtered
pixel value to the left of the current position is used.
Alternatively, the average of the four neighbouring pixels
replaces the window centre pixel. This modification can
cause problems in the first case if the pixel concerned is
located on the left margin of the image. In the second
case, the filtered values for the pixels to the right of
and below the current pixel will need to be calculated
before the average can be obtained. Lee et al. (2009)
present an improved sigma filter for speckle removal.
Lopes et al. (1990) consider adaptive speckle filters
in which the size of the moving window is related to
scene homogeneity.

A second widely used speckle filter is the Frost
adaptive filter (Frost et al., 1982). This filter, like the
sigma filter, uses a moving window the dimensions of
which are odd, positive integers. Unlike the moving
average filter, the Frost filter coefficients adapt them-
selves according to the image pixel values that lie below
the moving window by using local statistics (i.e. mean
and variance of the window pixels). The output of the
filter, which replaces the central window pixel value in
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the image being filtered, is defined as:

V =
∑m

1 GiWi∑m
1 Wi

where V is the output from the filter. G represents the m
pixel greyscale values underlying the window (indexed
from 1 to m by reading across the rows of the moving
window so that for a 3 × 3 image the value of m is 9
and the grey level values are indexed as 1–3 across row
1, 4–6 across row 2 and 7–9 across row 3). The weights
are denoted by W and they are arranged in the same
order as the elements of G . These weights are computed
from W = exp(−AT ) in which A is a constant given by:

A = expdamp
( var

mean2

)
where expdamp is a user-defined exponential damping
factor, which takes a default value of 1.0. Take care if
you code this formula in a program or a spreadsheet;
remember to check whether mean is equal to zero before
doing the division. Larger values of expdamp preserve
edges but diminish the degree of smoothing. Smaller
values of expdamp result in more smoothing and less
well-preserved edges. The values var and mean are the
variance and the mean values of the m pixel values
covered by the window. The elements of T are the
absolute values of the euclidean distances from the m
pixels in the window to the central pixel. The Frost
filter is implemented on most image processing systems
and readers should experiment using different values of
expdamp and different window sizes (as is the case with
most window-based filters, the degree of smoothing or
blurring increases with window size).

Further details of speckle filters are provided by
Oliver and Quegan (2004), Lee and Pottier (2009) (this
book deals with polarimetric SAR but the underlying
principles are the same) Loizou and Pattichis (2008) (the
topic of this book is ultrasound, but again the principles
are the same; the book includes some MATLAB code).
See also Dong, Milne and Forster (2001), Touzi (2002),
Lopes, Touzi and Nezry (1990), Lopes et al. (1993),
Franceschetti and Lanari (1999) and, of course, the
original paper by Frost et al. (1982). Other references on
speckle filtering include Park, Song and Pearlman (1999)
who describe an adaptive windowing scheme, while
Dong et al. (1998) use recursive wavelet transforms
and compare the performance of wavelet and spatial
filters using quantitative evaluation measures. Rio and
Lozano-Garcia (2000) use spatial filtering of Radarsat
SAR data as a pre-processing method prior to classi-
fication (Chapter 8). Amarsaikhan and Douglas (2004)
compare four speckle filters in terms of their ability
to preserve textural information (Section 8.7.1). Xiao,
Li and Moody (2003) give a good review of speckle

filtering, and Chen, Ma and Li-Hui Chen (1999) discuss
a modified median filter. Chan, Ho and Nikolova (2005)
give details of median filtering for speckle removal. An
advanced treatment of algorithms is contained in Arce
(2004).

Figure 7.6 shows (a) a multitemporal ERS-1 C-band
SAR image of agricultural fields in East Anglia, United
Kingdom (the image is distributed with MIPS as the file
\mips\images\east anglia.inf). The red, green and
blue bands are coregistered images collected at different
times during the growing season; (b) the result of apply-
ing the Frost filter to Figure 7.6a using a filter window
size of 5 × 5 and a damping factor of 1.0 and (c) the dif-
ference image after a decorrelation stretch. The filtered
image (b) is obviously smoothed and the difference image
(c) shows that some edge information has been removed
along with the speckle noise.

Other developments in the use of the sigma filter are
summarized by Smith (1996), who describes two simple
modifications to the standard sigma filter to improve
its computational efficiency and preserve fine features.
Serkan et al. (2008) give details of an adaptive mean
filter that preserves edges. Reviews of speckle filtering
of SAR images are provided by Desnos and Matteini
(1993) and Lee et al. (1994). Lee et al. (2009) provide
details of an updated sigma filter. Wakabayeshi and Arai
(1996) discuss an approach to speckle filtering that uses
a chi-square test. Martin and Turner (1993) consider a
weighted method of SAR speckle suppression, while
Alparone et al. (1996) present an adaptive filter using
local order statistics to achieve the same objective. Order
statistics are based on the local grey level histogram,
for example the median. More advanced methods of
speckle filtering using simulated annealing are described
by White (1993). Other references are Beauchemin,
Thomson and Edwards (1996), who use a measure of
texture (the contrast feature derived from the Grey Level
Co-occurrence Matrix, described in Section 8.7.1) as
the basis of the filter, and Lopes et al. (1993). More
recent developments in the suppression of speckle noise
are based on the discrete wavelet transform (Sections
6.7 and 9.3.2.2). Xiao, Li and Moody (2003) provide a
good review of speckle filtering, while Xie et al. (2003),
Solbø and Eltoft (2004), Vidal-Pantaleoni and Martı́
(2004) and Pizurica et al. (2001) consider wavelet-based
speckle filtering. Other useful reading is: Park, Song
and Pearlman (1999), Dong et al. (1998), Rio and
Lozano-Garcia (2000), Amarsaikhan and Douglas (2004)
as well as the specialist texts by Woodhouse (2006) and
Oliver and Quegan (2006).

The idea of edge-preserving smoothing, as used in
the sigma filter, is also the basis of a filtering method
proposed by Nagao and Matsuyama (1979). This method
attempts to avoid averaging pixel values that belong to
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(a)

(c)

(b)

Figure 7.6 (a) Multitemporal ERS-1 SAR image of agricultural fields in East Anglia. The images were collected at different
times during the growing season and have been coregistered (Chapter 4). (b) Image in (a) after the application of a Frost filter
using a window size of 5 × 5 and a value of expdamp of 1.0. (c) Difference between (a) and (b) after a decorrelation stretch
enhancement. It is clear that (c) contains some systematic (edge) information as well as speckle noise. Image (b) is also blurred
in comparison with image (a). ERS data courtesy of the European Space Agency.

different ‘regions’ that might be present in the image.
The boundary between two regions contained within a
window area might be expected to be represented by an
‘edge’ or sharp discontinuity in the grey level values.
Hence, Nagao and Matsuyama suggest that a bar be
rotated around the centre of the window and the bar at
the position with the smallest standard deviation of the
pixels’ grey scale values be selected as the ‘winner’,

since a small standard deviation indicates the absence of
any edges. The centre pixel value is replaced by the aver-
age of the pixel values in the winning bar (Figure 7.7).
The Nagao–Matsuyama filter is implemented in MIPS
(under the Filter menu item). Figure 7.8a,b show
a Landsat TM image of the Gregory Rift Valley in
East Africa before and after the application of the
Nagao-Matsuyama filter.
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Figure 7.7 Nagao and Matsuyama filters. The 1s and 0s can
be interpreted as a logical mask, with 1 meaning ‘true’ and 0
meaning ‘false’. For a given window position, the variance of
the pixels in the ‘true’ positions is calculated. The pixel value
transferred to the output image is the mean of the ‘true’ pixels
in the window with the lowest variance.

7.3 Spatial Domain High-Pass
(Sharpening) Filters

The process of imaging or scanning involves blurring,
as noted in the discussion of the point spread function
(PSF) in Chapter 2. High frequencies are more heavily

suppressed than are the low-frequency components of
the image. It might therefore seem likely that the visual
quality of an image might be improved by selectively
increasing the contribution of its high-frequency compo-
nents. Since the low-pass filters discussed in Section 7.2
involve some form of averaging (or spatial integration)
then the use of the ‘mathematical opposite’ of averaging
or integrating, namely the derivative function, might seem
to be suited to the process of sharpening or de-blurring an
image. However, a simpler way of performing an opera-
tion that is equivalent to high-pass filtering is considered
before derivative-based methods are discussed.

7.3.1 Image Subtraction Method

According to the model described in Sections 6.6 and
7.1 an image can be considered to be the sum of its low
and high frequency components, plus noise. The low-
frequency part can be isolated by the use of a low-pass
filter as explained in Section 7.2. This low-frequency
image can be subtracted from the original, unfiltered,
image leaving behind the high frequency component. The
resulting image can be added back to the original, thus
effectively doubling the high-frequency component.

The addition and subtraction operations must be done
with care (Section 6.2). The sum of any 2 pixel val-
ues drawn from images each having a dynamic range
of 0–255 can range from 0 to 510, so division by 2 is
needed to keep the sum within the 0–255 range. The dif-
ference between 2 pixel values can range from −255 to

(a) (b)

Figure 7.8 Output from the Nagao–Matsuyama filter for a Landsat TM image of part of the Gregory Rift Valley of Kenya.
(a) Original image (TM bands 7, 5 and 3 in RGB) and (b) filtered image. Both images were enhanced using a 5–95% contrast
stretch. Differences between the two images are small when viewed on a printed page but on-screen viewing shows the removal
of some minor detail in (b). Landsat data courtesy NASA/USGS.
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+255; if the result is to be expressed on the range 0–255
then (i) 255 is added to the result and (ii) this value is
divided by 2. In a difference image, therefore, ‘zero’ has
a grey scale value of 127. The foregoing assumes that the
image pixels contain 8-bit integers; where the radiomet-
ric resolution is 11 or 16-bit (or whenever the data are
expressed as 32-bit real numbers) procedures to convert
to 8-bit representation have to be undertaken (Chapter 3).

7.3.2 Derivative-Based Methods

Other methods of high-pass filtering are based on the
mathematical concept of the derivative, as noted earlier.
The derivative of a continuous function at a specified
point is the rate of change of that function value at that
point. For example, the first derivative of position with
respect to time (the rate of change of position over time)
is velocity, assuming direction is constant. The greater
the velocity of an object the more rapidly it changes its
position with respect to time. The velocity can be mea-
sured at any time after motion commences. The velocity
at time t is the first derivative of position with respect
to time at time t . If the position of an object were to be
graphed against time then the velocity (and hence the first
derivative) at time t would be equal to the slope of the
curve at the point time = t . Hence, the derivative gives
a measure of the rate at which the function is increasing
or decreasing at a particular point in time or, in terms of
the graph, it measures the gradient of the curve.

In the same way that the rate of change of position with
time can be represented by velocity, so the rate of change
of velocity with time can be found by calculating the first
derivative of the function relating velocity and time. The
result of such a calculation would be acceleration. Since
acceleration is the first derivative of velocity with respect
to time and, in turn, velocity is the first derivative of posi-
tion with respect to time then it follows that acceleration
is the second derivative of position with respect to time.
It measures the rate at which velocity is changing. When
the object is at rest its acceleration is zero. Acceleration
is also zero when the object reaches a constant velocity.
A graph of acceleration against time would be useful in
determining those times when velocity was constant or,
conversely, the times when velocity was changing.

In terms of a continuous grey scale image, the analogue
of velocity is the rate of change of grey scale value over
space. This derivative is measured in two directions – one
with respect to x , the other with respect to y . The overall
first derivative (with respect to x and y) is the square
root of the sum of squares of the two individual first
derivatives. The values of these three derivatives (in the
x direction, y direction and overall) tell us (i) how rapidly
the greyscale value is changing in the x direction, (ii) how

rapidly it is changing in the y direction and (iii) the max-
imum rate of change in any direction, plus the direction
of this maximum change. All these values are calcula-
ble at any point in the interior of a continuous image.
In those areas of the image that are homogeneous, the
values taken by all three derivatives (x , y and overall)
will be small. Where there is a rapid change in the grey
scale values, for example at a coastline in a near-infrared
image, the gradient (first derivative) of the image at that
point will be high. These lines or edges of sharp change in
grey level can be thought of as being represented by the
high-frequency component of the image for, as mentioned
earlier, the local variation from the overall background
pattern is due to high-frequency components (the back-
ground pattern is the low-frequency component). The first
derivative or gradient of the image therefore identifies the
high-frequency portions of the image.

What does the second derivative tell us? Like the
first derivative it can be calculated in both the x and
y directions and also with respect to x and y together.
It identifies areas where the gradient (first derivative)
is constant, for the second derivative is zero when the
gradient is constant. It could be used, for example to find
the top and the bottom of a ‘slope’ in grey level values.

Images are not continuous functions. They are defined
at discrete points in space, and these points are usually
taken to be the centres of the pixels. It is therefore not
possible to calculate first and second derivatives using the
methods of calculus. Instead, derivatives are estimated in
terms of differences between the values of adjacent pixels
in the x and y directions, though diagonal or corner dif-
ferences are also used. Figure 7.9 shows the relationship
between a discrete, one-dimensional function (such as
the values along a scan line of a digital image, as shown
in Figure 7.1) and its first and second derivatives esti-
mated by the method of differences. The first differences
(equivalent to the first derivatives) are

x p(i, j) = p(i, j) − p(i − 1, j)

y p(i, j) = p(i, j) − p(i, j − 1)

in the x (along-scan) and y (across-scan) directions
respectively, while the second difference in the x
direction is:

x2p(i, j) = 
xp(i + 1, j) − 
xp(i, j)

= [p(i + 1, j) − p(i, j)]

− [p(i, j) − p(i + 1, j)]

= p(i + 1, j) + p(i − 1, j) − 2p(i, j)

Similarly, the second difference in the y direction is:


y2p(i, j) = p(i, j + 1) + p(i, j − 1) − 2p(i, j)
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Figure 7.9 Graphical representation of (a) a one-dimensional
data series with corresponding (b) first and (c) second-order
differences.

The calculation and meaning of the first and second
differences in one dimension are illustrated in Table 7.1.
A discrete sequence of values, which can be taken as
pixel values along a scan line, is shown in the top row of
Table 7.1 and the first and second differences are shown
in rows 2 and 3. The first difference is zero where the rate
of change of greyscale value is zero, positive when ‘going
up’ a slope and negative when going down. The magni-
tude of the first difference is proportional to the steepness
of the ‘slope’ of the greyscale values, so steep ‘slopes’
(where grey scale values are increasing or decreasing
rapidly) are characterized by first differences that are
large in absolute value. The second difference is zero
where the first difference values are constant, negative at

the foot of a ‘slope’ and positive at the top of the ‘slope’.
The extremities of a ‘slope’ are thus picked out by the
second difference.

The computation of the magnitude of the maximum
first difference or gradient of a digital image can be
carried out by finding 
x and 
y as above and then
determining the composite gradient, given by:


xyp(i, j) =
√

{[
xp(i, j)]2 + [
yp(i, j)]2}
and the direction of this composite gradient is:

θ = tan−1[
yp(i, j) ÷ 
xp(i, j)]

Other gradient measures exist. One of the most com-
mon is the Roberts Gradient, 
R. It is computed in the
two diagonal directions rather than in the horizontal and
vertical directions from:


R =
√

[p(i, j) − p(i + 1, j + 1)]2√
+[p(i, j + 1) − p(i + 1, j)]2

or


R = |p(i, j + 1) − p(i + 1, j + 1)|
+ |p(i, j + 1) − p(i + 1, j)|

The second form is sometimes preferred for reasons
of efficiency as the absolute value (|.|) is more quickly
computable then the square root, and raising the inter-
pixel difference values to the power of 2 is avoided. The
Roberts Gradient function is implemented in the MIPS
program, via the Filter main menu item. Figure 7.10a
shows the histogram of the Landsat ETM+ sub-image of
the south-east corner of The Wash in eastern England,
after the application of the Roberts Gradient operator.
Most of the pixels in the Roberts Gradient image are seen
to have values less than 50, so a manual linear contrast
stretch was applied, setting the lower and upper limits
of the stretch to 0 and 50, respectively. The result is
shown in Figure 7.10b, in which the grey level values
are proportional to 
R.

In order to emphasize the high-frequency components
of an image a multiple of the gradient values at each
pixel location (except those on the first and last rows
and columns) can be added back to the original image.

Table 7.1 Relationship between discrete values (f) along a scan line and the first and second differences (
(f ),
2(f ))). The first
difference (row 2|) indicates the rate of change of the values off shown in row 1. The second difference (row 3) gives the points
at which the rate of change itself alters. The first difference is computed from 
(f ) = fi − fi−1, and the second derivative is
found from 
2(f ) = 
(
(f )) = fi+1 + fi−1 − 2fi.

f 0 0 0 1 2 3 4 5 5 5 5 4 3 2 1 0


(f ) 0 0 1 1 1 1 1 0 0 0 −1 −1 −1 −1 −1


2(f ) 0 1 0 0 0 0 −1 0 0 −1 0 0 0 0
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Figure 7.10 (a) Histogram of the image shown in Figure 7.9b. (b) Landsat ETM+ band 4 image of the south-east corner of The
Wash in eastern England, after the application of the Roberts Gradient filter and a linear contrast stretch using specified lower
and upper limits of 0 and 50 (see the image histogram, (a)). The field boundaries are brought out very clearly, as is the mouth
of the River Ouse. One of the challenges of information extraction from images is to derive vector representations of the objects
seen in edge-detecting filters such as the Roberts Gradient.Landsat data courtesy NASA/USGS.

Normally the absolute values of the gradient are used
in this operation. The effect is to emphasize those areas
where the greyscale values are changing rapidly. Another
possibility is to define a threshold value by inspection
of the histogram of gradient values. Where the gradient
value at a pixel location exceeds this threshold value the
pixel value is set to 255, otherwise the gradient is added
back as before. This will over-emphasize the areas of
greatest change in grey level.

The second difference function of a digital image is
given by


xy2 p(i, j) = 
x2p(i, j) + 
y2p(i, j)

= [p(i + 1, j) + p(i − 1, j) + p(i, j + 1)

+ p(i, j − 1)] − 4p(i, j)

In image processing, this function is called the Lapla-
cian operator. Like its one-dimensional analogue shown

in Table 7.1 this operator takes on a negative value at the
foot of a greyscale ‘slope’ and a positive value at the crest
of a ‘slope’ (Figure 7.11). The magnitude of the value
is proportional to the gradient of the ‘slope’. If abso-
lute values are taken, then Laplacian operator will pick
out the top and the bottom of ‘slopes’ in greyscale val-
ues. Alternatively, the signed values (negative at the foot,
positive at the crest) can be displayed by adding 127 to
all values, thus making 127 the ‘zero’ point on the grey
scale. Negative values of the Laplacian will be shown
by darker shades of grey, positive values by lighter grey
tones. Like the gradient image, the Laplacian image can
be added back to the original image though, as noted
below, it is more sensible to subtract the Laplacian. The
effect is sometimes quite dramatic, though much depends
on the ‘noisiness’ of the image. Any adding-back of high-
frequency information to an already noisy image will
inevitably result in disappointment. Figure 7.12b shows
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Figure 7.11 Section across a greyscale image. The Laplacian
operator outputs a positive value at points where the grey level
curve reaches a minimum, and negative values at those points
where the grey level curve shows a maximum. Subtraction
of the output from the Laplacian operator from the grey level
curve would over-emphasise both the dark minima at the base
of a slope and the bright maximum at the top of the slope.

the result of subtracting the Laplacian image from the
original, un-enhanced image of the Painted Desert area
of Arizona, USA (Figure 7.12a). The result is much less
‘hazy’ than the original, and the effects of the linear
stretch are considerable.

Rosenfeld and Kak (1982, pp. 241–244) give reasons
why this reduction in haziness is be observed. If the dis-
cussion of the PSF (Chapter 2) is recalled, it will be
realized that the effect of imaging through the atmo-
sphere and the use of lenses in the optical system is

to diffuse the radiance emanating from a point source
so that the image of a sharp point source appears as a
circular blob. Rosenfeld and Kak (1982) show that the
Laplacian operator approximates in mathematical terms
to the equation known as Fick’s Law, which describes
the two-dimensional diffusion process. Thus, subtract-
ing the Laplacian from the original image is equivalent
to removing the diffused element of the signal from a
given pixel. Another possible explanation is that the value
recorded at any point contains a contribution from the
neighbouring pixels. This is a reasonable hypothesis for
the contribution could consist of the effects of diffuse
radiance, that is radiance from other pixels that has been
scattered into the field of view of the sensor. The Lapla-
cian operator effectively subtracts this contribution.

The weight matrix to be passed across the image to
compute the Laplacian is shown in Table 7.2a, while the
‘image-minus-Laplacian’ operation can be performed
directly using the weight matrix shown in Table 7.2b.
Other forms of the weight matrix are conceivable; for
example diagonal differences rather than vertical and
horizontal differences could be used, or the diagonal
differences plus the vertical/horizontal differences. A
wider neighbourhood could be used, with fractions of
the difference being applied. There seems to be little or
no reason why such methods should be preferred to the
basic model unless the user has some motive based upon
the physics of the imaging process.

(a) (b)

Figure 7.12 Landsat TM image of the Little Colorado River, Painted Desert, Arizona (bands 7, 5 and 3 in RGB). The un-enhanced
image is shown in (a). The image shown in (b) has been subjected to the ‘image minus Laplacian’ operation followed by a
5–95% linear contrast stretch. Landsat data courtesy NASA/USGS.
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Table 7.2 (a) Weight matrix for the Laplacian operator. (b) These weights subtract the
output from the Laplacian operator from the value of the central pixel in the window.

(a)

0 1 0

1 −4 1

0 1 0

(b)

0 −1 0

−1 5 −1

0 −1 0

The basic model of a high-pass image-domain filter
involves the subtraction of the pixel values within a win-
dow from a multiple of the central pixel. The size of the
window is not limited to 2 × 2 or 3 × 3 which are used
in the derivative-based filters described above. Generally,
if the number of pixels in a window is k then the weight
given to the central pixel is (k − 1) while all other pixels
have a weight of −1. The product of the window weights
and the underlying image pixel values is subsequently
divided by k . The size of the window is proportional to
the wavelengths allowed through the filter. A low-pass fil-
ter will remove more of the high-frequency components
as the window size increases (i.e. the degree of smooth-
ing is proportional to the window size). A high-pass filter
will allow through a broader range of wavebands as the
window size increases. Unless precautions are taken, the
use of very large window sizes will cause problems at
the edge of the image; for instance, if the window size
is 101 × 101 then the furthest left that the central pixel
can be located is at row 51, giving a margin of 50 rows
that cannot be filtered. For 3 × 3 filters this margin would
be one pixel wide, and it could be filled with zeros. A
zero margin 50 pixels wide at the top, bottom, left and
right of an image might well be unacceptable. One way
around this problem is to ignore those window weights
that overlap the image boundary, and compute the fil-
tered value using the weights that fall inside the image
area. The value of the central weight will need to be
modified according to the number of weights that lie
inside the image area. This implies that the bandwidth
of the filter will vary from the edge of the image until
the point at which all the window weights lie inside the
image area.

High-pass filters are used routinely in image process-
ing, especially when high-frequency information is the
focus of interest. For instance, Ichoku et al. (1996) use
the ‘image minus Laplacian’ filter as part of a methodol-
ogy to extract drainage-pattern information from satellite
imagery. Krishnamurthy, Manalavan and Saivasan (1992)
and Nalbant and Alptekin (1995) demonstrate the value
of high-frequency enhancement and directional filtering
in geological studies. Al-Hinai, Khan and Canaas (1991)

use a high-pass filter to enhance images of sand dunes in
the Saudi Arabian desert.

7.4 Spatial Domain Edge Detectors

A high-pass filtered image that is added back to the
original image is a high-boost filter and the result is a
sharpened or de-blurred image. The high-pass filtered
image can be used alone, particularly in the study of
the location and geographical distribution of ‘edges’. An
edge is a discontinuity or sharp change in the greyscale
value at a particular pixel point and it may have some
interpretation in terms of cultural features, such as roads
or field boundaries, or in terms of geological structure
or relief. We have already noted that the first difference
can be computed for the horizontal, vertical and diag-
onal directions, and the magnitude and direction of the
maximum spatial gradient can also be used. Other meth-
ods include the subtraction of a low-pass filtered image
from the original (Section 7.3.1) or the use of the Roberts
Gradient. A method not so far described is the Sobel non-
linear edge operator (Gonzales and Woods, 2007), which
is applied to a 3 × 3 window area. The value of this
operator for the 3 × 3 window defined by:

A B C
D E F
G H I

is given for the pixel underlying the central window
weight (E ) by the function:

S =
√

X2 + Y 2

where

X = (C + 2F + I ) − (A + 2D + G)

Y = (A + 2B + C) − (G + 2H + I )

This operation can also be considered in terms of two
sets of filter weight matrices. X is given by the following
weight matrix, which determines horizontal differences
in the neighbourhood of the centre pixel:
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−1 0 1
−2 0 2
−1 0 1

while Y is given by a weight matrix which involves ver-
tical differences:

−1 −2 −1
0 0 0
1 2 1

An example of the output from the Sobel filter for a
Landsat MSS false colour image of part of the Tanzanian
coast is shown in Figure 7.13.

Shaw, Sowers and Sanchez (1982) and Pal and Pal
(1993) provide assessment of these techniques of edge-
detection, including its role in image segmentation. They
conclude that first-differencing methods reveal local
rather than regional boundaries, and that increasing the
size of a high-pass filter window increases the amount
of regional-scale information. The Roberts and Sobel
techniques produced a too-intense enhancement of local
edges but did not remove the regional patterns. Cheng
et al. (2001) consider segmentation of colour images.

One of the many uses of edge-detection tech-
niques is in the enhancement of images for the visual

identification and analysis of geological lineaments,
which are defined as

mappable, simple or composite linear features whose parts
are aligned in a rectilinear or slightly curvilinear relation-
ship and which differ distinctly from the pattern of adjacent
features and which presumably reflect a subsurface phe-
nomenon (O’Leary, Friedmann and Pohn, 1976, p. 1467).

The subsurface phenomena to which the definition
refers are presumed to be fault and joint patterns in
the underlying rock. However, linear features produced
from remotely-sensed images using the techniques
described in this section should be interpreted with care.
For example, the position of what may appear to be
lineaments from SAR imagery depends on the SAR’s
look direction and on the instrument’s depression angle.
An example of the use of an edge-detection procedure
to highlight linear features for geological interpretation
is to be found in Moore and Waltz (1983). Sander
(2007) reviews the use of remotely-sensed lineaments in
groundwater exploration. Tripathi, Gokhale and Siddiqui
(2000) use directional morphological transforms to
identify lineaments.

Other applications of edge-detection techniques
include the determination of the boundaries of homo-
geneous regions (segmentation) in an image (Quegan
and Wright, 1984; Jacquez, Maruca and Fortin, 2002).

(a) (b)

Figure 7.13 (a) Landsat MSS near-infrared image of the Tanzanian coast south of Dar es Salaam. (b) After the application of
the Sobel filter. Both images have been enhanced by a linear contrast stretch. Note how the strength or magnitude of the output
from the Sobel filter is related to the degree of contrast between the pixels on either side of the edge in question. Landsat data
courtesy NASA/USGS.
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A comprehensive review by Brady (1982) considers
the topic of image segmentation within the context of
image understanding. Pavlidis (1982) is still a useful
source. Algorithms for edge detection and region
segmentation are discussed by Farag (1992) and Pitas
(1993). Reviews of edge detection and linear feature
extraction methodologies are provided by Budkewitsch,
Newton and Hynes (1994) and Wang (1993). Riazanoff,
Cervelle and Chorowicz (1990) describe ways of
thinning (skeletonizing) lines which have been identified
using edge-detection techniques. Such lines are generally
defined by firstly applying a high-pass filter, then
thresholding the resulting image using edge magnitude
or strength to give a binary image. One focus of interest
in edge detection is the topic of road detection. Gruen
and Li (1995) use a wavelet transform and dynamic
programming techniques. Shi and Zhu (2002) consider
the problem in terms of high-resolution imagery, while
Mena (2003) and Péteri and Ranchin (2007) review the
state of the art. The definitive reference is still Marr and
Hildreth (1980).

7.5 Frequency Domain Filters

The Fourier transform of a two-dimensional digital
image is discussed in Section 6.6. The Fourier transform
of an image, as expressed by the amplitude spectrum,
is a breakdown of the image into its frequency or
scale components. Since the process of digital filtering
can be viewed as a technique for separating these

components, it might seem logical to consider the use
of frequency-domain filters in remote sensing image
processing. Such filters operate on the amplitude spec-
trum of an image and remove, attenuate or amplify the
amplitudes in specified wavebands. A simple filter might
set the amplitudes of all frequencies less than a selected
threshold to zero. If the amplitude spectrum information
is converted back to the spatial domain by an inverse
Fourier transform, the result is a low-pass filtered image.
Any wavelength or waveband can be operated upon
in the frequency domain, but three general categories
of filter are considered here – low-pass, high-pass and
band-pass. The terms low-pass and high-pass are defined
in Section 7.1. A band-pass filter removes both the
high and low frequency components, but allows an
intermediate range of frequencies to pass through the
filter, as shown in Figure 7.14. Directional filters can
also be developed, because the amplitude spectrum of
an image contains information about the frequencies
and orientations as well as the amplitudes of the scale
components that are present in an image.

The different types of high-, low- and band-pass fil-
ters are distinguished on the basis of what are known as
their ‘transfer functions’. The transfer function is a graph
of frequency against filter weight, though the term filter
weight should, in this context, be interpreted as ‘propor-
tion of input amplitude that is passed by the filter’.

Figure 7.15a shows a cross-section of a transfer func-
tion that passes all frequencies up to the value f1 without
alteration. Frequencies higher in value than f1 are sub-
jected to increasing attenuation until the point f2. All

High frequencies

Mid frequencies

Low frequencies

0

0
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K
2

Figure 7.14 Location of low, mid and high frequency components of the two-dimensional amplitude spectrum.
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Figure 7.15 (a) Filter transfer function (one-dimensional
slice) that passes unchanged all spatial frequencies lower
than f1, attenuates all frequencies in the range f1 − f2 and
suppresses all frequencies higher than f2. The degree of atten-
uation increases linearly in the range f1 − f2. This filter would
leave low frequencies unchanged, and would suppress high
frequencies. (b) Transfer function for a low-pass Butterworth
filter with cut-off frequency D0 equal to 50. The shape of the
transfer function is smooth, which is an advantage as sharp
edges cause ‘ringing’.

Unfiltered
Image

Filtered
Image

Forward DFT Inverse DFT
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dimensional
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spectrum

Filtered
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spectrum

Apply filter

Figure 7.16 Steps in the frequency domain filtering of a
digital image.

(a)

(b)

Figure 7.17 (a) Representation of a frequency-domain low-
pass ideal filter. The transfer function of the ideal filter has
a sharp edge, in this case at a frequency of 50 Hz. (b) The
logarithm of the two-dimensional Fourier amplitude spectrum
of (a). Note the concentric circles centred on the origin of the
amplitude spectrum. When the inverse transform is applied,
these circles are, in effect, superimposed on the forward
transform of the image. The result is a pattern of ripples on the
transformed image. This phenomenon is called ‘ringing’.

frequencies with values higher than f2 are removed com-
pletely. Figure 7.15b shows the transfer function of a
more complex filter, a Butterworth low-pass filter, which
is described in more detail below.

Care should be taken in the design of filter transfer
functions. As noted earlier, the spatial domain filtered
image is derived from the two-dimensional amplitude
spectrum image by multiplying the two-dimensional
amplitude spectrum by the two-dimensional filter trans-
fer function and then performing an inverse Fourier
transform on the result of this calculation (Figure 7.16).
Any sharp edges in the filtered amplitude spectrum
will convert to a series of concentric circles in the
spatial domain, producing a pattern of light and dark
rings on the filtered image. This phenomenon is termed
ringing , for reasons that are evident from an inspection
of Figure 7.17a,b. Gonzales and Woods (2007) discuss
this aspect of filter design in detail.
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Figure 7.18 Cross sections of transfer functions for three ideal filters: (a) low-pass, (b) band-pass and (c) high-pass.
The amplitude coefficients lying within the shaded area of each filter are unchanged as the transfer function value is 1.0.
Those amplitude coefficients lying outside the coloured area are set to zero.

A cross-section through the transfer function of a low-
pass ideal filter is shown in Figure 7.18a. The degree of
smoothing achieved by the low-pass ideal filter depends
on the position of the cut-off frequency, f0. The lower the
value of f0, the greater the degree of smoothing, as more
intermediate and high frequency amplitude coefficients
are removed by the filter. The transfer functions for band-
pass and high-pass ideal filters are also shown in Figure
7.18. Their implementation in software is not difficult,
as the cut-off frequencies form circles of radii f0 and
f1 around the centre point of the transform (also known
as the DC point in the literature of image processing).

Figure 7.19a–c illustrate the results of the application
of increasingly severe low-pass ideal filters to the TM
band 7 image shown in Figure 2.11 using D0 values of
100, 50 and 5. The degree of smoothing increases as
the cut-off frequency decreases. Figure 7.19c shows very
little real detail but is, nevertheless, one of the frequency
components of the TM image.

Because of their sharp cut-off features, ideal filters tend
to produce a filtered image that can be badly affected
by the ringing phenomenon, as discussed earlier. Other
filter transfer functions have been designed to reduce the
impact of ringing by replacing the sharp edge of the ideal

(a) (b)

Figure 7.19 Illustrating the results of the application of increasingly severe low-pass Ideal filters to the Littleport TM band 7
image shown in Figure 1.11b. The filter radii D0 used in the Ideal filter are (a) 50, (b) 100 and (c) 5. Landsat data courtesy
NASA/USGS. Figure 7.19 (c) is located on the next page.
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(c)

Figure 7.19 (continued)

filter with a sloping edge or with a function that decays
exponentially from the cut-off frequency. An example of
this latter type is the Butterworth filter (Figure 7.15b),
which is defined by:

H(U, V ) = 1.0
1.0 + 0.414

[D(u, v)/D0]2

H (u , v ) is the value of the filter transfer function for
frequencies u and v (remember that the origin of the coor-
dinates u , v is the centre point of the frequency domain
representation), D(u , v ) is the distance from the origin
to the point on the amplitude spectrum with coordinates
(u , v ) and D0 is the cut-off frequency, as shown in
Figure 7.15b, which is a plot of the value of the trans-
fer function H (u , v ) against frequency. This form of the
Butterworth filter ensures that H(u, v) = 0.5 when D(u ,
v ) equals D0. Gonzales and Woods (2007) describe other
forms of filter transfer function.

Directional filters can be implemented by making use
of the fact that the amplitude spectrum contains scale and
orientation information (Section 6.6). A filter such as the
one illustrated in Figure 7.20 removes all those spatial
frequencies corresponding to sinusoidal waves oriented
in a east–west direction. Such filters have been used in
the filtering of binary images of geological fault lines
(McCullagh and Davis, 1972).

High-frequency enhancement is accomplished by
firstly defining the region of the amplitude spectrum

Transfer function = 0.0 
in shaded regions

Transfer function = 1.0 
in un-shaded regions

Figure 7.20 Frequency domain directional filter designed to
eliminate all horizontal frequency components. Note that the
origin of the (u, v) frequency domain coordinates is the centre
of the circle, which has a radius equal to n/2, where n is the
dimension of the image (assumed to be square; if the image
is rectangular then the circle becomes an ellipse). Thus, for a
512 × 512 image the maximum frequency is 256 Hz.
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Figure 7.21 High-frequency boost filter. Spatial frequencies
less than f Hz are left unchanged, as the corresponding transfer
function value (y-axis) is 1.0. Frequencies higher than f Hz
are doubled in magnitude. When the inverse transform is
completed (Figure 7.15), the spatial domain representation of
the filtered image will show enhanced.

containing ‘high’ frequencies and then adding a con-
stant, usually 1.0, to the corresponding amplitudes before
carrying out an inverse Fourier transform to convert
from the frequency to the spatial domain representation.
The transfer function for this operation is shown in
Figure 7.21. It is clear that it is simply a variant of the
ideal filter approach with the transfer function taking on
values of 1 and 2 rather than 0 and 1.
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Example 7.2: Frequency Domain Filtering

The example of the fourier transform in Chapter 6 demonstrated the use of the forward fourier transform to generate
an amplitude spectrum. The log of the amplitude spectrum of a Landsat TM image of part of the Red Sea Hills
in eastern Sudan is displayed in that example. In this example, a filter is applied to the log of the same amplitude
spectrum. Two types of filtering are demonstrated – high-pass and low-pass. Example 7.2 Figure 1 shows the log of
the filtered amplitude spectrum of the Sudan image. The black hole in the centre is result of applying a high-pass
Butterworth filter with a cut-off frequency of 50 (pixels from centre). The magnitudes of the amplitudes within that
circle have been modified using the transfer function described in Section 7.5. Example 7.2 Figure 2 shows the
spatial domain image that results from the application of inverse discrete Fourier transform to the filtered amplitude
spectrum (Example 7.2 Figure 1). It is clear that much of the tonal information in the original image is low
frequency in nature, because the removal of the central disc of the amplitude spectrum (Example 7.2 Figure 1) has
eliminated most of the tonal variation, leaving an image that comprises the medium and high frequency components.
The high frequency components correspond to sharp edges that may be related to the positions of linear features
such as fault lines.

Example 7.2 Figure 1. Logarithm of the filtered amplitude spectrum of the image shown in Example 6.1 Figure 1. The
full amplitude spectrum is shown in Example 6.2 Figure 2. The dark circle in the centre of the filtered amplitude spectrum
shows that, in comparison with Example 6.1 Figure 2, the frequency components close to the coordinate centre have been
suppressed or attenuated. This figure therefore illustrates a high-pass filter.

Example 7.2 Figure 3 shows the amplitude spectrum after the application of a Butterworth low-pass filter that
suppresses frequencies beyond a cut-off point of 100 (pixels from the centre of the transform). Example 7.2 Figure 4
was reconstructed by applying an inverse Fourier transform to the filtered amplitude spectrum (Example 7.2 Figure
3). Most of the tonal variation is retained, as this varies only slowly across the image from light to dark. However,
some of the detail has been removed.

These operations were performed by using the Fourier entry on the MIPS Filter menu, and selecting (in
sequence): Forward Transform, Filter Butterworth High (or Low) Pass and Inverse Transform. See
Section 6.6 for further details of the Fourier transform and Section 7.5 for a discussion of frequency domain
filtering.

(Continues on next page)
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Example 7.2 Figure 2. The result of applying the Inverse Discrete Fourier Transform to the filtered amplitude spectrum
shown in Example 7.2 Figure 1. The original image is shown in Example 6.1 Figure 1. It is clear that the high-pass filter
has removed the background information, leaving behind the high-frequency information (sharp changes in greylevel and
edges).

Example 7.2 Figure 3. The logarithm of the amplitude spectrum of the image shown in Example 6.2 Figure 1, after the
application of a low-pass filter (in this example, a Butterworth low-pass filter with a cut-off frequency of 100 was used).
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Example 7.2 Figure 4. Image recovered from the amplitude spectrum shown in Example 7.2 Figure 3. This image is
effectively the complement of the high-pass filtered image shown in Example 7.2 Figure 2. The detail has been lost (compare
Example 6.1 Figure 1) but the overall background pattern of light and dark (together with some major transitions in grey level,
which may represent geological faults or fractures).

Filtering in the frequency domain can be seen to consist
of a number of steps, as follows (see also Example 7.2):

1. Perform a forward Fourier transform of the image
and compute the amplitude spectrum (Section 6.6).

2. Select an appropriate filter transfer function and mul-
tiply the elements of the amplitude spectrum by the
appropriate transfer function.

3. Apply an inverse Fourier transform to convert back
to spatial domain representation.

Although frequency domain methods are far more
flexible that the spatial domain filtering techniques the
cost of computing the forward and inverse Fourier
transforms has limited its use in the past. As noted
in Section 6.6, the two-dimensional Fourier transform
requires the transposition of two large matrices holding
the intermediate sine and cosine coefficients. This
used to be a time-consuming operation when computer
memory was limited, but this is no longer the case.

Examples of the use of frequency-domain filtering
include de Souza Filho et al. (1996), who describe a
method to remove noise in JERS-1 imagery. Lei et al.
(1996) also use frequency-domain filtering methods
to clean up MOMS-02 images. Aeromagnetic data is
analysed using frequency-domain techniques by Hussein,
Rabie and Abdel Nabie (1996). Gonzales and Woods
(2007) and Pitas (1993) provide more detailed accounts
of frequency domain filtering than the one presented
here, though the level of mathematics required to
understand their presentations is rather higher than that
found here.

7.6 Summary

Filtering of digital images is used to remove, reduce or
amplify specific frequency components of an image. The
most commonly used filters operate in the spatial domain
and can be divided into low-pass or smoothing filters and
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high-pass or sharpening filters. Uses of smoothing filters
include the suppression of noise and other unwanted
effects, such as the banding phenomenon, which affects
some Landsat ETM+ images. Sharpening filters are used
to improve the visual interpretability of the image by, for
example de-blurring the signal. Edge and line detection
is seen as an extension of the technique of image sharp-
ening. Filtering in the frequency domain is achieved

via the application of the principles of the Fourier
transform, discussed in Section 6.6. While these methods
are inherently more flexible than are spatial domain
filters the computational cost of applying them is con-
siderable, and they are often understood less intuitively.
Recent developments in computer hardware, especially
random access memory and processor speed, mean that
frequency-domain methods may become more popular.



8 Classification

What is or is not a cow is for the public to decide.

L. Wittgenstein

8.1 Introduction

This chapter is written with two audiences in mind.
The first of these consists of undergraduates following
second and third year courses in remote sensing and
geographical information system (GIS) who want a gen-
tle, non-mathematical introduction to the ideas behind
pattern recognition and classification. They will find that
the first few sections can accommodate their needs. The
remainder of the chapter is intended for a more advanced
audience, including those following Masters courses or
researching a topic for a dissertation or a presentation.
The fact that the chapter presents a progressive view of
the subject should encourage the more advanced reader
to ‘brush up’ on his or her knowledge of the basic
geometrical ideas underlying the topic, while at the same
time encouraging the less advanced reader to absorb
some of the more intricate material that is normally
presented at Masters level. Readers requiring a more
sophisticated approach should consult contributions
to Chen (2007), Landgrebe (2003), Theodoridis and
Koutroumbas (2006), Lu and Weng (2007) and Tso and
Mather (2009) as well as the Special Issue on Pattern
Recognition (IEEE Transactions on Geoscience and
Remote Sensing, 2007). Wilkinson (2005) provides a
useful survey of satellite image classification experiments
over the period 1990–2005. Rogan and Chen (2004)
present a good general survey of classification methods.

The process of classification consists of two stages.
The first is the recognition of categories of real-world
objects. In the context of remote sensing of the land
surface these categories could include, for example wood-
lands, water bodies, grassland and other land cover types,
depending on the geographical scale and nature of the
study. The second stage in the classification process is the
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labelling of the entities (normally pixels) to be classified.
In digital image classification these labels are numerical,
so that a pixel that is recognized as belonging to the class
‘water’ may be given the label ‘1’, ‘woodland’ may be
labelled ‘2’, and so on. The process of image classifica-
tion requires the user to perform the following steps:

1. Determine a priori the number and nature of the
categories in terms of which the land cover is to be
described.

2. Assign labels to the pixels on the basis of their prop-
erties using a decision-making procedure, usually
termed a classification rule or a decision rule.

Sometimes these steps are called classification and
identification (or labelling), respectively. The classifica-
tion stage is normally based on a predetermined num-
ber of classes that, one hopes, can be observed on the
ground at the chosen spatial scale. These are the tar-
get or information classes. Clustering, which is described
next, produces classes that are more or less spectrally
distinct, and these are called spectral classes. They may
correspond to information classes, providing the spatial
scales match each other. Wemmert et al. (2009) describe
clustering using data sources (SPOT HRV and QuickBird
multispectral) of differing spatial resolutions.

In contrast to the classification procedure, the process
of clustering does not require the definition of a set of
categories in terms of which the land surface is to be
described. Clustering is a kind of exploratory data anal-
ysis or data mining procedure, the aim of which is to
determine the number (but not initially the identity) of
land cover categories that can be separated in the area
covered by the image, and to allocate pixels to these
categories. Identification of the clusters or categories in
terms of the nature of the land cover types is a sep-
arate stage that follows the clustering procedure. Sev-
eral clusters may correspond to a single land-cover type.
Methods of relating the results of clustering to real-world
categories are described by Lark (1995). Tran, Wehrens
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and Buydens (2005) present a tutorial on clustering mul-
tispectral images within a chemometric context.

These two approaches to pixel labelling are known
in the remote sensing literature as supervised and
unsupervised classification procedures, respectively.
They can be used to segment an image into regions with
similar attributes. Although land cover classification is
used above as an example, similar procedures can be
applied to clouds, water bodies and other objects present
in the image. In all cases, however, the properties of the
pixel to be classified are used to label that pixel. In the
simplest case, a pixel is characterized by a vector whose
elements are its grey levels in each spectral band. This
vector represents the spectral properties of that pixel.

A set of grey scale values for a single pixel measured
in a number of spectral bands is known as a pattern . The
spectral bands (such as the seven Landsat ETM+ bands)
or other, derived, properties of the pixel (such as context
and texture, which are described in later sections of this
chapter) that define the pattern are called features . The
classification process may also include features such as
land surface elevation or soil type that are not derived
from the image. A pattern is thus a set of measurements
on the chosen features for the individual (pixel or object)
that is to be classified. The classification process may
therefore be considered as a form of pattern recognition,
that is, the identification of the pattern associated with
each pixel position in an image in terms of the charac-
teristics of the objects or materials that are present at the
corresponding point on the Earth’s surface.

Pattern recognition methods have found widespread
use in fields other than Earth observation by remote sens-
ing; for example military applications include the iden-
tification of approaching aircraft and the detection of
targets for cruise missiles or speed cameras that read
your number plate. Robot or computer vision involves the
use of mathematical descriptions of objects ‘seen’ by a
television camera representing the robot eye and the com-
parison of these mathematical descriptions with patterns
describing objects in the real world. In every case, the
crucial steps are: (i) selection of a set of features which
best describe the pattern at the spatial scale of interest
and (ii) choice of a suitable method for the comparison
of the pattern describing the object to be classified and the
target patterns. In remote sensing applications it is usual
to include a third stage, that of assessing the degree of
accuracy of the allocation process.

A geometrical model of the classification or pattern
recognition process is often helpful in understanding
the procedures involved; this topic is dealt with in
Section 8.2. The more common methods of unsupervised
and supervised classification are covered in Sections 8.3
and 8.4. Supervised methods include those based on
statistical concepts and those based on artificial neural

networks (ANNs). The methods described in these
sections have generally been used on spectral data alone
(that is, on the individual vectors of pixel values). This
approach is called ‘per-point’ or ‘per-pixel’ classification
based on spectral data. The addition of features that
are derived from the image data has been shown to
improve the classification in many cases. Other more
recent developments in classification are summarized
in Section 8.6. These developments include the use of
decision trees (DTs), support vector machines (SVMs)
and Independent components analysis (ICA). The use of
multiple (hybrid) classifiers is also considered.

Texture is a measure of the homogeneity of the neigh-
bourhood of a pixel, and is widely used in the interpreta-
tion of aerial photographs. Objects on such photographs
are recognized visually not solely by their greyscale value
(tonne) alone but also by the variability of the tonal pat-
terns in the region or neighbourhood that surrounds them.
Texture is described in Section 8.7.1.

Visual analysis of a photographic image often involves
assessment of the context of an object as well as its tone
and texture. Context is the relationship of an object to
other, nearby, objects. Some objects are not expected to
occur in a certain context; for example jungles are not
observed in Polar regions in today’s climatic conditions.
Conversely glacier ice is unlikely to be widespread
in southern Algeria within the next few years. In the
same vein, a pixel labelled ‘wheat’ may be judged to
be incorrectly identified if it is surrounded by pixels
labelled ‘snow’. The decision regarding the acceptability
of the label might be made in terms of the pixel’s context
rather than on the basis of its spectral reflectance values
alone. Contextual methods are not yet in widespread
use, though they are the subject of on-going research.
They are described in Section 8.8.

The number of spectral bands used by satellite and air-
borne sensors ranges from the single band of the SPOT
HRV in panchromatic to several hundred bands provided
by imaging spectrometers (Section 9.3). The methods con-
sidered in this chapter are, however, most effective when
applied to multispectral image data in which the number of
spectral bands is less than 12 or so. The addition of other
‘bands’ or features such as texture descriptors or external
data such as land surface elevation or slope derived from
a digital elevation model (DEM) can increase the num-
ber of features available for classification. The effect of
increasing the number of features on which a classifica-
tion procedure is based is to increase the computing time
requirements but not necessarily the accuracy of the clas-
sification. Some form of feature selection process to allow
a trade-off between classification accuracy and the num-
ber of features is therefore desirable (Section 8.9). The
assessment of the accuracy of a thematic map produced
from remotely sensed data is considered in Section 8.10.
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8.2 Geometrical Basis of Classification

One of the easiest ways to perceive the distribution of
values measured on two features is to plot one feature
against the other. Figure 8.1 is a plot of catchment area
against stream discharge for a hypothetical set of river
basins. Visual inspection is sufficient to show that there
are two basic types of river basin. The first type has a
small catchment area and a low discharge whereas the
second type has a large area and a high discharge. This
example might appear trivial but it demonstrates two
fundamental ideas. The first is the representation of the
selected features of the objects of interest (in this case the
catchment area and discharge) by the axes of a Euclidean
space (termed ‘feature space’), and the second is the use
of measurements of distance (or, conversely, closeness) in
this Euclidean space to measure the resemblance of pairs
of points (representing river basins) as the basis of deci-
sions to classify particular river basins as large area/high
discharge or small basin/low discharge. The axes of the
graph in Figure 8.1 are the x, y axes of a Cartesian coor-
dinate system. They are orthogonal (at right-angles) and
define a two-dimensional Euclidean space. Variations in
basin area are shown by changes in position along the
x-axis and variations in river discharge are shown by
position along the y-axis of this space. Thus, the posi-
tion of a point in this two-dimensional space is directly
related to the magnitude of the values of the two features
(area and discharge) measured on the particular drainage
basin represented by that point.

The eye and brain combine to provide what is some-
times disparagingly called a ‘visual’ interpretation of a
pattern of points such as that depicted in Figure 8.1. If we
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Figure 8.1 Plot of catchment (watershed) area against river
discharge at mouth of catchment. Two distinct groups of river
catchments can be seen – small catchments with low river
discharge and large catchments with high river discharge. It
is difficult to say to which of these groups the catchments
represented by points P and Q belong.

analyse what the eye/brain combination does when faced
with a distribution such as that shown in Figure 8.1 we
realize that a ‘visual’ interpretation is not necessarily a
simple one, though it might be intuitive. The presence of
two clusters of points is recognized by the existence of
two regions of feature space that have a relatively dense
distribution of points, with more or less empty regions
between them. A point is seen as being in cluster 1 if it
is closer to the centre of cluster 1 than it is to the cen-
tre of cluster 2. Distance in feature space is being used
as a measure of similarity (more correctly ‘dissimilarity’
as the greater the interpoint distance the less the similar-
ity). Points such as those labelled P and Q in Figure 8.1
are not allocated to either cluster, as their distance from
the centres of the two clusters is too great. We can also
visually recognize the compactness of a cluster using the
degree of scatter of points (representing members of the
cluster) around the cluster centre. We can also estimate
the degree of separation of the two clusters by looking
at the distance between their centres and the scatter of
points around those centres. It seems as though a visual
estimate of distance (closeness and separation) in a two-
dimensional Euclidean space is used to make sense of the
distribution of points shown in the diagram. However, we
must be careful to note that the scale on which the numer-
ical values are expressed is very important. If the values
of the y-coordinates of the points in Figure 8.1 were to
be multiplied or divided by a scaling factor, then our
visual interpretation of the interpoint relationships would
be affected. If we wished to generalize, we could draw
a line in the space between the two clusters to represent
the boundary between the two kinds of river basin. This
line is called a decision boundary .

The same concepts – the association of a feature or
characteristic of an object with one axis of a Euclidean
space and the use of interpoint distance as the basis of
a decision rule – can easily be extended to three dimen-
sions. Figure 8.2 shows the same hypothetical set of river
basins, but this time they are represented in terms of ele-
vation above sea level as well as area and discharge.
Two groupings are evident as before, though it is now
clear that the small basins with low discharge are located
at higher altitudes than the large basins with high dis-
charge. Again, the distance of each point from the centres
of the two clouds can be used as the basis of an alloca-
tion or decision rule but, in this three-dimensional case,
the decision boundary is a plane rather than a line.

Many people seem to find difficulty in extending the
concept of inter-point distance to situations in which the
objects of interest have more than three characteristics.
There is no need to try to visualize what a four, five or
even seven-dimensional version of Figure 8.2 would look
like; just consider how straight-line distance is measured
in one, two and three dimensional Euclidean spaces in
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Figure 8.2 Plot of catchment (watershed) area, river dis-
charge and elevation above sea level for a sample of drainage
basins. Two groups of drainage basins are identifiable in this
three-dimensional feature space.

which x , y and z represent the axes:

d12 =
√

(x1 − x2)2

d12 =
√

(x1 − x2)2 + (y1 − y2)2

d12 =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

The squared differences on each axis are added and
the square root of the sum is the Euclidean distance from
point 1 to point 2. This is a simple application of the the-
orem of Pythagoras (Figure 8.3). If we replace the terms
xj , yj and zj (where j is an index denoting the individual
point) by a single term xij , where i is the axis number and
j the identification of the particular point, then the three
expressions above can be seen to be particular instances
of the general case, in which the distance from point a
to point b is:

dab =
√√√√ p∑

i=1

(xia − xib)2

where dab is the Euclidean distance between point a and
point b measured on p axes or features. There is no rea-
son why p should not be any positive integer value – the
algebraic formula will work equally well for p = 4 as
for p = 2 despite the fact that most people cannot visual-
ize the p > 3 case. The geometrical model that has been
introduced in this section is thus useful for the appre-
ciation of two of the fundamental ideas underlying the
procedure of automated classification, but the algebraic
equivalent is preferable in real applications because (i) it
can be extended to beyond three dimensions and (ii) the
algebraic formulae form the basis of computer programs.

It may help to make things clearer if an example relat-
ing to a remote sensing application is given at this point.

y
Q

Qy

Py

x 
Qx

P

Px

Figure 8.3 P and Q represent two objects to be compared,
such as two trees. We have measurements of height and
diameter of the two trees, and these features are represented
by axes x and y, respectively. Pythagoras’s Theorem is used to
calculate the distance PQ in a two-dimensional feature space
using the formula PQ = √(Px − Qx)2 + (Py − Qy)2.

The discussion of the spectral response of Earth-surface
materials in Section 1.3.2 shows that deep, clear water
bodies have a very low reflectance in the near infrared
waveband, and their reflectance in the visible red wave-
band is not much higher. Vigorous vegetation, on the
other hand, reflects strongly in the near-infrared wave-
band whereas its reflectance in the visible red band is rel-
atively low. The red and near infrared wavebands might
therefore be selected as the features on which the clas-
sification is to be based. Estimates can be made of the
pixel grey scale values in each spectral band for sam-
ple areas on the image that can be identified a priori
as ‘water’, ‘cloud top’ and ‘vigorous vegetation’ on the
basis of observations made in the field, or from maps
or aerial photographs, and these estimates used to fix
the mean position of the points representing these three
categories in Figure 8.4. The two axes of the figure rep-
resent near-infrared and red reflectance, respectively, and
the mean position of each type is found by finding the
average red reflectance (y coordinate) and near-infrared
reflectance (x coordinate) of the sample values for each
of the two categories. Fixing the number and position of
the large circles in Figure 8.4 represents the first stage in
the strategy outlined at the start of this section, namely,
the building of a classification.

Step two is the labelling of unknown objects (we could
use verbal labels, as we have done up to now, or we could
use numerical labels such as ‘1’, ‘2’ and ‘3’. Remember
that these numbers are merely labels. The points labelled
a – f in Figure 8.4 represent unclassified pixels. We might
choose a decision rule such as ‘points will be labelled as
members of the class whose centre is closest in feature
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Figure 8.4 The positions of points representing the average
reflectance of vigorous vegetation, water and cloud tops can
be estimated from knowledge of their spectral reflectance
characteristics (Chapter 1). Points a–f can be allocated to
one of these three categories using the criterion of ‘minimum
distance’, that is maximum similarity.

space to the point concerned’. The distance formula given
above could then be used on the points taken one at a
time to give the Euclidean straight-line distance from that
point (representing a pattern associated with a particular
pixel) to each of the centres. Those points that are closer
to the mean value for vigorous vegetation are labelled ‘1’
while those closer to the central water point are labelled
‘2’. Finally, points nearest the cloud top point are labelled
‘3’. If this procedure is applied to a two-band image,
as shown in Figure 8.4, the end product is a matrix of
the same dimensions as the image being classified. The
elements of this new matrix are numerical pixel labels,
which in this example are either 1s, 2s or 3s. If the colour
green is associated with the value ‘1’, the colour blue with
the value ‘2’ and the colour white with the label ‘3’ then
a colour-coded thematic map of the image area would
result, in which water would be blue, vigorous vegetation
would be green and cloud tops would appear as white,
assuming, of course, that the classification procedure was
a reliable one. The position of the decision boundaries is
given by the set of points that are equidistant from all
three class centres.

It will be shown later that the decision rule used in this
example (‘allocate an unknown pixel to the closest class
centroid’) is not the only one that can be applied. How-
ever, the process of image classification can be under-
stood more clearly if the geometrical basis of the example
is clearly understood.

8.3 Unsupervised Classification

It is sometimes the case that insufficient observational
or documentary evidence of the nature of the land-cover

types is available for the geographical area covered by a
remotely-sensed image. In these circumstances, it is not
possible to estimate the mean centres of the classes, as
described above. Even the number of such classes might
be unknown. In this situation we can only ‘fish’ in the
pond of data and hope to come up with a suitable catch.
In effect, the automatic classification procedure is left
largely, but not entirely, to its own devices – hence the
term ‘unsupervised clustering’. The relationship between
the labels allocated by the classifier to the pixels mak-
ing up the multispectral image and the land-cover types
existing in the area covered by the image is determined
after the unsupervised classification has been carried out.
Identification of the spectral classes picked out by the
unsupervised classifier in terms of information classes
existing on the ground is achieved using whatever infor-
mation is available to the analyst. The term ‘exploratory’
might be used in preference to ‘unsupervised’ because a
second situation in which this type of analysis might be
used can be envisaged. The analyst may well have con-
siderable ground data at his or her disposal but may not be
certain (i) whether the spectral classes he or she proposes
to use can, in fact, be discriminated given the data avail-
able and/or (ii) whether the proposed spectral classes are
‘pure’ or ‘mixed’. As we see in Section 8.4, some meth-
ods of supervised classification require that the frequency
distribution of points belonging to a single spectral class
in the p-dimensional feature space has a single mode or
peak. In either case, exploratory or unsupervised methods
could be used to provide answers to these questions.

8.3.1 The k -Means Algorithm

An exploratory classification algorithm should require lit-
tle, if any, user interaction. The workings of such a tech-
nique, called the k -means clustering algorithm, are now
described by means of an example. Figure 8.5 shows two
well-separated groups of points in a two-dimensional fea-
ture space. The members of each group are drawn from
separate bivariate-normal distributions. It is assumed that
we know that there are two groups of points but that we
do not know the positions of the centres of the groups
in the feature space. Points ‘10’ and ‘20’ represent a first
guess at these positions. The ‘shortest distance to centre’
decision rule, as described earlier, is used to label each
unknown point (represented by a dot in the figure) with a
‘1’ or a ‘2’ depending on the relative Euclidean distance
of the point from the initial cluster centres, labelled ‘10’
and ‘20’. Thus, the (squared) Euclidean distances to clus-
ter centres 1 and 2 (d2

q1 and d2
q2) are computed for each

point q , and q is allocated the label ‘1’ if d2
q1 is less than

d2
q2 or the label ‘2’ if d2

q2 is less than d2
q1. If the two

squared distances are equal, then the point is arbitrarily
allocated the label ‘1’.
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Figure 8.5 Illustrating the iterative calculation of centroid
positions for two well-separated groups of points in a two-
dimensional feature space defined by axes labelled Band x
and Band y. Points 10 and 20 migrate in three moves from
their initial random starting positions to the centres of the two
clouds of points that represent the two classers of pixels.

At the end of this labelling sequence the mean of the
values of all points labelled ‘1’ is computed for each
of the axes of the feature space, and the same is done
for all points labelled ‘2’ to give the coordinates in the
feature space of the centroids of the two groups of points.
These new centroids are shown in the diagram as ‘11’ and
‘21’. The points are re-labelled again using the shortest-
distance-to-mean decision rule, based this time on the
new positions of the centroids. Again, the position of the
centroid of the points labelled ‘1’ at this second iteration
is computed and is shown as ‘12’. The centroid of the set
of points labelled ‘2’ is found in a similar fashion and
is shown as ‘22’. Distances from all points to these new
centres are calculated and another pair of new centroids
are found (‘13’ and ‘23’). These centroids are now at the
centres of the two groups of points that were artificially
generated for this example, and re-labelling of the points
does not cause any change in the position of the centroids,
hence this position is taken as the final one.

To show that the technique still works even when the
two groups of points are not so well separated, as in
Figure 8.5, a second pair of groups of points can be
generated. This time the coordinates of the points in a
two-dimensional feature space are computed by adding
random amounts to a preselected pair of centre points to
give the distribution shown in Figure 8.6. The start posi-
tions of the migrating centroids are selected randomly
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Figure 8.6 Iterative calculation of centroid positions for two
diffuse clusters. See text for discussion.

and are shown on the figure as ‘10’ and ‘20’ respectively.
The same relabelling and recalculation process as that
used in the previous example is carried out and the cen-
troids again migrate towards the true centres of the point
sets, as shown in Figure 8.6. However, this time the deci-
sion boundary is not so clear-cut and there may be some
doubt about the class membership (label) of points that
are close to the decision boundary.

Since the relabelling procedure involves only the rank
orders of the distances between point and centroids, the
squared Euclidean distances can be used, for the squares
of a set of distance measures have the same rank order
as the original distances. Also, it follows from the fact
that the squared Euclidean distances are computed alge-
braically that the feature space can be multidimensional.
The procedures in the multidimensional case involve only
the additional summations of the squared differences on
the feature axes as shown in Section 8.2; no other change
is needed. Also note that the user can supply the starting
centroid values in the form of mean values for each clus-
ter for each feature. If this starting procedure is used then
the method can no longer be described as ‘unsupervised’.

8.3.2 ISODATA

In the examples used so far it has been assumed that the
number of clusters of points is known in advance. More
elaborate schemes are needed if this is not the case. The
basic assumption on which these schemes are based is
that the clusters present in the data are ‘compact’ (that is
the points associated with each cluster are tightly grouped
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Figure 8.7 Compact (A) and elongated cluster (B) in a two-
dimensional feature space. Cluster B has standard deviations
sx and sy on features 1 and 2, respectively. Since sx is larger
than a user-specified threshold value, cluster B is split along
the line XY.

around the cluster centre, and thus occupy a spheroidal
region of feature space). A measure of the compactness
of a cluster can be taken as the set of standard devia-
tions for the cluster measured separately for each feature
(Figure 8.7). If any of these feature standard deviations
for a particular cluster is larger than a user-specified value
then that cluster is considered to be elongated in the direc-
tion of the axis representing that feature.

A second assumption is that the clusters are well sepa-
rated in that their intercentre distances are greater than a
preselected threshold. If the feature-space coordinates of
a trial number of cluster centres are generated randomly
(call the number of centres k0) then the closest-distance-
to-centre decision rule can be used to label the pixels
which, as before, are represented by points in feature
space. Once the pixels have been labelled then (i) the
standard deviation for each feature axis is computed for
each of the non-null k0 clusters and (ii) the Euclidean
distances between the k0 cluster centres are found. Any
cluster that has one or more ‘large’ standard deviations
is split in half along a line perpendicular to the feature
axis concerned (Figure 8.7) while any clusters that are
closer together than a second user-supplied threshold (in
terms of their inter-centre distance) are amalgamated.
Application of this split-and-merge routine results in a
number k1 of new cluster centre positions, and the pixels
are re-labelled with respect to these k1 centroids. The
split and merge function is again applied, and a new
number k2 of centres is found. This process iterates until
no clusters are split or merged and no pixels change

cluster. This gives the number kp of clusters and the
positions of their centroids in the feature space. At each
cycle, any cluster centres that are associated with less
than a pre-specified number of pixels are eliminated. The
corresponding pixels are either ignored as unclassifiable
in subsequent iterations or else are put back into the
pool for re-labelling at the next iteration.

This split and merge procedure forms the basis of
the ISODATA algorithm (ISODATA is an acronym
derived from I terative S elf-Organizing Data Analysis
T echniques, with a terminal ‘A’ added for aesthetic rea-
sons). Note that some commercial software packages use
a basic k -means unsupervised clustering (Section 8.3.1)
but call it ‘ISODATA’. The ISODATA algorithm can be
surprisingly voracious in terms of computer time if the
data are not cleanly structured (i.e. do not possess clearly
separated and spheroidal clusters). Unless precautions are
taken it can easily enter an endless loop when clusters
that are split at iteration i are merged again at iteration
i + 1, then are split at iteration i + 2. Little general guid-
ance can be given on the choice of the number of initial
cluster centres k0 or the of the elongation and closeness
threshold values to be used. It is often sensible to exper-
iment with small subsets of the image to be classified to
get a ‘feel’ for the data. This algorithm has been in use for
many years. A full description is given by Tou and Gon-
zales (1974) while the standard reference is Duda, Hart
and Stork (2000). The account by Bow (2002) includes a
flow-chart of the procedure as well as a lengthy example.

The ISODATA procedure as described above is imple-
mented in MIPS. The coordinates of the initial centres in
feature space are generated by randomly selecting (x , y)
coordinate pairs and choosing to use the vector of pixel
values corresponding to the pixel in row y , column x as a
starting centre. This strategy helps to reduce the chances
of the generation of cluster centres that are located away
from any pixel points in feature space. Input includes the
‘desired’ number of clusters, which is usually fewer than
the initial number of clusters, and the maximum num-
ber of clusters, together with the splitting and merging
threshold distances. The stopping criteria are (i) when
the average inter-centre Euclidean distance falls below a
user-specified threshold or (ii) when the change in aver-
age intercentre Euclidean distance between iteration i and
iteration i − 1 is less than a user-specified amount. Alter-
natively, a standard set of defaults values can be selected,
though it should be said that these defaults are really no
more than guesses. The MIPS implementation of ISO-
DATA outputs the classified image to the screen at each
iteration, and the cluster statistics are listed on the lower
toolbar, which should be kept visible.

Example 8.1 provides some insights into the workings
of the ISODATA procedure as implemented in MIPS.
Memarsadeghi et al. (2007) present a fast algorithm for
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Example 8.1: ISODATA Unsupervised Classification

The aim of this example is to demonstrate the operation of the ISODATA unsupervised classifier. An outline of the
workings of this algorithm is provided in the main text. The commands shown here, such as Classify|Isodata
are specific to the MIPS software. Other packages will have similar commands. However, you should be aware
that some versions of ISODATA do not incorporate the split and merge algorithm described in the text. These
algorithms are actually implementing the k-means method.

We begin by selecting Classify|Isodata from the main menu, and then choosing the INF file missis.inf (pro-
vided on the web site download and, if MIPS was properly installed, copied to your hard disk in the mips/images

folder). Next, specify that you wish to base the classification on bands 1–5 and 7 of this Landsat TM subimage.
The subimage size is quite small (512 × 512 pixels) so select the whole of the subimage for analysis. Now we have
to decide whether or not to accept the default options for the user-specified parameters (Example 8.1 Table 1). As
we do not know yet whether these parameter values are suitable, and given that the subimage is not too big, select
Use Defaults, just to see what happens. Do not save the starting centres (this option is available for users who
wish to restart the procedure using the same starting cluster centres but with different parameter values, as noted
below). Instead, select Generate Randomly so that the initial cluster centres are selected from the image using
random x and y pixel coordinates. The next dialog box asks if you want to save the randomly generated cluster
centres. Click Don’t Save. Note that if you repeat the ISODATAclassification on the same image set using the
Generate Randomly option, then the final results may well differ, as the final solution depends to a considerable
extent on the starting configuration. This is one of the less welcome features of iterative optimization algorithms.

Example 8.1 Table 1 ISODATA parameters and their effects.

Parameter Parameter Default Action
number description value

1 Starting number of clusters. 20 Affects final number of clusters.

2 Desired number of clusters. 10 Should be half the value of parameter 1.

3 Maximum number of clusters. 50 Stops excessive splitting.

4 Minimum number of pixels in a cluster. 50 Kills off small clusters by declaring them to be
‘dead’.

5 Exclusion distance. 200 Any pixels further than the exclusion distance
from their nearest centre are declared to be
unclassified (label 0). This parameter can be
used to encourage more spherical clusters.

6 Closeness criterion. 30 Cluster centres closer than this can be merged.
Decrease this value if merging is too voracious.

7 Elongation criterion. 16 Clusters that extend further than this criterion
along one axis are split perpendicular to that
axis. Increase this value if splitting is excessive.

8 Maximum number of iterations. 35 This is normally sufficient.

9 Maximum number of clusters that can be
merged at one time.

2 Use this to increase or decrease the merging
tendency.

10 Relative decrease in intercluster–centre
distance.

1 Stops ISODATA if the decrease I the value of the
intercluster–centre distance becomes less than
this.

11 Absolute value of intercluster–centre
distance.

5 Stops ISODATA if the value of the intercluster–
centre distance becomes less than this.

The Mississippi image now appears on the screen in colour-coded form, with a colour table. Details of the
number of clusters and the overall pixel-to-centre distance measure are listed on the lower toolbar. You can
continue for a further iteration or quit at this point. If you continue, you will see the colours on the classified image
change as clusters are merged or split. Eventually, the change in the intercluster squared Euclidean distance will
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fall below the threshold, and the iterative process will terminate. Alternatively, the default number of iterations
(35) will be executed and the process will again terminate. The result should be similar to the image shown in
Example 8.1 Figure 1.

Example 8.1 Figure 1. Output from the ISODATA procedure applied to the Landsat TM image set referenced by the file
missis.inf. The subimage size is 512 × 512 pixels. See text for elaboration.

You are then offered the option of performing a hierarchical cluster analysis on the ISODATA results (Example 8.1
Figure 2). A dendrogram is a two-dimensional hierarchical representation of the distance (dissimilarity) relationships
among a set of objects, which in this case are the cluster centres. You can cut the dendrogram vertically at any
point along the x -axis. A vertical line at the cutting point at, for example a distance of nine units in Example 8.1
Figure 2 represents a four-cluster solution, with ISODATA cluster centres numbered 1, 7, 3, 11, 5, 8 and 12 forming
the first composite cluster. The second cluster groups together centres 9 and 14, and the third amalgamates cluster
centres 2, 15 and 10. The final grouping consists of ISODATA cluster centres 4, 13 and 6. These relationships are
useful in understanding the nature of the ISODATA results, for they show the structure present at different levels
of dissimilarity (x -axis). The groupings are also used in the reclassification process, which is described next.

Reclassification is simply the allocation of the same colour code to two or more ISODATA classes. When you
select this option you can type the number of the class you have chosen then use the mouse to left-click on a
colour in the palette. You can choose the same colour for several classes – for instance, you may decide to colour
classes 4, 13 and 6 in blue. These three ISODATA classes have been grouped in the dendrogram, as explained in
the preceding paragraph. If you are not satisfied with the result, you can repeat the reclassification exercise.

The final decision to be made in the ISODATA process is how to save the classified image. You can use
the Utilities|Copy to Clipboard|Copy Image option to place the image on the Windows clipboard, or the
File|Export Image Set to save the result as a TIFF or bitmap image, or you can use the final ISODATA option,
which is to save the image (together with an associated INF file) as a set of labels. These labels are simply the
ISODATA class identifiers of the pixels. The same class identifiers are used in the reclassification process. You may
wish to save the label image so that you can use a common colour scheme on the results of ISODATA classifications
of several images, or the output from ISODATA for a single image set but using different parameters. Note that
the bitmap and TIFF representations save the RGB colours associated with each pixel, not the class labels.

Since the ISODATA procedure is started by picking random pixels to act as the initial centres, it is impossible
to say what exactly will happen when you run the ISODATA module. The final result should look something
like Example 8.1 Figure 1 and the dendogram, showing the relationships between the ISODATA classes, looks
like Example 8.1 Figure 2. Remember that the ISODATA classes are identified solely on the basis of spectral

(Continues on next page)
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Example 8.1 Figure 2. Dendrogram showing the hierarchical dissimilarity relationships among the ISODATA cluster centres
shown as different colours in Example 8.1 Figure 1. The class labels associated with the cluster centres are shown on the
y-axis. The Euclidean distance (x-axis) is a measure of dissimilarity (in that a value of 0.0 indicates perfect similarity). See
text for discussion.

characteristics (modified, perhaps, by topographic effects) and, as yet, they have no ‘real-world’ interpretation.
Using a combination of subject-matter reasoning (i.e. inferring the nature of the spectral classes from geographical
location and spectral reflectance properties), and sources of information such as existing maps, it may be possible
to assign labels to some of the classes in the classified image. For example, the dark, wide linear feature running
from the top right to the bottom left of the image shown in Example 8.1 Figure 1 is probably the Mississippi River.

The dendrogram (Example 8.1 Figure 2), which shows the similarities between the spectral classes at different
levels of generalization, can also be used to aid interpretation. Starting at the right-hand side of the dendrogram,
we see that at a Euclidean distance of about 18.5 all of the pixels belong to a single class (the Earth’s surface). At
a dissimilarity level of 18.5, the ISODATA classes split into two groups, one containing six classes and the other
consisting of the remaining nine classes. By locating these six and nine classes in the image, we can again use
inferential reasoning to label the spectral classes. Moving left or right along the horizontal axis of the dendrogram
is equivalent to changing scale.

MIPS outputs a lot of information to the log file, so that you can work out how the clusters are split and
merged. The final results for this example are shown in Example 8.1 Table 2. Use the information in column two
(number of pixels allocated to this class) to ‘weed out’ any small, inconsequential, clusters. Next, look at the shape
of the spectrum of the mean or centroid of each of the remaining classes. Knowledge of the spectral reflectance
characteristics of the major land surface cover types is useful. Finally, the last column gives a measure of the
compactness of each cluster. A low value indicates a very homogeneous class, and a high value indicates the
reverse. Look at class number four, which is the largest of the classes, with 44 676 of the 262 144 pixels comprising
the image. It is very compact (the mean squared distance of 9.54 is calculated by measuring the mean Euclidean
distance from each of the 44 676 pixels in the class to the centre point of the class, which is described by the values
in columns 3–8. The centroid (mean) value on TM bands 1–5 and 7 shows very low values in the near-infrared
region, with moderate values in the visible bands (1–3). Figure 6.4 shows a typical spectral reflectance curve for
water, which corresponds quite well to the profile of class number 4. Class 13 is similar to class 5, according to
the dendrogram (Example 8.1 Figure 2), and its centroid profile is also typical of water. It may be concluded that
classes 4 and 13 represent two different but related water classes, though class 13 contains only about 6 000 pixels.

Other classes are less compact than class 4. Class nine in particular is very diffuse, though it contains more
than 23 000 pixels. It is not easy to interpret the centroid values in columns 3–8 in terms of a specific cover
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Example 8.1 Table 2 Summary of the output from the ISODATA unsupervised classification.

Cluster Number of TM TM TM TM TM TM Mean squared

number pixels band 1 band 2 band 3 band 4 band 5 band 7 distance

1 15 077 56.2 18.6 20.1 21.3 35.0 15.8 26.66

2 10 883 56.8 19.3 20.5 16.5 18.0 8.1 32.19

3 30 967 55.4 18.0 19.6 24.0 47.0 20.9 13.85

4 44 676 61.8 23.9 27.1 13.9 3.1 1.5 9.54

5 7 261 58.5 20.8 22.6 33.8 45.0 18.4 35.84

6 3 579 70.6 29.6 36.7 22.8 5.1 2.3 56.94

7 13 486 56.6 18.7 20.5 22.4 40.9 18.7 21.27

8 9 547 61.8 22.1 26.0 26.9 43.9 20.4 48.45

9 23 545 66.1 25.4 30.5 36.2 70.5 35.1 172.19

10 3 199 64.2 24.8 29.3 22.4 20.6 9.2 78.39

11 26 836 57.7 19.5 22.1 26.4 52.4 23.8 23.39

12 15 853 59.6 21.9 23.0 43.1 52.4 21.1 58.89

13 6 255 58.1 21.2 21.7 11.2 7.0 3.2 35.18

14 36 024 62.3 22.6 26.6 29.7 58.6 28.8 44.14

15 14 956 55.7 18.3 19.3 19.0 27.3 12.5 26.84

type, but use of the Reclassify procedure in MIPS may give some indication of the spatial pattern of class 9,
and the dendrogram may also provide some clues.

You can try running the program again, using default parameters. Each time, different pixels are selected to act
as starting centres so the result is never the same twice in succession. Sometimes the algorithm spirals out of control
and produces a single class. When you feel that you understand how the procedure works, you can experiment with
the parameter values. If you do this, then store a set of starting centre coordinates so that you can reuse them each
time. By doing this you can eliminate the effects of starting the clustering process from different points and you
will therefore isolate the effects of the changes you have made to the default parameters. The main parameters are
shown in Example 8.1 Table 1.

ISODATA, and at the same time summarize much of the
material in this section.

8.3.3 A Modified k -Means Algorithm

A second, somewhat less complicated, method of estimat-
ing the number of separable clusters in a dataset involves
a modification of the k -means approach that is outlined
in Section 8.3.1 to allow merging of clusters. An overes-
timate of the expected number of cluster centres (kmax) is
provided by the user, and pixels are labelled as described
in Section 8.3.1, using the closest-distance-to-centre deci-
sion rule. Once the pixels have been labelled the centroids
of the clusters are calculated and the relabelling proce-
dure is employed to find stable positions for the centroids.
Once such a position has been located, a measure of the
compactness of each cluster i is found by summing the
squared Euclidean distances from the pixels belonging to
cluster i to the centroid of cluster i . The square root of

this sum divided by the number of points in the cluster
gives the root mean squared deviation for that cluster.
It is now necessary to find the pair of clusters that can
be combined so as (i) to reduce the number of cluster
centres by one and (ii) at the same time cause the least
increase in the overall root mean square deviation. This
is done by computing the quantity P from:

P = ninj

ni + nj

p∑
k=1

(yik − yjk)
2 (i = 2, k; j = l, i − 1)

for every pair of cluster centres (yi and yj ) where p is the
number of dimensions in the feature space and ni is the
number of pixels assigned to cluster i . If clusters i = r

and j = s give the lowest value of P then the centroids of
clusters r and s are combined by a weighted average pro-
cedure, the weights being proportional to the numbers of
pixels in clusters r and s . If the number of clusters is still
greater than or equal to a user-supplied minimum value
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kmin, then the re-labelling procedure is then employed to
reallocate the pixels to the reduced number of centres and
the overall root mean square deviation is computed. The
procedure is repeated for every integral value of k (the
number of clusters) between kmax and kmin or until the
analyst terminates the procedure after visually inspecting
the classified image. As with the ISODATA algorithm,
empty clusters can be thrown away at every iteration.
Mather (1976) provides a Fortran program to implement
this procedure.

The result of an unsupervised classification is a set of
labelled pixels, the labels being the numerical identifiers
of the classes. The label values run from 1 to the num-
ber of classes (k ) picked out by the procedure. The class
numbered zero (or k + 1) can be used as the label for
uncategorized pixels. The image made up of the labels
of the pixels is displayed by assigning a colour or a grey
tone to each label. From a study of the geographical loca-
tion of the pixels in each class, an attempt is normally
made to relate the spectral classes (groups of similar
pixels) to corresponding information class (categories of
ground cover). Alternatively, a method of hierarchical
classification can be used as in Example 8.1 to pro-
duce a linkage tree or dendrogram from the centroids
of the unsupervised classes, and this linkage tree can be
used to determine which spectral classes might best be
combined. The relationship between spectral classes and
information classes is likely to be tenuous unless external
information can be used for, as noted earlier, unsuper-
vised techniques of classification are used when little or
no detailed information exists concerning the distribution
of ground cover types. An initial unsupervised classifi-
cation can, however, be used as a preliminary step in
refining knowledge of the spectral classes present in the
image so that a subsequent supervised classification can
be carried out more efficiently. The classes identified by
the unsupervised analysis could, for example form the
basis for the selection of training samples for use in a
supervised technique of classification (Section 8.4). Gen-
eral references covering the material presented above are
Bow (2002), Everitt (1993) and Kaufman and Rousseeuw
(2005). Example 8.1 gives some practical advice on clus-
ter labelling.

8.4 Supervised Classification

Supervised classification methods are based on external
knowledge of the area shown in the image. Unlike some
of the unsupervised methods discussed in Section 8.3
supervised methods require input from the user before
the chosen algorithm is applied. This input may be
derived from fieldwork, air photo analysis, reports or
from the study of appropriate maps of the area of

interest. Supervised methods are implemented using
either statistical or non-statistical algorithms. Statistical
algorithms use parameters derived from sample data
in the form of training classes, such as the minimum
and maximum values on the features, or the mean
values of the individual clusters, or the mean and
variance-covariance matrices for each of the classes.
Non-statistical methods such as ANNs do not rely on
statistical information derived from the sample data but
are trained on the sample data directly and do not rely
on assumptions about the frequency distributions of the
image bands. In contrast, statistical methods such as the
maximum likelihood (ML) procedure are based on the
assumption that the frequency distribution for each class
is multivariate normal in form. Thus, statistical methods
are said to be parametric (because they use estimates of
statistical parameters derived from training data) whereas
neural methods are non-parametric. The importance
of this statement lies in the fact that additional non-
remotely-sensed data such as slope angle or soil type can
more easily be incorporated into a classification using a
non-parametric method, because such data are unlikely
to follow a multivariate normal frequency distribution.
The ML method is described in Section 8.4, as are
neural classifiers. Section 8.5 covers mixing models
(including ICA) and fuzzy classifiers. Other approaches
to classification (Section 8.6) include SVMs, DTs, hybrid
classifiers and object-oriented methods. Texture, context
and the incorporation of other sources of spatial data
are summarized in Sections 8.7 and 8.8. The final two
sections focus on feature selection and accuracy assess-
ment. Since all methods of supervised classification
use training data samples it is logical to consider the
characterization of training data in the next section.

8.4.1 Training Samples

Supervised classification methods require prior knowledge
of the number and, in the case of statistical classifiers,
certain aspects of the statistical nature of the informa-
tion classes with which the pixels making up an image
are to be identified. The statistical characteristics of the
classes that are to be estimated from the training sample
pixels depend on which method of supervised classifica-
tion is used. The simple parallelepiped method requires
estimates of the extreme values on each feature for each
class, while the k -means or centroid method needs esti-
mates of the multivariate means of the classes. The most
elaborate statistical method discussed in this book, the
ML algorithm, requires estimates of the mean vector and
variance-covariance matrix of each class. Neural classi-
fiers operate directly on the training data, but are strongly
influenced by misidentification of training samples as well
as by the size of the training datasets. Misidentification of
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an individual training sample pixel may not have much
influence on a statistical classifier, but the impact on a
neural classifier could be considerable. The material con-
tained in this section must be interpreted in the light of
whichever of these methods is used. It should also be noted
that a second, separate set of data – the test dataset – is
required in order to assess the accuracy of the classifica-
tion (Section 8.10). The test data should be gathered using
the same rules and guidance as is set out below.

It is of crucial importance to ensure that the a priori
knowledge of the number and statistical characteristics
of the classes is reliable. The accuracy of a supervised
classification analysis will depend upon two factors:
(i) the representativeness of the estimates of both the
number and the statistical nature of the information
classes present in the image data and (ii) the degree
of departure from the assumptions upon which the
classification technique is based. These assumptions
vary from one technique to another. These assumptions
will be mentioned in the following subsections. In this
section we concentrate on the estimation of statistical
properties, in particular the mean and variance of each
spectral band and the covariances of all pairs of spectral
bands. These methods can be used to locate aberrant
pixels that can then be eliminated or down-weighted.

The validity of statistical estimates depends upon two
factors – the size and the representativeness of the sam-
ple. Sample size is not simply a matter of ‘the bigger the
better’ for cost is, or should be, an important consider-
ation. Sample size is related to the number of variables
(spectral bands in this case) whose statistical properties
are to be estimated, the number of those statistical prop-
erties, and the degree of variability present in the class. In
the case of a single variable and the estimation of a single
property (such as the mean or the variance) a sample size
of 30 is usually held to be sufficient. For the multivari-
ate case the size should be at least 30p pixels per class
where p is the number of features (e.g. spectral bands),
and preferably more, though there is evidence that some
classifiers – specifically the SVM classifier, described in
Section 8.6.1 – work well with small amounts of training
data, provided that the support vectors are represented in
the training data. However, Su (2009) considers that SVM
need a long computer time with large training samples,
and proposes a clustering method to reduce training sam-
ple size. See Section 8.10 for a more in-depth discussion
of the effects of sample size on classification accuracy.
Small training samples must be representative, however.
If you inspect in Example 8.1 Table 1 you will see that
some of these (spectral) classes are very variable and will
require a greater number of training samples in order to
be properly characterized. Other classes are much more
compact so that a smaller number of training samples
will be adequate to represent their characteristics.

Training samples are normally located by fieldwork or
from air photograph or map interpretation, and their posi-
tions on the image found either by visual inspection or
by carrying out a geometric correction on the image to
be classified. It is not necessary to carry out the proce-
dure of geometric transformation on the full image set
to be classified, unless the resulting classified image is
to be input to a GIS. All that is required is the set of
transform equations that will convert a map coordinate
pair to the corresponding image column and row coor-
dinates (Section 4.3). Using these equations, the location
on the image of a training sample whose map coordinates
are known is a relatively simple matter, provide that the
geometric transform is accurate. If geometric correction
is required, it is best carried out on a single-band classi-
fied image (in which the pixel ‘values’ are the labels of
the classes to which the pixels have been allocated) rather
than on the p images to be classified. Not only is this less
demanding of computer resources, but it ensures that the
radiometric (pixel) values are not distorted by any resam-
pling procedure (Khan, Hayes and Cracknell, 1995). If
external data are used in the classification (Section 8.7.2)
then geometric correction of image and non-image data
to a common reference system is a necessary prerequisite.

The minimum sample size specified in the preceding
paragraphs is valid only if the individual members of the
training sample are independent, as would be the case if
balls were drawn randomly from a bag by an impartial
referee. Generally, however, the characteristics of adja-
cent pixels are not independent – if you were told that
pixel a was identified as ‘forest’ you might be reason-
ably confident that its neighbour, pixel b, would also be
a member of the class ‘forest’. If a and b were statis-
tically independent there would be an equal chance that
b was a member of any other of the candidate classes,
irrespective of the class to which a was allocated. The
correlation between nearby points in an image is called
spatial autocorrelation .

It follows that the number n of pixels in a sample is an
over-estimate of the number of fully independent pieces
of information in the sample if the pixels making up the
training sample are autocorrelated, which may be the
case if blocks of pixels are selected rather than scattered,
individual pixels. The consequence of autocorrelation
is that the use of the standard statistical formulae to
estimate the means and variances of the features, and
the correlations among the features, will give biased
results. Correlations between spectral bands derived
from spatially autocorrelated training data will, in fact,
be underestimated and the accuracy of the classification
will be reduced as a result. Campbell (1981) found
that variance–covariance matrices (the unstandardized
analogue of the correlation matrix) were considerably
greater when computed from randomly selected pixels
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Table 8.1 Variance–covariance matrices for four Landsat
MSS bands obtained from random sample (upper figure) and
contiguous sample (in parentheses) drawn from same data.

MSS 1 MSS 2 MSS 3 MSS 4

MSS 1 1.09 – – –
(0.40)

MSS 2 1.21 3.50 – –
(0.21) (1.01)

MSS 3 −1.00 −1.65 23.15 –
(−0.78) (−0.19) (14.00)

MSS 4 −0.51 −1.85 12.73 11.58
(−0.43) (−1.10) (9.80) (8.92)

Source: Campbell (1981), Table 7.

within a class rather than from contiguous blocks of
pixels from the same class (Table 8.1). Figure 8.8
shows the ellipsoids defined by the mean vectors and
variance–covariance matrices for Landsat MSS bands 6
and 7 of Campbell’s (1981) contiguous and random data
(marked A and B respectively). The locations of the
centres of the centres of the two ellipses are not too far
apart but their orientation, size and shape differ some-
what. Campbell (1981) suggests taking random pixels
from within a training area rather than using contiguous
blocks, while Labovitz and Matsuoko (1984) prefer a
systematic sampling scheme with the spacing between
the samples being determined by the degree of positive
spatial autocorrelation in the data. Dobbertin and Biging
(1996) report that classification accuracy is reduced
when images show a high level of spatial autocorrelation.
Derived features such as texture might be expected to
display a higher degree of spatial autocorrelation than the
individual pixel values in the raw images, because such
measures are often calculated from overlapping windows.
Better results were obtained from randomly selected
training pixels than from contiguous blocks of training
pixels, a conclusion also reached by Gong, Pu and Chen
(1996) and Wilson (1992). The variances of the training
samples were also higher when individual random
training pixels were used rather than contiguous pixel
blocks. The method of automatically collecting training
samples, described by Bolstad and Lillesand (1992) may
well generate training data that are highly autocorrelated.
Stehman, Sohl and Loveland (2005) evaluate various
sampling strategies for estimating land cover over large
areas. Gallego (2004) is another useful source, while
Longley et al. (2005) includes a section on spatial sam-
pling. Finally, Plourde and Congalton (2003) consider
the impact of sample placement and sampling strategy.

The degree of autocorrelation will depend upon (i) the
natural association between adjacent pixels, (ii) the pixel
dimensions and (iii) the effects of any data preprocessing.
The degree of autocorrelation can be calculated by taking
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Figure 8.8 Ellipsoids derived from the variance-covariance
matrices for training sets based on contiguous (A) and random
(B) samples. Derived from Campbell (1981).

sequences of pixels that are spaced 1, 2, 3, . . . , units
apart and plotting the correlations between a set of pixels
and its first, second, third and subsequent nearest neigh-
bours in the form of a correlogram. A diagram of the
kind shown in Figure 8.9 might result, and the auto-
correlation distance (in terms of number of pixels) can
be read directly from it. As pixel size increases so the
autocorrelation distance will diminish. The problem of
spatially-autocorrelated samples is considered in more
detail in the papers cited above, and in Basu and Odell
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Figure 8.9 Illustrating the concept of autocorrelation. The
diagram shows the correlation between the pixels in an
image and their nth nearest neighbours in the x direction
(n = 1, . . . , 10). The correlation at distance (lag) one is com-
puted from two sets of data – the values at pixels numbered
1, 2, 3, . . ., n − 1 along each scan line and the values at the
pixels numbered 2, 3, 4, . . ., n along the same scan lines. The
higher the correlation the greater the resemblance between
pixels spaced one unit apart on the x-axis. The same procedure
is used to derive the 2nd, 3rd, . . ., mth lag autocorrelation.
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(1974), Craig (1979) and Labovitz, Toll and Kennard
(1982). The definitive reference on spatial autocorrela-
tion is still Cliff and Ord (1973). Geostatistical methods
are based upon the spatial autocorrelation property, and
are discussed briefly in Section 8.5.

Another source of error encountered in the extraction
of training samples for use with statistical classifiers such
as ML (Section 8.4.2) is the presence in the sample of
atypical values. For instance, one or more vectors of
pixel measurements in a given training sample may be
contaminated in some way; hence, the sample mean and
variance–covariance matrix for that class will be in error.
Campbell (1980) considers ways in which these atypical
values can be detected and proposes estimators of the
mean and variance–covariance matrix which are robust
(that is they are not unduly influenced by the atypical
values). These estimators give full weight to observations
that are assumed to come from the main body of the data
but reduce the weight given to observations identified as
aberrant. A measure called the Mahalanobis distance D
is used to identify deviant members of the sample. Its
square is defined by:

D2 = (xm − x)′S−1(xm − x)

where m is the index counting the elements of the sample,
xm is the mth sample value (pixel vector). The sample
mean vector is x and S is the sample variance–covariance
matrix. The transpose of vector x is written as x′. The
Mahalanobis distance, or some function of that distance,
can be plotted against the normal probabilities and out-
lying elements of the sample can be visually identified
(Healy, 1968; Sparks, 1985). Robust estimates (that is
estimates that are less affected by outliers) of x and
S are computed using weights which are functions of
the Mahalanobis distance. The effect is to downgrade
pixel values with high Mahalanobis distances (i.e. low
weights) that are associated with pixels that are relatively
far from (dissimilar to) the mean of the training class
taking into account the shape of the probability distribu-
tion of training-class members. For uncontaminated data
these robust estimates are close to those obtained from the
usual estimators. The procedure for obtaining the weights
is described and illustrated by Campbell (1980); it is
summarized here for completeness.

xk =

n∑
i=1

wixki

n∑
i=1

wi

(k = 1, 2, . . . , p)

sjk =
n∑

i=1

w2
i (xji − xj )(xki − xk) (j = 1, 2, . . . , p)

(k = j, j + 1, . . . , p)

where
n = number of pixels in the training sample,
p = number of features

wi = weight for pixel i
xki = value for pixel i on feature k
xj = mean of j th feature for this class
sjk = element j , k of the variance-covariance

matrix for this class.

The weights are found from:

wi = F(di)/di

given

F(di) =
{

di di ≤ d0

d0 exp[−0.5(di − d0)
2/b2

2] otherwise

and di Mahalanobis distance of pixel i for this class,
d0 = √

p + b1/
√

2, b1 = 2 and b2 = 1.25.
The weights wi are initially computed from the Maha-

lanobis distances which in turn are computed from xj

and Sj derived from the above formulae but using unit
weights. The Mahalanobis distances and the weights are
recalculated iteratively until successive weight vectors
converge within an acceptable limit, when any aberrant
pixel vectors should have been given very low weights,
and will therefore contribute only negligibly to the final
(robust) estimates of xj and Sj which are required in
the ML classification scheme, which is described later.
Kavzoglu (2009) also considers the make-up of training
datasets, using visualization techniques.

The reason for going to such apparently great lengths
to obtain robust estimates of the mean and variance–
covariance matrix for each of the training samples for
use in ML classification is that the probabilities of
class membership of the individual pixels depend on
these estimates. The performance of both statistical and
neural classifiers depends to a considerable extent on
the reliability and representativeness of the sample. It
is easy to use an image-processing system to extract
‘training samples’ from an image, but it is a lot more
difficult to ensure that these training samples are not
contaminated either by spatial autocorrelation effects or
by the inclusion in the training sample of pixels which
are not ‘pure’ but ‘mixed’ and therefore atypical of the
class which they are supposed to represent. Horne (2003)
describes an alternative method of finding more robust
estimates of the mean and variance-covariance matrix,
whereas Kavzoglu (2009) uses visualization methods to
remove outlying pixels from training datasets. This is
useful in cases where the training data are being used in
conjunction with a statistical classifier but may remove
key information as far as SVM are concerned.
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The use of unsupervised classification techniques
applied to the training classes has already been described
as a method of ensuring that the information classes
have been well chosen to represent a single spectral
class (that is one with a single mode or peak in their
frequency distributions). An alternative way to provide
a visual check of the distribution of the training sample
values is to employ an ordination method. Ordination
is the expression of a multivariate dataset in terms of
a few dimensions (preferably two) with the minimum
loss of information. The Nonlinear Mapping procedure
of Sammon (1969) projects the data in a p-dimensional
space onto an m-dimensional subspace (m being less
than p) whilst minimizing the error introduced into the
inter-point Euclidean distances. That is to say, the m-
dimensional representation of the distances between data
points is the best possible for that number of dimensions
in terms of the maintenance of interpoint Euclidean
relationships. If m = 2 or 3 the results can be presented
graphically and the presence of multiple modes or out-
lying members of the sample can be picked out by eye.
Figure 8.10 shows a training sample projected onto two
dimensions using the MIPS Nonlinear Mapping module.
The training data coordinates were collected using the

MIPS Classify|Collect Training Data option and
the pixel data were extracted (cut) from the log file and
pasted into a new data file, which was then edited using
Windows Notepad. The ‘point and click’ facility of the
Nonlinear Mapping module allows the identification of
extreme points, perhaps representing aberrant pixels.

The performance of a classifier is usually evaluated
using measures of classification accuracy (Section 8.10).
These accuracy measures use a test set of known data that
is collected using the same principles as those described
above for the training dataset. One could thus think of
training data being used to calibrate the classifier and test
data being used for validation, a point that is explored by
Muchoney and Strahler (2002).

One often-omitted consideration is that of scale, in
terms of the relationship between the number of classes
selected, the complexity of the land surface features to
be classified and the pixel size of the imagery to be used.
The scale of a study is determined by its objectives, so
that MODIS or AVHRR data are used for large-scale
vegetation inventories (Townshend, DeFries and Zhan,
2002) whereas IKONOS 4 m resolution data would
be completely inappropriate. Questions of scale are
considered by Dell’Acqua, Gamba and Trianni (2006)
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Figure 8.10 Nonlinear mapping of a training sample. The raw data are measured on six spectral bands. Nonlinear mapping
has been used to project the sample data onto two dimensions. The MIPS module Plot|NonlinearMapping allows the user
to ‘query’ the identity of any aberrant or outlying pixels.
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and Ju, Gopal and Kolaczyk (2005) and are revisited
in Section 8.5. Usually there is an inverse relationship
between the detail of the classification and the spatial
extent of the study area, so one can think of global
scales (Meteosat or AVHRR datasets), regional scales
(Landsat ETM+ or SPOT HRG data) and local (Quick-
Bird, IKONOS, WorldView and other high resolution
imagery). This produces a hierarchical view of a particu-
lar set of classes at high resolution melding into a smaller
set of more generalized classes at a lower resolution.

Not all supervised classifiers require large training
samples. In the preceding discussion it has been implic-
itly assumed that the training data were to be used in
conjunction with a statistical classifier that requires the
estimation of parameters such as the mean, variance
and covariance matrix. SVMs (Section 8.6.1) attempt to
separate classes by maximizing the minimum difference
between a training sample from class a and a training
sample from class b. There is no need for any other
training data, as Foody and Mathur (2004a) point out.
Foody and Mathur (2006) present results to show that
the SVM classifier can work well with small training
datasets collected from areas close to the boundaries of
two classes – precisely the ones that would be weeded
out using the methods described above for contaminated
sample treatment. Foody et al. (2006) consider training
class size when only one class is of interest, while
Foody, McCullagh and Yates (1995) discuss training set
size for ANNs. If such networks – which are the topic
of Section 8.4.3 – are overtrained to recognize only
the specific training samples to which they have been
exposed then classification accuracy will be reduced as
the network loses its ability to generalize (Kavzoglu and
Mather, 2003).

The question of training data requirements is seen to be
a complex one with no simple answer. Much depends on
the classification algorithm that is used. Statistical meth-
ods such as ML need a representative sample that gives an
unbiased estimate of the mean and variance–covariance
matrix, whereas a SVM will function adequately with a
much smaller sample size because it uses only those pix-
els that lie near class boundaries. For other classification
methods a larger, more representative sample is needed.
This is one of the key benefits of SVM (though, as we
shall see, there are also drawbacks). Kavzoglu (2009)
provides some ideas for the improvement of ANN per-
formance by using refined training data. The scale of the
study also bears on the question of sample size, as does
the nature of the landscape (heterogeneous or uniform).
Pal and Mather (2006, p. 2895) summarize the predilec-
tion for new classification algorithms by remarking that

. . . greater attention should be given to the collection of
training and test data that represent the range of land sur-
face variability at the spatial scale of the image.

Ultimately, it is the distribution of the training data in
feature space that determines the positions of the deci-
sion boundaries, and it is the spatial scale of the land
surface characteristics that are being classified relative to
the image scale that affects the accuracy of the classifier.

8.4.2 Statistical Classifiers

Three algorithms are described in this section. All require
that the number of categories (classes) be specified in
advance, and that certain statistical characteristics of each
class are known. The first method is called the paral-
lelepiped or box classifier. A parallelepiped is simply a
geometrical shape consisting of a body whose opposite
sides are straight and parallel. A parallelogram is a two-
dimensional parallelepiped. To define such a body all that
is required is an estimate for each class of the values of
the lowest and highest pixel values in each band or feature
used in the analysis. Pixels are labelled by determining
the identifier of the box into which they fall (Figure 8.11,
Section 8.4.2.1).

The second method, which is analogous to the k -means
unsupervised technique, uses information about the loca-
tion of each class in the p-dimensional Cartesian space
defined by the p bands (features) to be used as the basis
of the classification. The location of each class in the p-
space is given by the class mean or centroid (Figure 8.12,
Section 8.4.2.2).

This third method also uses the mean as a measure of
the location of the centre of each class in the p-space
and, in addition, makes use of a measure summariz-
ing the disposition or spread of values around the mean
along each of the p axes of the feature space. The third
method is that of ML (Section 8.4.2.3). All three methods
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Figure 8.11 Parallelepiped classifier in two dimensions.
Points a, b, c, d lie in the region bounded by parallelepiped
1 and are therefore assigned to class 1. Points e, f, g, h are
similarly labelled ‘2’. Points i and j are unclassified.
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Figure 8.12 Two-dimensional feature space partitioned
according to distance from the centroid of the nearest group.
There are six classes.

require estimates of certain statistical characteristics of
the classes to which the pixels are to be allocated. These
estimates are derived from samples of pixels, called train-
ing samples, which are extracted from the image to be
classified (Section 8.4.1).

8.4.2.1 Parallelepiped Classifier

The parallelepiped classifier requires the least information
from the user of the statistical supervised classification
methods described in this chapter. For each of the k
classes specified, the user provides an estimate of the
minimum and maximum pixel values on each of the p
bands or features. Alternatively, a range, expressed in
terms of a given number of standard deviation units on
either side of the mean of each feature, can be used. These
extreme values allow the estimation of the position of the
boundaries of the parallelepipeds, which define regions
of the p-dimensional feature space that are identified
with particular land cover types (or information classes).
Regions of the p-space lying outside the boundaries of
the set of parallelepipeds form a terra incognita and pix-
els lying in these regions are usually assigned the label
zero. The decision rule employed in the parallelepiped

classifier is simple. Each pixel to be classified is taken in
turn and its values on the p features are checked to see
whether they lie inside any of the parallelepipeds. Two
extreme cases might occur. In the first, the point in p-
space representing a particular pixel does not lie inside
any of the regions defined by the parallelepipeds. Such
pixels are of an unknown type. In the second extreme
case the point lies inside just one of the parallelepipeds,
and the corresponding pixel is therefore labelled as a
member of the class represented by that parallelepiped.
However, there is the possibility that a point may lie
inside two or more overlapping parallelepipeds, and the
decision then becomes more complicated. The easiest
way around the problem is to allocate the pixel to the first
(or some other arbitrarily selected) parallelepiped inside
whose boundaries it falls. The order of evaluation of the
parallelepipeds then becomes of crucial importance, and
there is often no sensible rule that can be employed to
determine the best order.

The method can therefore be described as ‘quick and
dirty’. If the data are well structured (that is, there is no
overlap between the classes) then the quick-and-dirty
method might generate only a very few conflicts but,
unfortunately, many image datasets are not well struc-
tured. A more complicated rule for the resolution of
conflicts might be to calculate the Euclidean distance
between the doubtful pixel and the centre point of
each parallelepiped and use a ‘minimum distance’
rule to decide on the best classification. In effect, a
boundary is drawn in the area of overlap between the
parallelepipeds concerned. This boundary is equidistant
from the centre points of the parallelepipeds, and pixels
can be allocated on the basis of their position relative
to the boundary line. On the other hand, a combination
of the parallelepiped and some other, more powerful,
decision rule could be used. If a pixel falls inside one
single parallelepiped then it is allocated to the class
that is represented by the parallelepiped. If the pixels
falls inside two or more parallelepipeds, or is outside
all of the parallelepiped areas, then a more sophisticated
decision rule could be invoked to resolve the conflict.

Figure 8.11 shows a geometric representation of a
simple case illustrating the parallelepiped classifier in
action. Points a , b, c and d are allocated to class 1 and
points e, f , g and h are allocated to class 2. Points i and
j are not identified and are labelled as ‘unknown’. The
technique is easy to program and is relatively fast in
operation. Since, however, the technique makes use only
of the minimum and maximum values of each feature for
each training set it should be realized that (i) these values
may be unrepresentative of the actual spectral classes
that they purport to represent and (ii) no information
is garnered from those pixels in the training set other
than the largest and the smallest in value on each band.
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Furthermore it is assumed that the shape of the region
in p-space occupied by a particular spectral class can
be enclosed by a box. This is not necessarily so. Conse-
quently the parallelepiped method should be considered
as a cheap and rapid but not particularly accurate method
of associating image pixels with information classes.

8.4.2.2 Centroid (k-Means) Classifier

The centroid or k -means method does make use of all
the data in each training class, for it is based upon
the ‘nearest centre’ decision rule that is described in
Section 8.3. The centroid (mean centre) of each training
class is computed – it is simply the vector comprising
the mean of each of the p features used in the analysis,
perhaps weighted to diminish the influence of extreme
values as discussed in Section 8.4.1. The Euclidean
distance from each unknown pixel is then calculated for
each centre in turn and the pixel is given the label of
the centre to which its Euclidean distance is smallest.
In effect, the p-space is divided up into regions by a
set of rectilinear boundary lines, each boundary being
equidistant from two or more centres (Figure 8.12).
Every pixel is classified by this method, for each point in
p-space must be closer to one of the k centres than to the
rest, excluding the case in which a pixel is equidistant
from two or more centres. A modification to the ‘closest
distance’ rule could be adopted to prevent freak or
outlying pixel values from being attached to one or other
of the classes. This modification could take the form of
a distance threshold, which could vary for each class
depending upon the expected degree of compactness of
that class. Compactness might be estimated from the
standard deviation for each feature of the pixels making
up the training sample for a given class. Any pixel
that is further away from the nearest centre than the
threshold distance is left unclassified. This modified rule
is actually changing the geometry of the decision bound-
aries from that shown in Figure 8.12 to that shown in
Figure 8.13. In the latter, the p-space is subdivided into
k hyperspherical regions each centred on a class mean.

In the same way that the parallelepiped method gets
into difficulties with overlapping boxes and has to adopt a
nearest-centre rule to break the deadlock, so the k -means
method can be adapted to utilize additional information
in order to make it intuitively more efficient. The alter-
ation to the decision rule involving a threshold distance is
effectively acknowledging that the shape of the region in
p-space that is occupied by pixels belonging to a partic-
ular class is important. The third classification technique
described in this section (the ML method) begins with
this assumption and uses a rather more refined method of
describing the shapes of the regions in p-space that are
occupied by the members of each class.
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Figure 8.13 Group centroids are the same as in Figure 8.12
but a threshold has been used to limit the extent of each
group. Blank areas represent regions of feature space that are
not associated with a spectral class. Pixels located in these
regions are not labelled.

8.4.2.3 Maximum Likelihood Method

The geometrical shape of a cloud of points representing
a set of image pixels belonging to a class or category
of interest can often be described by an ellipsoid (see
Figure 8.10). This knowledge is used in Chapter 6 in the
discussion of the principal components technique. In that
chapter it is shown that the orientation and the relative
dimensions of the enclosing ellipsoid (strictly speaking,
a hyperellipsoid if p is greater than three) depends on the
degree of covariance among the p features defining the
pattern space.

Examples of two-dimensional ellipses are shown in
Figure 8.14. A shape such as that of ellipse A (oriented
with the longer axis sloping upwards to the right) implies
high positive covariance between the two features. If
the longer axis sloped upwards to the left the direction
of covariance would be negative. The more circular
shape of ellipse B implies lower covariances between
the features represented by x and y . The lengths of the
major and minor axes of the two ellipses projected onto
the x - or y-axes are proportional to the variances of the
two variables. The location, shape and size of the ellipse
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Figure 8.14 Showing the equiprobability contours for two
bivariate-normal distributions with means located at points 1
and 2. Point P is closer to the mean centre of distribution 1
than it is to the centre of distribution 2 yet, because of the
shapes of the two ellipses, P is more likely to be a member
of class 2 even though point P is closer to the centre of
distribution 1 than is point Q.

therefore reflects the means, variances and covariances of
the two features, and the idea can easily be extended to
three or more dimensions. The ellipses in Figure 8.14 do
not enclose all the points that fall into a particular class;
indeed, we could think of a family of concentric ellipses
centred on the p-variate mean of a class, such as points
‘1’ and ‘2’ in Figure 8.14. A small ellipse centred on this
mean point might enclose only a small percentage of the
pixels which are members of the class, and progressively
larger ellipses will enclose an increasingly larger pro-
portion of the class members. These concentric ellipses
represent contours of probability of membership of the
class, with the probability of membership declining away
from the mean centre. Thus, membership probability
declines more rapidly along the direction of the shorter
axis than along the longer axis.

Distance from the centre of the training data is not now
the only criterion for deciding whether a point belongs
to one class or another, for the shape of the probability
contours depends on the relative dimensions of the axes
of the ellipse as well as on its orientation. In Figure 8.14
point P is closer than point Q to the centre of class 1 yet,
because of the shape of the probability contours, point Q
is seen to be more likely to be a member of class 1 while
point P is more likely to be a member of class 2.

If equiprobability contours can be defined for all k
classes of interest then the probability that a pixel shown
by a point in the p-dimensional feature belongs to class i

(i = 1, 2, . . . , k) can be measured for each class in turn,
and that pixel assigned to the class for which the prob-
ability of membership is highest. The resulting classifi-
cation might be expected to be more accurate than those

produced by either the parallelepiped or the k -means clas-
sifiers because the training sample data are being used to
provide estimates of the shapes of the distribution of the
membership of each class in the p-dimensional feature
space as well as of the location of the centre point of each
class. The coordinates of the centre point of each class
are the mean values on each of the p features, while the
shape of the frequency distribution of the class member-
ship is defined by the covariances among the p features
for that particular class, as we saw earlier.

It is important to realize that the ML method is based
on the assumption that the frequency distribution of the
class membership can be approximated by the multivari-
ate normal probability distribution. This might appear to
be an undue restriction for, as an eminent statistician once
remarked, there is no such thing as a normal distribu-
tion. In practice, however, it is generally accepted that the
assumption of normality holds reasonably well, and that
the procedure described above is not too sensitive to small
departures from the assumption provided that the actual
frequency distribution of each class is unimodal (i.e. has
one peak frequency). A clustering procedure (unsuper-
vised classification) could be used to check the training
sample data for each class to see if that class is multi-
modal, for the clustering method is really a technique for
finding multiple modes.

The probability P(x) that a pixel vector x of p elements
(a pattern defined in terms of p features) is a member of
class k is given by the multivariate normal density:

P(x) = 2π−0.5p |Si |−0.5 exp[−0.5(y′S−1
i y)]

where |.| denotes the determinant of the specified matrix,
Si is the sample variance-covariance matrix for class i ,
y = (x – xj ) and xi is the multivariate mean of class i .
Note that the term y′S−1y is the Mahalanobis distance,
used in Section 8.4.1 to measure the distance of an obser-
vation from the class mean, corrected for the variance and
covariance of class i .

Understanding of the relationship between equiprob-
ability ellipses, the algebraic formula for class proba-
bility, and the placing of decision boundaries in feature
space will be enhanced by a simple example. Figure 8.15
shows the bivariate frequency distribution of two sam-
ples, drawn respectively from (i) bands 1 and 2 and
(ii) bands 5 and 7 of the TM images shown in Figures
1.10 and 1.11. The contours delimiting the equiprobabil-
ity ellipses are projected onto the base of each of the
diagrams. It is clear that the area of the two-dimensional
feature space that is occupied by the band 5–7 combina-
tion (Figure 8.15b) is greater than that occupied by the
band 1–2 combination. The orientation of the probabil-
ity ellipses is similar, and the two ellipses are located
at approximately the same point in the feature space.
These observations can be related to the elements of the
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Figure 8.15 Bivariate (xy) normal surface plots: (a) mean of x = 65 , mean of y = 28 , standard deviation of x = 11 , standard
deviation of y = 11 , correlation (xy) = 0 .4 . (b) Mean of x = 175 , mean of y = 125 , standard deviation of x = 35 , standard
deviation of y = 40 , correlation (xy) = 0 .6 .

variance–covariance matrices on which the two plots are
based. The following matrices were used in the derivation
of the bivariate probability distributions Figure 8.15:

x12 =
[

65.812
28.033

]
S12 =

[
78.669 45.904
45.904 31.945

]

S−1
12 =

[
0.079 −0.113

−0.113 0.194

]
|S12| = 405.904

x57 =
[

64.258
23.895

]
S57 =

[
329.336 181.563
181.563 128.299

]

S−1
57 =

[
0.014 −0.020

−0.020 0.035

]
|S57| = 9288.356

The variances are the diagonal elements of the matrix
S, and it is clear that the variances of bands 5 and
7 (329.336 and 128.299) are much larger than the
variances of bands 1 and 2 (78.669 and 31.945). Thus,
the ‘spread’ of the two ellipses in the x and y directions
is substantially different. The covariance of bands 5
and 7 (181.563) and bands 1 and 2 (45.904) are both
positive, so the ellipses are oriented upwards towards
the +x and +y axes (if the plot were a two-dimensional
one, we could say that the ellipses sloped upwards to the
right, indicating a positive correlation between x and y).
The covariance of bands 5 and 7 is larger than that of
bands 1 and 2, so the degree of scatter is less for bands
5 and 7, relative to the magnitude of the variances.
This example illustrates the fact that the mean controls
the location of the ellipse in feature space, while the
variance-covariance matrix controls the ‘spread’ and
orientation of the ellipse. It is not possible to illustrate
these principles in higher-dimensional spaces, though if
it were then the same conclusions would be drawn.

The function P(x) can be used to evaluate the proba-
bility that an unknown pattern x is a member of class i
i = 1, 2, . . . , k). The maximum value in this set can be
chosen and x allocated to the corresponding class. How-
ever, the cost of carrying out these computations can be
reduced by simplifying the expression. Savings can be
made by first noting that we are only interested in the
rank order of the values of P(x). Since the logarithm
to base e of a function has the same rank order as the
function, the evaluation of the exponential term can be
avoided by evaluating

ln P(x) = −0.5p ln(2π) − 0.5 ln |S| − 0.5(y′S−1
i y)

The rank order is unaffected if the right-hand side of
this expression is multiplied by −2 and if the constant
term p ln(2π) is dropped. The expression also looks tidier
if it is multiplied by −1 and the smallest value for all k
classes chosen, rather than the largest. These modifica-
tions reduce the expression to

− ln P(x) = ln(|S|) + y′S−1
i y

Further savings can be made if the inverse and
determinant of each Si (the variance–covariance matrix
for class i ) are computed in advance and read from a
file when required, rather than calculated when required.
The computations then reduce to the derivation of the
Mahalanobis distance, the addition of the logarithm of
the determinant of the estimated variance-covariance
matrix for each of the k classes in turn, and the selection
of the minimum value from among the results. Note
that, because we have multiplied the original expression
by −0.5 we minimize {− ln P(x)} so as to achieve the
same result as maximizing P(x).
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The ML equations given above are based upon the pre-
sumption that each of the k classes is equally likely. This
may be the safest assumption if we have little knowledge
of the extent of each land cover type in the area covered
by the image. Sometimes the proportion of the area cov-
ered by each class can be estimated from reports, land-use
maps, aerial photographs or previous classified images.
An unsupervised classification of the area would also pro-
vide some guide to the areal extent of each cover type.
An advantage of the ML approach to image classification
is that this prior knowledge can be taken into account. A
priori knowledge of the proportion of the area to be clas-
sified that is covered by each class can be expressed as
a vector of prior probabilities . The probabilities are pro-
portional to the area covered by each class, and can be
thought of as weights. A high prior probability for class i
in comparison with class j means that any pixel selected
at random is more likely to be placed in class i than
class j because class i is given greater weight. These
weights are incorporated into the ML algorithm by sub-
tracting twice the logarithm of the prior probability for
class i from the log likelihood of the class as given by the
equation above. Strahler (1980) provides further details
and shows how different sets of prior probabilities can
be used in cases where the image area can be stratified
into regions according to an external variable such as
elevation (for instance, regions described as high, inter-
mediate or low elevation might have separate sets of prior
probabilities as described in Section 8.7.2). Maselli et al.
(1995b) discuss a non-parametric method of estimating
prior probabilities for incorporation into a ML classifier.

In the same way that the parallelepiped classifier
(Section 8.4.1) allows for the occurrence of pixels that
are unlike any of the training patterns by consigning
such pixels to a ‘reject’ class, so the probability of class
membership can be used in the ML classifier to permit
the rejection of pixel vectors for which the probability of
membership of any of the k classes is considered to be
too low. The Mahalanobis distance is distributed as chi-
square, and the probability of obtaining a Mahalanobis
distance as high as that observed for a given pixel can be
found from tables, with degrees of freedom equal to p,
the number of feature vectors used (Meyers, Gamst and
Guarino, 2006, p. 67). For p = 4 the tabled chi-square
values are 0.3 (99%), 1.06 (90%), 3.65 (50%), 7.78 (10%)
and 15.08 (1%). The figures in brackets are probabilities,
expressed in percentage form. They can be interpreted
as follows: a Mahalanobis distance as high as (or higher
than) 15.08 would, on average, be met in only 1% of
cases in a long sequence of observations of four-band
pixel vectors drawn from a multivariate normal popula-
tion whose true mean and variance–covariance matrix are
estimated by the mean and variance–covariance matrix
on which the calculation of the Mahalanobis distance is

based. A Mahalanobis distance of 1.06 or more would
be observed in 90% of all such observations. It is
self-evident that 100% of all observations drawn from
the given population will have Mahalanobis distances of
0 or more. A suitable threshold probability (which need
not be the same for each class) can be specified. Once the
pixel has been tentatively allocated to a class using the
ML decision rule, the value of the Mahalanobis distance
(which is used in the ML calculation) can be tested
against a threshold chi-square value. If this chi-square
value is exceeded then the corresponding pixel is placed
in the ‘reject’ class, conventionally labelled ‘0’. The use
of the threshold probability helps to weed out atypical
pixel vectors. It can also serve another function – to
indicate the existence of spectral classes that may not
have been recognized by the analyst and which, in the
absence of the probability threshold, would have been
allocated to the most similar (but incorrect) spectral class.

8.4.3 Neural Classifiers

The best image-interpretation system that we possess is
the combination of our eyes and our brain (Gregory,
1998). Signals received by two sensors (our eyes) are
converted into electrical impulses and transmitted to
the brain which interprets them in real time, producing
labelled (in the sense of recognized) three-dimensional
images of our field of view (Section 5.2). Operationally
speaking, the brain is thought to be composed of a very
large number of simple processing units called neurons.
Greenfield (1997, p. 79) estimates the number of neurons
as being of the order of a 100 billion, a number that is
of the same order of magnitude as the number of trees
in the Amazon rain forest. Each neuron is connected
to perhaps 10 000 other neurons (Beale and Jackson,
1990). Of course, brain size varies – for example men
have – on average – larger brains than women (though a
lot of women wonder why they do not use them). Many
neurons are dedicated to image processing, which takes
place in a parallel fashion (Gregory, 1999; Greenfield,
1997, p. 50). The brain’s neurons are connected together
in complex ways so that each neuron receives as input
the results produced by other neurons, and it in turn
outputs its signals to other neurons. It is not possible at
the moment to specify how the brain actually works, or
even whether the connectionist model really represents
what is going on in the brain. It has been suggested
that if there were fewer neurons in the brain then we
might have a chance of understanding how they interact
but, unfortunately, if our brains possessed fewer neurons
we would probably be too stupid to understand the
implications of the present discussion.

One model of the brain is that it is composed of sets
of neural networks that perform specific functions such
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Figure 8.16 A basic neuron receives two weighted inputs,
sums them, applies a threshold and outputs the result.

as vision or hearing. Artificial neural networks (ANNs)
attempt, in a very simple way, to use this model of the
brain by building sets of linked processing units (by anal-
ogy with the neurons of the brain) and using these to solve
problems. Each neuron is a simple processing unit which
receives weighted inputs from other neurons, sums these
weighted inputs, performs a simple calculation on this
sum such as thresholding, and then sends this output to
other neurons (Figure 8.16).

The two functions of the artificial neuron are to sum the
weighted inputs and to apply a thresholding function to
this sum. The summation procedure can be expressed by:

S =
n∑

i=1

wixi

where S represents the sum of the n weighted inputs,
wi is the weight associated with the i th input and xi

is the value of the i th input (which is an output from
some other neuron). The thresholding procedure, at its
simplest, a comparison between S and some pre-set
value, say T . If S is greater than T then the neuron
responds by sending an output to other neurons to
which it is connected further ‘down the line’. The term
feed-forward is used to describe this kind of neural
network model because information progresses from the
initial inputs to the final outputs.

A simple ANN such as the one presented above lacks
a vital component – the ability to learn. Some training
is necessary before the connected set of neurons can
perform a useful task. Learning is accomplished by pro-
viding training samples and comparing the actual output
of the ANN with the expected output. If there is a differ-
ence between the two then the weights associated with
the connections between the neurons forming the ANN
are adjusted so as to improve the chances of a correct
decision and diminish the chances of the wrong choice
being made, and the training step is repeated. The weights

are initially set to random values. This ‘supervised learn-
ing’ procedure is followed until the ANN gets the correct
answer. To a parent, this is perhaps reminiscent of teach-
ing a child to read; repeated correction of mistakes in
identifying the letters of the alphabet and the sounds asso-
ciated with them eventually results in the development of
an ability to read. The method is called Hebbian learning
after its developer, D.O. Hebb.

This simple model is called the single layer perceptron
and it can solve only those classification problems in
which the classes can be separated by a straight line
(in other words, the decision boundary between classes
is a straight line as in the simple example given in
Section 8.2 and shown in Figure 8.1). Such problems are
relatively trivial and the inability of the perceptron to
solve more difficult problems led to a lack of interest in
ANN on the part of computer scientists until the 1980s
when a more complex model, the multilayer perceptron ,
was proposed. First, this model uses a more complex
thresholding function rather than a step function, in
which the output from the neuron is 1 if the threshold
is exceeded and 0 otherwise. A sigmoid function is
often used and the output from the neuron is a value
somewhere between 0 and 1. Second, the neurons
forming the ANN are arranged in layers as shown in
Figure 8.17. There is a layer of input neurons which
provide the link between the ANN and the input data,
and a layer of output neurons that provide information
on the category to which the input pixel vector belongs
(for example if output neuron number 1 has a value near
to 1 and the remaining output neurons have values near
zero then the input pixel will be allocated to class 1).

The multilayer perceptron shown in Figure 8.17 could,
for example be used to classify an image obtained from
the SPOT HRV sensor. The three neurons on the input

Input Layer Hidden Layer Output Layer

Figure 8.17 Multilayer perceptron. The input layer (left side,
dark shading) connects to the hidden layer (centre, light
shading) which in turn connects to the output layer (right,
hatched).
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layer represent the values for the three HRV spectral
bands for a specific pixel. These inputs might be normal-
ized, for example to the 0–1 range, as this procedure has
been shown to improve the network’s performance. The
four neurons in the output layer provide outputs (or acti-
vations) which form the basis for the decision concerning
the pixel’s class membership, and the two neurons in
the centre (hidden) layer perform summation and thresh-
olding, possibly using a sigmoidal thresholding function.
All the internal links (input to hidden and hidden to out-
put) have associated weights. The input neurons do not
perform any summation or thresholding – they simply
pass on the pixel’s value to the hidden layer neurons
(so that input layer neuron 1 transmits the pixel value
in band HRV-1, neuron 2 in the input layer passes the
pixel value for band HRV-2 to the hidden layer neu-
rons, and the third input neuron provides the pixel value
for band HRV-3). The multilayer perceptron is trained
using a slightly more complex learning rule than the one
described above; the new rule is called the generalized
delta function rule or the back-propagation rule. Hence
the network is a feed-forward multilayer perceptron using
the back-propagation learning rule, which is described by
Paola and Schowengerdt (1995a).

Assume that a certain training data pixel vector, called
a training pattern , is fed into the network and it is known
that this training pattern is a member of class i . The
output from the network consists of one value for each
neuron in the output layer. If there are k possible classes
then the expected output vector o should have elements
equal to zero except for the i th element, which should be
equal to one. The actual output vector, a, differs from o
by an amount called the error, e. Thus,

e = 1

2

k∑
j=1

(oj − aj )
2

Multiplication by 1/2 is performed for arcane reasons
of mathematics. The error is used to adjust the weights by
a procedure that (in effect) maps the isolines or contours
of the distribution of the error against the values of the
weights, and then uses these isolines to determine the
direction to move in order to find the minimum point in
this map. If there are only two weights then a contour map
of the value of the error term at point (w1, w2) can be
easily visualized – it would look like a DEM. The aim is
to find the coordinates of the point on this ‘error surface’
for which the value of the error term is a minimum. One
way of doing this is to use the method of steepest descent .
Imagine that you have reached the summit of a hill when
a thick mist descends. To get down safely you need to
move downhill, but you may not be confident enough to
take long strides downhill for fear of falling over a cliff.
Instead, you may prefer to take short steps when the slope

is steep and longer steps on gentle slopes. The steepest
descent method uses the same approach. The gradient is
measured by the first derivative of the error in terms of
the weight; this gives both the magnitude and direction of
the gradient. The step length in this case is fixed and, in
the terminology of ANNs, it is called the learning rate.
A step is taken from the current position in the direction
of maximum gradient and new values for the weights are
determined. The error is propagated backwards through
the net from the output layer to the input data, hence the
term back-propagation. Steepest descent algorithms using
variable step length (large where the surface is relatively
flat and small whenever the slope is steep).

In your descent down a fog-bound hill you may
come to an enclosed hollow. No matter which way you
move, you will go uphill. You might think that you
were at the bottom of the hill. In mathematical terms
this is equivalent to finding a local minimum of the
function relating weights to error, rather than a global
minimum. The method of steepest descent thus may not
give you the right answer; it may converge at a point
that is far-removed from the real (global) minimum.
Another problem may arise if you take steps of a fixed
length. During the descent you may encounter a small
valley. As you reach the bottom of this valley you take
a step across the valley floor and immediately start to
go uphill. So you step back, then forward, and so on in
an endless dance rhythm. But you never get across the
valley and continue your downhill march. This problem
is similar to that of the local minimum and both may
result in oscillations. Some ANN software allows you
to do the equivalent of taking a long jump across the
surface when such oscillations occur, and continuing the
downhill search from the landing point. There are other,
more powerful methods of locating the minimum of a
function that can be used in ANN training, but these are
beyond the scope of this book.

The advantages of the feed-forward multilayer ANN
using the back-propagation training method are:

• It can accept all kinds of numerical inputs whether
or not these conform to a statistical distribution
or not. So non-remotely-sensed data can be added
as additional inputs, and the user need not be
concerned about multivariate normal distributions or
multimodality. This feature is useful when remote
sensing data are used within a GIS, for different
types of spatial data can be easily registered and used
together in order to improve classifier performance.

• ANNs can generalize. That is, they can recognize
inputs that are similar to those which have been used
to train them. They can generalize more successfully
when the unknown patterns are intermediate between
two known patterns, but they are less good at extend-
ing their ability to new patterns that exist beyond the
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realms of the training patterns. Bigger networks (with
more neurons) tend to have a poorer generalization
capability than small networks.

• Because ANNs consist of a number of layers of neu-
rons, connected by weighted links, they are tolerant
to noise present in the training patterns. The overall
result may not be significantly affected by the loss of
one or two neurons as a result of noisy training data.

Disadvantages associated with the use of ANN in pat-
tern recognition are:

• Problems in designing the network. Usually one or
two hidden layers suffice for most problems, but how
many hidden layers should be used in a given case?
How many neurons are required on each hidden
layer? (A generally used but purely empirical rule
is that the number of hidden layer neurons should
equal twice the number of input neurons.) Are all
of the interneuron connections required? What is the
best value for the learning rate parameter? Many
authors do not say why they select a particular
network architecture. For example, Kanellopoulos
et al. (1992) use a four-layer network (one input,
one output and two hidden layers). The two hidden
layers contain, respectively, 18 and 54 neurons.
Foody (1996a), on the other hand, uses a three-layer
architecture with the hidden layer containing three
neurons. Ardö, Pilesjö and Skidmore (1997) conclude
that ‘ . . . no significant difference was found between
networks with different numbers of hidden nodes, or
between networks with different numbers of hidden
layers’ (a conclusion also reached by Gong, Pu and
Chen (1996) and Paola and Schowengerdt (1997)),
though it has already been noted that network size
and generalization capability appear to be inversely
related. This factor is the motivation for network
pruning (see below).

• Training times may be long, possibly of the order
of several hours. In comparison, the ML statistical
classifier requires collection of training data and cal-
culation of the mean vector and variance–covariance
matrix for each training class. The calculations are
then straightforward rather than iterative. The ML
algorithm can classify a 512 × 512 image on a
relatively slow PC in less than a minute, while an
ANN may require several hours of training in order
to achieve the same level of accuracy.

• The steepest-descent algorithm may reach a local
rather than a global minimum, or may oscillate.

• Results achieved by an ANN depend on the initial
values given to the inter-neuron weights, which are
usually set to small, random values. Differences
in the initial weights may cause the network to

converge on a different (local) minimum and thus
different classification accuracies can be expected.
Ardö, Pilesjö and Skidmore (1997), Blamire (1996)
note differences in classification accuracy resulting
from different initial (but still randomized) choice of
weights (around 6% in Blamire’s experiments, but
up to 11% in the results reported by Ardö, Pilesjö
and Skidmore (1997)). Skidmore et al. (1997, p. 511)
remark that ‘. . . the oft-quoted advantages of neural
networks . . . were negated by the variable and unpre-
dictable results generated’. Paola and Schowengerdt
(1997) also find that where the number of neurons in
the hidden layer is low then the effects of changes in
the initial weights may be considerable.

• The generalizing ability of ANNs is dependent on a
complex fashion on the numbers of neurons included
in the hidden layers and on the number of iterations
achieved during training. ‘Overtraining’ may result
in the ANN becoming too closely adjusted to the
characteristics of the training data and losing its abil-
ity to identify patterns that are not present in the
training data. Pruning methods, which aim to remove
interneuron links without reducing the classifier’s per-
formance, have not been widely used in remote sens-
ing image classification, but appear to have some
potential in producing smaller networks that can gen-
eralize better and run more quickly.

Further details of applications of ANNs in pattern
recognition and spatial analysis are described by Aitken-
head and Aalders (2008), Aleksander and Morton (1990),
Bishof, Schneider and Pinz (1992), Cappellini, Chiuderi
and Fini (1995), Gopal and Woodcock (1996), Kanevski
and Maignan (2004) and Mas and Flores (2008). Witten
and Frank (2005) use ANNs in data mining, and also
provide the Weika software which includes procedures
for multilayer perceptrons. Austin et al. (1997) and
Kanellopoulos et al. (1997) provide an excellent sum-
mary of research problems in the use of ANNs in remote
sensing. The topic of pruning ANNs in order to improve
their generalization capability is discussed by Kavzoglu
and Mather (1999, 2003), Le Cun, Denker and Solla
(1990) and Tidemann and Nielsen (1997). Jarvis and
Stuart (1996) summarize the factors that affect the sensi-
tivity of neural nets for classifying remotely-sensed data.
A good general textbook is Bishop (1995). de Castro
(2006) is a fascinating book on natural computing, with
one chapter devoted to ANN. This book contains a lot
of ideas but is written for mathematicians rather than the
average geographer. Qiu and Jensen (2004) show how
ANNs can be used in fuzzy (soft) classification schemes,
which are described in Section 8.5.3.

Other useful reading includes Hepner et al. (1990) who
compare the performance of an ANN classifier with that
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of ML, and find that (with a small training dataset) the
ANN gives superior results, a finding that is repeated
by Foody, McCullagh and Yates (1995). Kanellopoulos
et al. (1992) compare the ML classifier’s performance
with that of a neural network with two hidden layers
(with 18 and 54 neurons, respectively), and report that
the classification accuracy (Section 8.10) rises from 51%
(ML) to 81% (ANN), though this improvement is very
much greater than that reported by other researchers.
Paola and Schowengerdt (1995b) report on a detailed
comparison of the performance of a standard ANN and
the ML statistical technique for classifying urban areas.
Their paper includes a careful analysis of decision bound-
ary positions in feature space. Although the ANN slightly
out-performed the ML classifier in terms of percentage
correctly classified test pixels, only 62% or so of the pix-
els in the two classified images were in agreement, thus
emphasizing the important point that measures of classifi-
cation accuracy based upon error matrices (Section 8.10)
do not take the spatial distribution of the classified pixels
into account.

The feed-forward multilayer perceptron is not the only
form of artificial neural net that has been used in remote
sensing nor, indeed, is it necessarily true that ANNs are
always used in supervised mode. Chiuderi and Cappellini
(1996) describe a quite different network architecture,
the Kohonen Self-Organizing Map (SOM). This is an
unsupervised form of ANN. It is first trained to learn to
distinguish between patterns in the input data (‘clusters’)
rather than to allocate pixels to predefined categories. The
clusters identified by the SOM are grouped on the basis
of their mutual similarities, and then identified by refer-
ence to training data. The architecture differs from the
conventional perceptron in that there are only two layers.
The first is the input layer, which – as in the case of the
perceptron – has one input neuron per feature. The input
neurons are connected to all of the neurons in the output
layer, and input pixels are allocated to a neighbourhood in
the output layer, which is arranged in the form of a grid.
Chiuderi and Cappellini (1996) use a 6 by 6 output layer
and report values classification accuracy (Section 8.10)
in excess of 85% in an application to land cover classifi-
cation using airborne thematic mapper data. Schaale and
Furrer (1995) successfully use a SOM network, also to
classify land cover, while Hung (1993) gives a descrip-
tion of the learning mechanism used in SOM. Carpenter
et al. (1997) report on the use of another type of neu-
ral network, the ART network, to classify vegetation. An
interesting application is Bue and Stepinski (2006), who
use an unsupervised SOM to classify Martian landforms
based on topographic data.

A special issue of International Journal of Remote
Sensing (volume 18, number 4, 1997) is devoted to
‘Neural Networks in Remote Sensing’. A more recent

text is authored by Sivanandam, Sumathi and Deepa
(2006). This book provides coverage of all the main
types of ANN and has examples in MATLAB 6.0 code.

Example 8.2 (next page) illustrates the use of ML and
ANN classifiers in the remote sensing of agricultural crops.

8.5 Subpixel Classification Techniques

The techniques described in the first part of Chapter 8 are
concerned with ‘hard’ pixel labelling. All of the different
classification schemes require that each individual pixel
is given a single, unambiguous, label. This objective is
a justifiable one whenever regions of relatively homoge-
neous land cover occur in the image area. These regions
should be large relative to the instantaneous field of view
of the sensor, and may consist of fields of agricultural
crops or deep, clear water bodies that are tens of pixels
in each dimension. In other instances, though, the instan-
taneous field of view of the sensor may be too large for it
to be safely assumed that a single pixel contains just a sin-
gle land cover type. In many cases, a 1 km × 1 km pixel
of an AVHRR or ATSR image is unlikely to contain just
one single cover type. In areas covered by semi-natural
vegetation, natural variability will be such as to ensure
that, even in a 20 or 30 m2 pixel, there will be a range
of different cover types such as herbs, bare soil, bushes,
trees and water. The question of scale is one that bedevils
all spatial analyses.

The resolution of the sensor is not the only factor that
relates to homogeneity, for much depends what is being
sought. If generalized classes such as wheat, barley or
rice are the targets then a resolution of 30 m rather than
1 km may be appropriate. A 30 m resolution would be
quite inappropriate, however, if the investigator wished
to classify individual trees. Fuzziness and hardness,
heterogeneity and homogeneity are properties of the
landscape at a particular geographical scale of obser-
vation, that is related to the aims of the investigator,
a point that has been noted several times already in
this chapter. Questions of scale are considered by de
Cola (1994), Hengl (2006), Levin (1991) and Ustin
et al. (1996). The use of geostatistics in estimating
spatial scales of variation is summarized by Atkinson
and Curran (1995) and Curran and Atkinson (1998).
Other references relevant to the use of geostatistics are
Hyppänen (1996), Jupp, Strahler and Woodcock (1988,
1989), Kanevski and Maignan (2004) (whose book
includes a CD with geostatistical software), van Gardin-
gen, Foody and Curran (1997), Woodcock, Strahler
and Jupp (1988a, 1988b) and Woodcock and Strahler
(1987). Selecting a suitable spatial scale and spatial
resolution is the subject of papers by Atkinson and Aplin
(2004), Atkinson and Curran (1997), Aplin (2006) and
Barnsley, Barr and Tsang (1997). Baccini et al. (2007)
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Example 8.2: Supervised Classification1

The study area selected is an agricultural area located near the town of Littleport in Cambridgeshire, in the eastern
part of England. Landsat ETM+ data acquired on 19 June 2000 are used. The classification problem involves the
identification of seven land cover types, namely, wheat, potato, sugar beet, onion, peas, lettuce and beans that cover
the bulk of the area of interest (Example 8.2 Figure 1).

Unknown
Wheat
Suger beet
Potato
Onion
Peas
Lettuce
Beans

Example 8.2 Figure 1. Ground reference data for the Littleport study area. See text for details.

The ERDAS Imagine image processing software package (version 8.4) was used to register the images to the
Ordnance Survey of Great Britain’s National Grid by applying a linear least squares transformation (Section 4.3.2).
The root mean squared error (RMSE) values estimated for image transformations were less than 1 pixel. An area
of 307-pixel (columns) by 330-pixel (rows) covering the area of interest was then extracted for further analysis
(Example 8.2 Figure 2).

Example 8.2 Figure 2. Contrast-enhanced and geometrically corrected Landsat 7 ETM+ image of the Littleport study area.
Image date: 19 June 2000.

(Continues on next page)

1I am grateful to Dr Mahesh Pal for providing the material used in this example.
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Field data for the relevant crops were collected from farmers and their representative agencies, and other areas
were surveyed on the ground. The field boundaries visible on the multispectral image were then digitized using
Arc Info software. A polygon file was created by applying a buffering operation of 1 pixel width to remove the
boundary pixels during the classification process and each polygon is assigned a label corresponding to the crop it
contained. Finally, a ground reference image was generated by using the polygon file (Example 8.2 Figure 1).

Random sampling methods were used to collect training and test datasets using ground reference data. The pixels
collected by random sampling were divided into two subsets, one of which was used for training and the second
for testing the classifiers, so as to remove any bias resulting from the use of the same set of pixels for both training
and testing. Also, because the same test and training datasets are used for all of the classifiers, any differences
resulting from sampling variations are avoided.

Four classification algorithms, the ML, univariate DT, back-propagation ANN and SVM were tested. A total
of 2700 training and 2037 test pixels were used with all four classification algorithms. The resulting classification
accuracies and kappa values are shown in Example 8.2 Table 1. The classified images are shown in Example 8.2
Figures 3–6.

Example 8.2 Table 1 Percentage accuracy and
corresponding kappa values for the classified images shown
in Example 8.2 Figures 3–6.

Accuracy (%) Kappa value

Decision tree 84.24 0.82

Maximum likelihood 82.90 0.80

Neural network 85.10 0.83

Support vector machines 87.90 0.87

Example 8.2 Figure 3. Maximum likelihood classification of the area shown in Example 8.2 Figure 2.

The DT classifier employed error based pruning and used the gain ratio as an attribute selection measure. The
standard back-propagation ANN classifier had one hidden layer with 26 neurons. In the SVM approach, the concept
of the kernel was introduced to extend the capability of the SVM to deal with nonlinear decision surfaces. There
is little guidance in the literature on the criteria to be used in selecting a kernel and the kernel-specific parameters,
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Example 8.2 Figure 4. Decision tree classification of the area shown in Example 8.2 Figure 2.

Example 8.2 Figure 5. ANN classification of the area shown in Example 8.2 Figure 2.

so a number of trials were carried out using five different kernels with different kernel specific parameters, using
classification accuracy as the measure of quality. A radial basis kernel function with parameters c = 2 and C = 5000
gave the highest overall classification accuracy. A ‘one against one’ strategy was used to deal with the multiple
classes. Example 8.2 Table 1 provide the results with provided by different classification algorithms by using the
same number of training and test dataset. Example 8.2 Figures 3–6 provide the classified images of the study

(Continues on next page)
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Example 8.2 Figure 6. Support vector machine classification of the area shown in Example 8.2 Figure 2.

area by maximum likelihood, decision tree, and neural network and support vector machines classifiers respectively.
It is seen that all the results exceed 80% classification accuracy with the SVM classifier performing best on both
percent accuracy and kappa value. The ANN, DT and ML classifiers are each a few percent worse than the
SVM method.

focus on the reverse problem – that of upscaling field
data for use in calibration and validation of moderate
resolution data.

To the investigator whose concern is to label each pixel
unambiguously, the presence of large heterogeneous pix-
els or smaller pixels containing several cover types is
a problem, since they do not fall clearly within one or
other of the available classes. If a conventional ‘hard’
classifier is used, the result will be low classification
accuracy. ‘Mixed pixels’ represent a significant problem
in the description of the Earth’s terrestrial surface where
that surface is imaged by an instrument with a large (1 km
or more) instantaneous field of view, when natural vari-
ability occurs over a small area, or where the scale of
variability of the target of interest is less than the size of
the observation unit, the pixel.

Several alternatives to the standard ‘hard’ classifier
have been proposed. The method of mixture modelling
starts from the explicit assumption that the characteristics
of the observed pixels constitute mixtures of the char-
acteristics of a small number of basic cover types, or
end members. Alternatively, the investigator can use a
‘soft’ or ‘fuzzy’ classifier, which does not reach a defi-
nite conclusion in favour of one class or another. Instead,

these soft classifiers present the user with a measure of
the degree (termed membership grade) to which the given
pixel belongs to some or all of the candidate classes, and
leaves to the investigator the decision as to the category
into which category the pixel should be placed. In this
section, the use of linear mixture modelling is described,
and the use of the ML and artificial neural net classifiers
to provide ‘soft’ output is considered.

In this section we consider the main approaches to
‘soft’ classification, in which the pixels in the image are
allowed to be ‘mixed’ (i.e. their value consists of the
sum of two or more land cover types). In Section 8.5.1
the linear mixture model is introduced. This method has
been particularly widely used by geologists. Section 5.2.2
describes the technique of ICA, which has very similar
aims to the linear mixture model. Section 8.5.3 describes
some approaches to soft or fuzzy classification.

8.5.1 The Linear Mixture Model

If it can be assumed that a single photon impinging upon
a target on the Earth’s surface is reflected into the field
of view of the sensor without interacting with any other
ground surface object, then the total number of photons
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reflected from a single pixel area on the ground and inter-
cepted by a sensor can be described in terms of a simple
linear model, as follows:

ri =
n∑

j=1

aijfj + ei

in which ri is the reflectance of a given pixel in the i th
of m spectral bands. The number of mixture or fractional
components is n ,fj is the value of the j th fractional com-
ponent (proportion of end member j ) in the makeup of
ri , and aij is the reflectance of end member j in spectral
band i . The term ei is the error term, which expresses the
difference between the observed pixel reflectance ri and
the reflectance for that pixel computed from the model. In
order for the components of r(= ri) to be computable, the
number of end members n must be less than the number
of spectral bands, m . This model is simply expressing the
fact that if there are n land cover types present in the area
on the land surface, that is covered by a single pixel, and
if each photon reflected from the pixel area interacts with
only one of these n cover types, then the integrated sig-
nal received at the sensor in a given band (rI ) will be the
linear sum of the n individual interactions. This model is
quite well known; for example Figure 8.18 shows how an
object (P) can be described in terms of three components
(A, B and C). The object may be a soil sample, and A,
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Figure 8.18 Point P represents an object, such as a soil sam-
ple, which is composed of a mixture of three components,
A, B and C. The proportions of the components (in percent)
are a, b and c. The components could, for example repre-
sent the proportions of sand, silt and clay making up the soil
sample. These proportions could be determined by sieving. In
a remote sensing context, components A, B and C represent
three land cover types. The objective of linear spectral unmix-
ing is to determine statistically the proportions of the different
land cover types within a single pixel, given the pixel’s spec-
tral reflectance curve and the spectral reflectance curves for
components A, B and C.

B and C could be the percentage of sand, silt and clay in
the sample.

A simple example shows how the process works.
Assume that we have a pixel of which 60% is covered
by material with a spectral reflectance curve given by
the lower curve in Figure 8.19 and 40% is covered by
material with a spectral reflectance curve like the upper
curve in Figure 8.19. The values 0.6 and 0.4 are the
proportions of these two end members contributing to
the pixel reflectance. The values of these mixture com-
ponents are shown in the first two columns of Table 8.2,
labelled C1 and C2. A 60 : 40 ratio mixture of the two
mixture components is shown as the middle (dashed)
curve in Figure 8.19 and in column M of Table 8.2. The
rows of the table (b1, b2 and b3) represent three spectral
bands in the green, red and near infrared respectively,
so C1 may be turbid water and C2 may be vigorous
vegetation of some kind. The data in Table 8.2 therefore
describe two end members, with contributions shown
by the proportions in columns C1 and C2, from which
a mixed pixel vector, M, is derived. We will now try
to recover the values of the mixture proportions f1 and
f2 from these data, knowing in advance that the correct
answer is 0.6 and 0.4.

First, define a matrix A with three rows (the spectral
bands) and two columns (the end member proportions,
represented by columns C1 and C2 in Table 8.2). Vector
b holds the measurements for each spectral band of the
mixed pixel (column M of Table 8.2). Finally f is an
unknown vector which will contain the proportions f1

and f2 as the elements of its two rows. Assume that
the relationship between A and b is of the form Af = b,
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Figure 8.19 Top and bottom curves represent end member
spectra. The centre curve is the reflectance spectrum of an
observed pixel, and is formed by taking 60% of the value of
the lower curve and 40% of the value of the upper (dashed
line).
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Table 8.2 Columns C1 and C2 show
the reflectance spectra for two pure
types. Column M shows a 60 : 40 ratio
mixture of C1 and C2. See text for
discussion.

C1 C2 M

b1 46 62 52.4

b2 31 42 35.1

b3 12 160 68.8

which is equivalent to the following set of simultaneous
linear equations:

46f1 + 62f2 = 54.2

31f1 + 42f2 = 35.4

12f1 + 160f2 = 71.2

so that A =
46 62
31 42
12 160

b =
52.4
35.4
71.2

and f = f1

f2
.

Because we have made up the columns of A and b
we know that f1 and f2 must equal 0.6 and 0.4 respec-
tively, but readers should check that this is in fact the
case by, for example entering the values of A and b into
a spreadsheet and using the Multiple Regression option,
remembering to set the intercept to ‘zero’ rather than
‘computed’. This should give values of f1 and f2 equal to
0.6 and 0.4 respectively. If linear mixture modelling were
being applied to an image then the values f1 and f2 for all
pixels would be scaled onto the range 0–255 and written
to file as the two output fraction images, thus generating
an output fraction image for each mixture component.

The example given above assumes that the spectral
reflectance curve, that is derived as a mixture of two
other spectral reflectance curves is unique and is dif-
ferent from other spectral reflectance curves. In reality,
this may not be the case, as Price (1994), shows. For
instance, the spectral reflectance curve for corn is inter-
mediate between the spectral reflectance curves of soy-
beans and winter wheat. Hence, the procedure outlined
in the example above would be incapable of distinguish-
ing a pixel that was split between two agricultural crops
(soybeans and winter wheat) and a pure pixel covered by
corn. Applications of spectral unmixing with multispec-
tral data use general classes such as ‘green vegetation’
and ‘soil’, so this confusion may not be too serious. How-
ever, hyperspectral data may be used to identify specific
mineral/rock types, and Price’s point is relevant to such
studies. Sohn and McCoy (1997) also consider problems
in end member selection.

In a real application, rather than a fictitious example, it
is necessary to go through a few more logical steps before

determining the values of the fractional (end member)
components, otherwise serious errors could result. First of
all, in our example we knew that the mixed pixel values
are composed of two components, C1 and C2 in Table 8.2.
In reality, the number of end members is not known.
Second, the values of the fractions (the proportions of
the mixture components used to derive column M from
columns C1 and C2) were known in advance to satisfy
two logical requirements, namely:

0.0 ≤ fi ≤ 1.0

n∑
j=1

fj ≤ 1.0

These constraints specify that the individual fractions
fi must take values between 0 and 100%, and that the
fractions for any given mixed pixel must sum to 100% or
less. These two statements are a logical part of the spec-
ification of the mixture model which, in effect, assumes
that the reflectance of a mixed pixel is composed of a
linear weighted sum of a set of end member reflectances,
with no individual proportion exceeding the range 0–1
and the sum of the proportions being 1.0 at most. This
statement specifies the linear mixture model.

There are several possible ways of proceeding from
this point. One approach, called ‘unconstrained’, is to
solve the mixture model equation without considering the
constraints at all. This could result in values of fi that
lie outside the 0–1 range (such illogical values are called
undershoots or overshoots, depending whether they are
less than 0 or greater than 1). However, the value of
the unconstrained approach is that it allows the user to
estimate how well the linear mixture model describes the
data. The following criteria may be used to evaluate the
goodness of fit of the model:

1. The sizes of the residual terms, ei in the mix-
ture equation. There is one residual value per pixel
in each spectral band, representing the difference
between the observed pixel value and the value com-
puted from the linear mixture model equation. In the
simple example given above, the three residuals are
all zero. It is normal to take the square root sum of
squares of all the residuals for a given pixel divided
by the number of spectral bands, m , to give the Root
Mean Squared Error (RMSE) for that pixel:

RMSE =

√√√√√
m∑

b=1
e2
b

m

The RMSE is calculated for all image pixels and
scaled to the 0–255 range in order to create an RMSE
image. The larger the RMSE, the worse the fit of the
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model. Since the residuals are assumed to be random,
then any spatial pattern that is visible in the RMS
images can be taken as evidence that the model has
not fully accounted for the systematic variation in the
image data, which in turn implies that potential end
members have been omitted from the model, or that
the selected end members are deficient, or that the
assumed linear relationship Af = b does not describe
the relationship between the pixel spectrum and the
end member spectra.

2. The number of pixels that have proportions f i
that lie outside the logical range of 0–1. Under-
shoots (fi less than 0.0) and overshoots (fi greater
than 1.0) indicate that the model does not fit. If there
are only a small percentage of pixels showing under-
and overshoots then the result can be accepted, but if
large numbers (say greater than 5%) of pixels under-
or overshoot then the model does not fit well. Duran
and Petrou (2009) discuss what they call ‘negative
and superunity abundancies’.

Undershoots and overshoots can be coded by a method
that maps the legitimate range of the fractions fi (i.e.
0–1) to the range 100–200 by multiplying each fi by
100 and adding 100 to the result, which is constrained to
lie in the range 0–255. This ensures that undershoots and
overshoots are mapped onto the range 0–99 and 201–255
respectively. Any very large under- and overshoots map
to 0 and 255, respectively. Each fraction image can then
be inspected by, for example applying a pseudocolour
transform to the range 100–200. All of the legitimate
fractions will then appear in colour and the out of range
fractions will appear as shades of grey. Alternatively,
the ranges 0–99 and 201–255 can be pseudocoloured
(Section 5.4).

If unconstrained mixture modelling is used then the
number of under- and overshoots, and the overall RMSE,
should be tabulated in order to allow others to evalu-
ate the fit of the model. Some software packages simply
map the range of the fractions for a given mixture com-
ponent, including under- and overshoots, onto a 0–255
scale without reporting the presence of these under- and
overshoots. Whilst this approach may produce an inter-
pretable image for a naive user, it fails to recognize a
basic scientific principle, which holds that sufficient infor-
mation should be provided to permit others independently
to replicate your experiments and test your results.

The model may not fit well for one or more of sev-
eral reasons. First, the pixels representing specific mixture
components may be badly chosen. They should repre-
sent ‘pure’ pixels, composed of a single land-cover type,
that determine the characteristics of all of other image
pixels. It is easy to think of simple situations where mix-
ture component selection is straightforward; for example

a flat, shadow-free landscape composed of dense forest,
bare soil and deep, clear water. These three types can
be thought of as the vertices of a triangle within which
all image pixels are located, by analogy with the tri-
angular sand–silt–clay diagram used in sedimentology
(Figure 8.18). If the forest end member is badly chosen
and, in reality, represents a ground area that is only 80%
forest then any pixel with a forest cover of more than
80% will be an over-shoot. There may be cases in which
no single pixel is completely forest-covered, so the forest
end member will not represent the pure case.

Second, a mixture component may have been omit-
ted. This is a problem where the landscape is complex
and the number of image bands is small because, as noted
earlier, the number of mixture components cannot exceed
the number of bands. Third, the data distribution may not
be amenable to description in terms of the given number
of mixture components. Consider the triangle example
again. The data distribution may be circular or ellipti-
cal, and thus all of the pixels in the image may not
fit within the confines of the triangle defined by three
mixture components. Fourth, the assumption that each
photon reaching the sensor has interacted with only a
single object on the ground may not be satisfied, and a
non-linear mixing model may be required (Ray and Mur-
ray, 1996). The topic of choice of mixture components is
considered further in the following paragraphs.

Some software uses a simple procedure to make the
model appear to fit. Negative fractions (under-shoots) are
set to zero, and the remaining fractions are scaled so that
they lie in the range 0–1 and add to 1. This might seem
like cheating, and probably is. An alternative is to use an
algorithm that allows the solution of the linear mixture
model equation subject to the constraints. This is equiv-
alent to searching for a solution within a specified range,
and is no different from the use of the square root key on
a calculator. Generally speaking, when we enter a number
and press the square root key we want to determine the
positive square root, and so we ignore the fact that a neg-
ative square root also exists. If anyone were asked ‘What
is the square root of four?’ he or she would be unlikely
to answer ‘Minus two’, though this is a correct answer.
Similarly, the solution of a quadratic equation may result
in an answer that lies in the domain of complex numbers.
That solution, in some instances, would be unacceptable
and the alternative solution is therefore selected.

Lawson and Hansen (1995) provide a Fortran-90 sub-
routine, BVLS , which solves the equations Af = b subject
to constraints on the elements of f. This routine, which
is available on the Internet via the Netlib library, does
not allow for a constraint on the sum of the fi . An
alternative is a Fortran-90 routine from the IMSL math-
ematical library provided with Microsoft Powerstation
Fortran v4.0 Professional Edition. This routine, LCLSQ ,
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allows the individual fi to be constrained and it also
allows the sum of the fi to be specified.

The solution of the mixture model equation in the
unconstrained mixture model requires some thought. The
standard solution of the matrix equation Af = b generally
involves the calculation of the inverse of A (represented
as A−1) from which f is found from the expression f =
A−1b. A number of pitfalls are likely to be encountered
in evaluating this innocent-looking expression. If A is an
orthogonal matrix (that is its columns are uncorrelated)
then the derivation of the inverse of A is easy (it is the
transpose of A). If the columns of A (which contain the
reflectances of the end members) are correlated then error
enters the calculations. The greater the degree of inter-
dependence between the columns the more likely it is
that error may become significant. When the columns of
A are highly correlated (linearly dependent) then matrix
A is said to be near-singular . If one column of A can
be calculated from the values in the other columns then
A is singular , which means that it does not possess an
inverse (just has the value 0.0 does not possess a recip-
rocal). Consequently, the least-squares equations cannot
be solved. However, it is the problem of near-singularity
of A that should concern users of linear mixture mod-
elling because it is likely that the end member spectra
are similar. The solution (the elements of vector f) may,
in such cases, be significantly in error, especially in the
case of multi-spectral (as opposed to hyperspectral) data
when the least-squares equations are being solved with
relatively small numbers of observations.

Boardman (1989) suggests that a procedure based on
the singular value decomposition (SVD) handles the
problem of near-singularity of A more effectively. The
inverse of matrix A (i.e. A−1) is found using the SVD:

A = UWV′

where U is an m × n column-orthogonal matrix, W is an
n × n matrix of singular values and V is an n × n matrix
of orthogonal columns. V′ is the matrix transpose of V.
The inverse of A is found from the following expression:

A−1 = VW−1U′

The singular values, contained in the diagonal elements
of W, give an indication of the dimensionality of the
space containing the spectral end members. They can be
thought of as analogous to the principal components of a
correlation or covariance matrix. If the spectral end mem-
bers are completely independent then the information in
each dimension of the space defined by the spectral bands
is equal and the singular values Wii are all equal. Where
one spectral end member is a linearly combination of
the remaining end members then one of the diagonal ele-
ments of W will be zero. Usually neither of these extreme
cases is met with in practice, and the singular values of

A (like the eigenvalues of a correlation matrix, used in
principal components analysis (PCA)) take different mag-
nitudes. An estimate of the true number of end members
can therefore be obtained by observing the magnitudes of
the singular values, and eliminating any singular values
that are close to zero. If this is done then the inverse of
A can still be found, whereas if matrix inversion meth-
ods are used then the numerical procedure either fails or
produces a result which is incorrect.

If the landscape is composed of a continuously varying
mixture of idealized or pure types, it might appear to
be illogical to search within that landscape for instances
of these pure types. Hence, in a number of studies,
laboratory spectra have been used to characterize the
mixture components. Adams, Smith and Gillespie (1993)
term these spectra reference end members . They are
most frequently used in geological studies of arid and
semi-arid areas. Since laboratory spectra are recorded
in reflectance or radiance units, the image data must be
calibrated and atmospherically corrected before use, as
described in Chapter 4.

In other cases, empirical methods are used to deter-
mine which of the pixels present in the image set can be
considered to represent the mixture components. Murphy
and Wadge (1994) use PCA (Chapter 6) to identify candi-
date image end members. A graphical display of the first
two principal components of the image set is inspected
visually and

. . . the pixels representing the end member for each cover
type should be located at the vertices of the polygon that
bounds the data space of the principal components which
contain information (Murphy and Wadge, 1994, p. 73).

This approach makes the assumption that the m dimen-
sional space defined by the spectral bands can be col-
lapsed onto two dimensions without significant loss of
proximity information; in other words, it is assumed that
pixels that lie close together in the PC1 – PC2 plot are
actually close together in the m dimensional space, and
vice-versa . PCA is discussed in Section 6.4, where it
is shown that the technique is based on partitioning the
total variance of the image dataset in such a way that
the first principal component accounts for the maximum
variance of a linear combination of the spectral bands,
principal component two accounts for a maximum of the
remaining variance, and so on with the restriction that
the principal components are orthogonal. Since PCA has
the aim of identifying dimensions of variance (in that the
principal components are ordered on the basis of their
variance), principal components 1 and 2 will, inevitably,
contain much of the information present in the image
dataset. However, significant variability may remain in
the lower-order principal components. Furthermore, if the
PCA is based on covariances, then the spectral bands may
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contribute unequally to the total variance analysed. Tomp-
kins et al. (1997) present an elaborate methodology for
end member selection; their procedure estimates both the
end member proportions and the end member reflectances
simultaneously. Zortea and Plaza (2009) use spatial as
well as spectral information to identify end-members.
Other references to the use of the linear mixture model are
de Asis et al. (2008), Chang et al. (2006), Dennison and
Roberts (2003), Dennison, Halligan and Roberts (2004),
Eckmann, Roberts and Still (2008), Ngigi, Tateishi and
Gachari (2009) and Plourde et al. (2007). Feng, Rivard
and Sánchez-Azofeifa (2003) consider the impact of topo-
graphic normalization (Section 4.7) on the choice of end
members. Users of the ENVI image processing system
will be familiar with the pixel purity index (PPI), which
is used for end-member selection. When mentioned in the
literature its exact nature is shrouded in mystery. Chang
and Plaza (2006) claim to have worked out how PPI is
calculated and present their results.

An empirical method for selecting mixture components
is Sammon’s (1969) Nonlinear Mapping. The method
uses a measure of goodness of fit between the inter-pixel
distances measured in the original m-dimensional space
and those measured in the reduced-dimensionality space,
usually of two or three dimensions (Figure 8.10). The
two- or three-dimensional representation is updated so
as to reduce the error in the inter-pixel distances mea-
sured in the two- or three-dimensional space compared
to the equivalent distance measured in the full space of m
spectral bands. A minimum of the error function is sought
using the method of steepest descent, similar to that used
in the back-propagating artificial neural net. Study of the
plots of pairs of dimensions provides some interesting
insights into the nature of the materials in the image.
Nonlinear Mapping analysis appears to be a better way
of analysing image information content than the princi-
pal components approach, as the analysis is based on
inter-pixel distances. Bateson and Curtiss (1996) discuss
another multidimensional visualization method of pro-
jecting points (representing pixels) onto two dimensions.
Their method is based on a procedure termed parallel
coordinate representation (Wegman, 1990), which allows
the derivation of ‘synthetic’ end member spectra that do
not coincide with image spectra. The method is described
in some detail by Bateson and Curtiss (1996).

Applications of linear mixture modelling in remote
sensing are numerous, though some authors do not give
enough details for their readers to discover whether or
not the linear mixture model is a good fit. If the data do
not fit the model then, at best, the status of the results is
questionable. Good surveys of the method are provided
by Adams, Smith and Gillespie (1989, 1993), Ichoku
and Karnieli (1996), Mustard and Sunshine (1999),
Settle and Drake (1993) and Settle and Campbell (1998).

A selection of typical applications is: Cross et al. (1991),
who use AVHRR data to provide subpixel estimates
of tropical forest cover, and Gamon et al. (1993), who
use mixture modelling to relate AVIRIS (imaging spec-
trometer) data to ground measurements of vegetation
distribution. Shipman and Adams (1987) assess the
detectability of minerals on desert alluvial fans. Smith
et al. (1990) provide a critical appraisal of the use of
mixture modelling in determining vegetation abundance
in semiarid areas. Other useful references are Bateson
and Curtiss (1996), Bryant (1996), Garcia-Haro, Gilabert
and Melia (1996), Hecker et al. (2008), Hill and Horstert
(1996), Kerdiles and Grondona (1995), Peddle and Smith
(2005), Roberts, Adams and Smith (1993), Rogge et al.
(2007), Shimabukuro and Smith (1991), Thomas, Hobbs
and Dufour (1996), Ustin et al. (1996) and Wu and
Schowengerdt (1993). Roberts, Adams and Smith (1993)
consider an interesting variant on the standard mixture
modelling technique which, in a sense, attempts a global
fit in that each pixel in the image is assumed to be the
sum or mixture of the same set of end members. Roberts,
Adams and Smith (1993) suggest that the number and
nature of the end members may vary over the image.
This opens the possibility of using an approach similar
to stepwise multiple regression (Grossman et al., 1996)
in which the best k from a pool of m possible end
members are selected for each pixel in turn. Roberts
et al. (1998) also consider a multiple end-member model
approach to mapping chaparral. Foody et al. (1996,
1997) describe an approach to mixture modelling using
ANNs (Section 8.4.3).

Spectral angle mapping (SAM) and ICA have similar
aims to mixture modelling, and are described below in
Sections 8.5.2 and 8.5.3.

8.5.2 Spectral Angle Mapping

A simple but effective alternative to linear spectral
unmixing that does not have any statistical overtones
is provided by the method of SAM, which is based on
the well-known coefficient of proportional similarity,
or cosine theta (cos θ ). This coefficient measures the
difference in the shapes of the spectral curves (Imbrie,
1963; Weinand, 1974). It is insensitive to the magnitudes
of the spectral curves, so two curves of the same shape
are considered to be identical. If two spectral reflectance
curves have the same shape but differ in magnitude, one
might conclude that the difference is due to changes in
illumination conditions. This is a reasonable claim, but
the method does not correct for illumination variations.

In the context of image processing, a small number of
pixels is selected as the reference set r and the remain-
ing image pixels (represented by vectors t) are compared
to these reference pixels. Each pixel is considered as a
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Figure 8.20 The cosine of angle θ measures the degree of dissimilarity between the shapes of reflectance spectra. Here, an
image pixel spectrum t is being compared to a reference spectrum r in a two-dimensional feature space. In (a) the 2 pixel vectors
have components that are measured on a scale of 0–255, and so the angle θ lies within the range 0–90◦, thus 0 ≤ cos(θ) ≤ 1.0.
In (b) the elements of the two vectors t and r are unrestricted in range, and so θ lies in the range 0–360◦ (2π radians) and
−1.0 ≤ cos(θ) ≤ 1.0.

geometric vector. For simplicity, let us use a feature space
defined by two spectral bands, as shown in Figure 8.20a.
If the pixel values stored in r and t are measured on an 8-,
16- or 32-bit unsigned integer scale then the points rep-
resenting pixels will lie in the first quadrant, as they are
all non-negative. Figure 8.20a shows a reference vector
r and an image pixel vector t. Both vectors are measured
on a scale from 0 to 255, and 0 ≤ θ ≤ 90◦.

If the line (vector) joining the pixel of interest t to the
origin is coincident with the reference pixel vector r then
the angle between the two vectors (pixel and reference) is
zero. The cosine of zero is 1, so cos(θ) = 1 means com-
plete similarity. The maximum possible angle between a
reference pixel vector and an image pixel vector is 90◦,
and cos(90◦) = 0, which implies complete dissimilarity.

For image data measured on a 0–255 scale, the out-
put image can either be the cosine of the angle θ (which
lies on a 0–1 scale with 1 meaning similar and 0 mean-
ing dissimilar, so that similar pixels will appear in light
shades of grey) or the value of the angle θ (on a scale
of 0–90◦ or 0–π/2 radians). Both of these representa-
tions would require that the output image be written in
32-bit real format (Section 3.2). If the angular represen-
tation is used then you must remember that pixels with
a value of θ equal to 0◦ (i.e. complete similarity) will
appear as black, while dissimilar pixels (θ = 90◦ or π/2
radians) will appear in white. Of course, the real num-
ber scales 0.0–1.0, 0.0–90.0 or 0.0–π/2) can be mapped
onto a 0–255 scale using one of the methods described
in Section 3.2.1.

If the input data are represented in 32-bit real form,
then it is possible that some image pixel values will be
negative (for example principal component images can
have negative pixel values). In this case, additional pos-
sibilities exist. A reference vector in two-dimensional
feature space may take the values (90, 0) so that its

corresponding vector joins the origin to the point (90, 0).
Imagine a pixel vector with the values (−90, 0). This is
equivalent to a vector joining the origin to the point (−90,
0), so that the angle between the reference and pixel vec-
tors is ◦. The cosine of 180◦ is −1.0. This value does not
mean that the two vectors have no relationship – they do,
but it is an inverse one, so that the pixel vector takes the
same values as the reference vector but with the oppo-
site sign. The output pixel values will thus lie within the
range (−1.0, 1.0). When the output image is displayed
then pixel vectors that are identical to a reference vec-
tor will appear white (1.0), whereas pixels that are not
related to a reference vector will take the value 127 (if
a linear mapping is performed from (−1.0, 1.0) to (0,
255)). Unrelated pixels will appear as mid-grey, whereas
pixels whose vectors are the reciprocals of the reference
vector will appear black (−1.0). Figure 8.20b shows a
reference pixel r and an image pixel t. Both r and t are
32-bit real quantities, and the angle θ between them is
almost 180◦, implying that r is the mirror image of t
(or vice versa).

If the i th element of the reference pixel vector is rep-
resented by ri and any other image pixel vector is written
as ti then the value of cos(θ) is calculated from:

cos(θ) =

N∑
i=1

ri ti

(
N∑

i=1
r2
i

)0.5 ( N∑
i=1

t2
i

)0.5

given N bands of image data. One image of cos(θ) val-
ues is produced for each reference vector r. There are no
statistical assumptions or other limitations on the number
or nature of the reference vectors used in these calcula-
tions. Kruse et al. (1993), Ben-Dor and Kruse (1995) and
van der Meer (1996c) provide examples of the use of the
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method, in comparison with the linear spectral unmixing
technique. Yonezawa (2007) combines a ML classifier
with Spectral Angle Mapper to classify a QuickBird mult-
sipectral image.

8.5.3 ICA

Independent Components Analysis (ICA) is a well-
known technique in signal processing, where it is used
as a method of ‘blind source separation’, that is finding
sources (end members) that, when mixed in specific
proportions, produce the observed pixel reflectance
values. It has found less than widespread use in the
analysis of remotely-sensed images. The basic equation
of ICA is similar to that of the linear mixture model,
namely, x = As where x is a vector of observations, A
is the matrix of mixture proportions or abundances, and
s is the vector of sources. Several texts on ICA use the
cocktail party story to illustrate this model. If there are
two people speaking in a room, say s1 and s2, and their
voices are picked up by two microphones, say x1 and
x2, then the two microphones will pick up mixtures of
the two voices. The matrix A contains those mixture
proportions, which are the weights in a weighted sum of
the sounds made by the two speakers.

What is interesting about ICA is that it is not a sta-
tistical technique so there is no error term, as there is
with linear mixture modelling. Furthermore, the tech-
nique assumes the exact opposite of what most statis-
tical techniques assume. Standard statistical procedures
require that the data are distributed in a Normal or Gaus-
sian way, and many users of the ML classifier worry
inordinately because their data are non-normal. The rea-
son that the technique of ICA assumes non-normality is
that normal or gaussian distributions are ‘. . . the most
random, least structured, of all distributions’ (Hyvärinen
and Oja, 2000, p. 418). What we want are structured,
systematic and independent mixing components that rep-
resent the data adequately. The measures used to ascertain
the ‘gaussianicity’ of a variable are kurtosis and entropy.
The former is a measure of the peakedness of the fre-
quency distribution and is equal to zero for a Gaussian
random variable whereas the latter measures information
content. The ICA algorithm uses an iterative scheme to
maximize the non-gaussianicity using one or other of the
measures of degree of conformity to a Gaussian distribu-
tion. Hyvärinen and Oja (2000) and Hyvärinen, Karhunen
and Oja (2001) provide a good discussion of these points.

If kurtosis is used as the basis for the decomposition of
the observations (pixel values) into sources of variability
(end members in mixture modelling parlance) then ICA
can demonstrate one other potential advantage. Other
methods use the mean and the variance/covariance
matrix alone; these are called first and second order
statistics, whereas the kurtosis is a fourth order statistic.

It is claimed that the use of higher order statistics
provides ICA with the ability to pick out smaller, more
detailed, sources in the image data.

There is still a lot to learn about ICA and its potential
in remote sensing data analysis. Standard references
include Bayliss, Gualtieri and Cromp (1997), Fiori
(2003), Gao et al. (in press), Hyvärinen and Oja (2000),
Hyvärinen, Karhunen and Oja (2001), Lee (1998),
Nascimento and Dias (2005), Roberts and Everson
(2001), Shah, Varshney and Arora (2007), Stone (2004)
and Wang and Chang (2006). MATLAB code is given by
Gopi (2007). Hyvärinen, Karhunen and Oja (2001) and
Stone (2004) give Internet references to sources of code.

8.5.4 Fuzzy Classifiers

The distinction between ‘hard’ and ‘soft’ classifiers is
discussed in the opening paragraphs of the introduction
to Section 8.5. The ‘soft’ or fuzzy classifier does not
assign each image pixel to a single class in an unambigu-
ous fashion. Instead, each pixel is given a ‘membership
grade’ for each class. Membership grades range in value
from 0 to 1, and provide a measure of the degree to
which the pixel belongs to or resembles the specified
class, just as the fractions or proportions used in linear
mixture modelling (Section 8.5.1) represent the composi-
tion of the pixel in terms of a set of end members. It might
appear that membership grade is equivalent to probabil-
ity, and the use of probabilities in the ML classification
rule might lend support to this view. Bezdek (1993) dif-
ferentiates between precise and fuzzy data, vague rules
and imprecise information. Crisp sets contain objects that
satisfy unambiguous membership requirements. He notes
that H = {r ∈ �|6 ≤ 8} precisely represents the crisp or
hard set of real numbers H from 6 to 8. Either a num-
ber is a member of the set H or it is not. If a set F is
defined by a rule such as ‘numbers that are close to 7’
then a given number such as 7.2 does not have a pre-
cise membership grade for F , whereas its membership
grade for H is 1.0. Bezdek (1993) also notes that ‘. . . the
modeller must decide, based on the potential applica-
tions and properties desired for F, what mF should be’
(p. 1). The membership function mF for set F can take
any value between 0 and 1, so that numbers far away
from 7 still have a membership grade. This, as Bezdek
notes, is simultaneously both a strength and a weakness.
Bezdek (1994) points out that fuzzy membership repre-
sents the similarity of an object to imprecisely defined
properties, while probabilities convey information about
relative frequencies.

Fuzzy information may not be of much value when
decisions need to be taken. For example, a jury must
decide, often in the basis of fuzzy information, whether
or not the defendant is guilty. A fuzzy process may
thus have a crisp outcome. The process of arriving at a
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crisp or hard conclusion from a fuzzy process is called
defuzzification. In some cases, and the mixture model
discussed in the previous section is an example, we may
wish to retain some degree of flexibility in presenting our
results. The membership grades themselves may be of
interest as they may relate to the proportions of the pixel
area that is represented by each of the end members.
In seminatural landscapes one may accept that different
land cover types merge in a transition zone. For instance,
a forested area may merge gradually into grassland, and
grassland in turn may merge imperceptibly into desert.
In such cases, trying to draw hard and fast boundaries
around land cover types may be a meaningless operation,
akin to Kimble’s (1951) definition of regional geography:
putting ‘ . . . boundaries that do not exist around areas
that do not matter’ (Kimble, 1951, p. 159). On the other
hand, woodland patches, lakes and agricultural fields
have sharp boundaries, though of course the meaning of
‘sharp’ depends upon the spatial scale of observation, as
noted previously. A lake may shrink or dry up during
a drought, or the transition between land cover types
may be insignificant at the scale of the study. At a
generalized scale it may be perfectly acceptable to draw
sharp boundaries between land cover types. Wang (1990)
discusses these points in the context of the ML decision
rule, and proposes a fuzzy version of ML classification
using weighted means and variance–covariance matrices
similar to those described above (Section 8.4.1) in
the context of deriving robust estimates from training
samples. Gong, Pu and Chen (1996) use the idea of
membership functions to estimate classification uncer-
tainty. If the highest membership function value for a
given pixel is considerably greater than the runner-up,
then the classification output is reasonably certain, but
where two or more membership function values are
close together then the output is less certain.

One of the most widely used unsupervised fuzzy classi-
fiers is the fuzzy c-means clustering algorithm. Bezdek
et al. (1984) describe a Fortran program. Clustering is
based on the distance (dissimilarity) between a set of clus-
ter centres and each pixel. Either the Euclidean or the
Mahalanobis distance can be used. These distances are
weighted by a factor m which the user must select. A
value of m equal to 1 indicates that cluster membership
is ‘hard’ while all membership function values approach
equality as m gets very large. Bezdek et al. (1984) suggest
that m should lie in the range 1–30, though other users
appear to choose a value of m of less than 1.5. Applica-
tions of this method are reported by Bastin (1997), Cannon
et al. (1986), Du and Lee (1996), Foody (1996b) and Key,
Maslanik and Barry (1989). Other uses of fuzzy classifica-
tion procedures are reported by Blonda and Pasquariello
(1991), Maselli et al. (1995a) and Maselli, Rodolfi and
Conese (1996).

The basic ideas of the fuzzy c-means classification
algorithm can be expressed as follows. U is the mem-
bership grade matrix with n columns (one per pixel) and
p rows (one per cluster):

U =




u11 · · · u1n

...
...

up1 · · · upn




The sum of the membership grades for a given class
(row of U) must be non-zero. The sum of the membership
grades for a given pixel (column of U) must add to one,
and the individual elements of the matrix, uij , must lie
in the range 0–1 inclusive. The number of clusters p
is specified by the user, and the initial locations of the
cluster centres are either generated randomly or supplied
by the user. The Euclidean distance from pixel i to cluster
centre j is calculated as usual, that is

dij =
√√√√ k∑

l=1

(xil − cjl)2

and the centroids cj are computed from:

cjl =
n∑

i=1

um
ji xil/

n∑
i=1

um
ji

This is simply a weighted average (with the elements
u being the weights) of all pixels with respect to centre
j (1 ≤ j ≤ p). The term xil is the measurement of the
i th pixel (1 ≤ i ≤ n) on the l th spectral band or feature.
The exponent m is discussed above.

Each of the membership grade values uij is updated
according to its Euclidean distance from each of the clus-
ter centres:

uij = 1
p∑

c=1

(
dij

dcj

) 2
(m−1)

where 1 ≤ i ≤ p and 1 ≤ j ≤ n (Bezdek et al., 1984).
The procedure converges when the elements of U differ
by no more than a small amount between iterations.

The columns of U represent the membership grades for
the pixels on the fuzzy clusters (rows of U). A process
of ‘defuzzification’ can be used to determine the clus-
ter membership for pixel i by choosing the element in
column i of U that contains the largest value. Alterna-
tively, and perhaps more informatively, a set of classified
images could be produced, one per class, with the class
membership grades (measured on a scale from 0 to 1)
scaled onto the 0–255 range. If this were done, then the
pixels with membership grades close to 1.0 would appear
white, and pixels whose membership grade was close to
zero would appear black. Colour composites of the classi-
fied images, taken three at a time, would be interpretable
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in terms of class membership. Thus, if class 1 were shown
in red and class 2 in green, then a yellow pixel would be
equally likely to belong to class 1 as to class 2.

The activations of the output neurons of an ANN
(Foody, 2002a) or the class membership probabilities
derived from a standard ML classifier, can also be used
as approximations of the values of the membership
function. In an ideal world, the output from a neural
network for a given pixel will be represented by a
single activation value of 1.0 in the output layer of
the network, with all other activation levels being set
to 0.0. Similarly, an ideal classification using the ML
method would be achieved when the class membership
probability for class i is 1.0 and the remaining class
membership probabilities are zero. These ideal states
are never achieved in practice. The use of a ‘winner
takes all’ rule is normally used, so that the pixel to be
classified is allocated to the class associated with the
highest activation in the output layer of the network, or
the highest class-membership probability, irrespective of
the activation level or the magnitude of the maximum
probability. It is, however, possible to generate one
output image per class, rather than a single image repre-
senting all the classes of a ‘hard’ representation. The first
image will show the activation for output neuron number
one (or the class membership probability for that class,
if the ML method is used) scaled to a 0–255 range.
Pixels with membership function values close to 1.0 are
bright, while pixels with a low membership function
value are dark. This approach allows the evaluation of
the degree to which each pixel belongs to a given class.
Such information will be useful in determining the level
of confidence that the user can place in the results of his
or her classification procedure.

8.6 More Advanced Approaches to Image
Classification

8.6.1 Support Vector Machines

SVMs have only recently been introduced into remote
sensing as an effective and efficient means of classi-
fication, though they were originally developed in the
1970s. One of their first reported uses in remote sensing
is Huang, Davis and Townshend (2002). SVM are effec-
tive because they produce classification accuracy values
(Section 8.10) as high, if not higher, than other classifi-
cation methods and they are efficient because they need
only small amounts of training data that is located in
those areas of feature space that lie near to interclass
boundaries. In the two-class case shown in Figure 8.21
the two classes to be separated are shown as blue circles
or green triangles. The margin is the distance between

Maximum margin hyperplane:

Class 1

Class 2

Margin

Figure 8.21 Illustrating the concept of the support vector.
The maximum margin hyperplane is shown in red, and the
margin between the support vectors is shown by the parallel
light blue lines. The two classes do not overlap. The support
vectors (patterns that are on the margin) are shown as yellow
shapes – circles for class 1, triangles for class 2.

the two light blue parallel lines. There is one position
of the margins that gives the maximum distance between
the closest members of the two classes. Two blue sam-
ples and two green samples in Figure 8.21 are the closest
pairs of data points in the feature space that are the fur-
thest apart and they are shown in yellow. They are called
support vectors. There must be a minimum of two sup-
port vectors but there can be more than two. The red
line running down the centre of the margin is the maxi-
mum margin hyperplane (a hyperplane is a plane defined
in more than three dimensions). Any new point can be
identified by reference to the maximum margin hyper-
plane. If it is above and to the right it is a member of
the green class. If it is lower than the maximum mar-
gin hyperplane and to the left then it is a member of the
blue class. This example illustrates that only the support
vectors are needed – the rest of the training data is irrel-
evant. Thus, the SVM classification remains stable if the
training data are altered provided that the same support
vectors emerge. The choice of training data for SVM is
discussed by Foody and Mathur (2004a, 2006).

If the two classes are not linearly separable, as in
Figure 8.21, then a more complicated approach needs to
be adopted. A term is added to the SVM decision rule (it
is called a slack variable) and it penalizes errors, that is
the assignment of a training pixel to the wrong class. In
essence, the original decision rule was to maximize the
margin. The modified rule adds a further requirement,
that of penalizing incorrect decisions.

So far, the idea underlying SVM appears to be simple.
There are instances, however, where the members of
each of the two classes in the training dataset can be
separated in a nonlinear way (e.g. by a curved line).
The data are then mapped into a higher-dimensional
space that has the property of increasing inter-class
separability. The mapping function is called a kernel,
hence SVM are kernel-based methods. The idea of a
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kernel is surprisingly difficult to explain, and readers
wishing to get involved in the mathematics can refer
to Shawe-Taylor and Cristianini (2004), who deal with
kernel-based methods of pattern recognition. Their book
includes some software. Another book on the subject is
Abe (2005), while yet another book by Kanevski and
Maignan (2004) (which has been cited several times in
this chapter) includes a chapter on SVM and some soft-
ware. Tso and Mather (2009) provide a somewhat dense
account of the non-linear mapping procedure. Burges
(1998) provides a tutorial introduction but the level of
mathematical sophistication required of the reader is
considerable. Software to help readers experiment with
SVM is available from Chang and Lin (2001). Readers
who do not wish to pursue the mathematical details can
consider kernel-based methods as analogous to the use of
logarithms in manual calculation. Multiplication of large
numbers can be reduced to addition of smaller numbers,
resulting in a saving of time and effort. The same savings
accrue to the nonlinear mapping provided by the kernel
function. This analogy is, however, not strictly true for,
as noted by Tso and Mather (2009, p. 132)

. . . the purpose of a kernel function is to enable oper-
ations to be performed in the current domain . . . rather
than the potentially high dimensional feature space [of the
kernel] . . . This provides a smart means of resolving the
computational issue caused by high dimensionality.

The user of an SVM has to make a selection from a
range of available kernel functions, which include: homo-
geneous and inhomogeneous polynomials, radial basis
function and Gaussian radial basis function, and the sig-
moid kernel. There is no clear evidence to support the
use of one rather than another, though the radial basis
function is widely used.

The equation of the maximum margin hyperplane is
needed to label the members of the test dataset (and,
ultimately, the image pixels). Optimization methods are
used, similar to the steepest descent approach described
in Section 8.4.3 in connection with training ANN clas-
sifiers. An alternative to the steepest descent algorithm
when only two parameters are required is the grid search
method, in which the function to be minimized is evalu-
ated over the nodes of a grid and the accuracy of the allo-
cation of test data pixels to their classes is measured. The
highest value of classification accuracy (Section 8.10) is
then located and the parameter values read from the axes
(see Tso and Mather, 2009, p. 141).

Until this point it has been assumed that the problem
facing the classifier is to allocate the image pixels to one
of two classes. This is not a common situation in remote
sensing, where there are usually multiple classes. Three
possibilities present themselves: one could carry out an
SVM classification for one class against the rest of the

classes bundled together as a single class, for example
class i might be tested against the rest of the k classes
excluding class i . This is called ‘one against the rest’, and
it is carried out k times with i running from 1 to k . A sec-
ond possibility is to do a pairwise comparison of classes i
and j , giving a total of k(k − 1)/2 runs of the SVM pro-
gram. This is called ‘one against one’. A voting system
is needed to assign a unique label to a pixel. Usually the
majority vote is used. In the case of a tie then the label
of a neighbouring pixel could be used. Another solution
to the problem of multiple classes is to use a multiclass
SVM rather than generate a multiclass SVM by the use
of ‘one against one’ or ‘one against all’ strategies. How-
ever, the details of this technique are beyond the range
of this book and interested readers can refer to Crammer
and Singer (2002), Hsu and Lin (2002), Mathur and
Foody (2008), Tso and Mather (2009) and Vapnik (1998).

There are a number of useful articles on SVM in
remote sensing. Foody and Mathur (2004b) compare
SVM with other classifiers. Pal and Mather (2005)
compare SVM with ANN and ML and conclude that
SVM can give higher classification accuracy with high-
dimensional data and small training samples. Dixon and
Candade (2008) compare ML, SVM and ANN classifiers,
and conclude that SVM and ANN give higher classifica-
tion accuracies than ML, but that training times for SVM
are much lower than for ANN. Su et al. (2007) used
SVMs for recognition of semiarid vegetation types using
MISR multiangle imagery. Melgani and Bruzzoni (2004)
and Plaza et al. (2009) consider the problem of classi-
fying hyperspectral remote sensing images (Section 9.3)
using SVMs. Pal and Mather (2004) also address this
topic. Camps-Valls and Bruzzone (2005) use SVM and
boosting (Section 8.6.3.3). Zhang and Ma (2008) present
an improved SVM method (P-SVM) for classification
of remotely-sensed data. Lizarazo (2008) gives details
of an SVM-based segmentation and classification of
remotely-sensed data. Zhu and Blumberg (2002) give a
case study of the use of SVM and ASTER data. Marçal
et al. (2005) use eCognition object-oriented software
(Section 8.6.3.2) to segment an ASTER image for land
cover classification. They then compare four classifiers,
including SVM, but find no clear difference between
them. Dixon and Candade (2008) claim that SVM
behaviour is independent of dimensionality and thus this
method does not require as much training data as, say, a
ML classifier, which has a need for exponentially increas-
ing amounts of training data as dimensionality increases.
These authors also conclude that ANN and SVM give
more accurate results than the ML classifier in a study of
land cover classification. Smirnoff, Boisvert and Paradis
(2008) give a geologist’s perspective of SVM.

In comparison with Decision Trees (DTs), ML methods,
and even ANNs, SVMs appear to be complicated and
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even, to the mathematically challenged, mysterious and
magical. They do, however, have some very significant
attractions, particularly their relatively little need for
fully-representative training data. In comparison with
ML, which needs a large training sample size especially
if the data lie in high dimensional feature space, SVM
requires only one sample per class provided, of course,
that sample lies close to the boundary of the class. As
training data are expensive and time consuming to collect,
this is a major advantage. Disadvantages include the
need to specify a kernel function and the relatively slow
development of multiclass SVMs. The use of one against
one and one against all strategies with binary SVMs is a
little unaesthetic.

8.6.2 Decision Trees

It is sometimes the case that different patterns (or
objects) can be distinguished on the basis of one, or a
few, features. The one (or few) features may not be the
same for each pair of patterns. On a casual basis, one
might separate a vulture from a dog on the basis that
one has wings and the other does not, while a dog and
a sheep would be distinguished by the fact that the dog
barks and the sheep says ‘baa’. The feature ‘possession
of wings’ is thus quite irrelevant when the decision to be
made is ‘is this a dog or a sheep?’. The DT classifier is
an attempt to use this ‘stratified’ or ‘layered’ approach to
the problem of discriminating between spectral classes.
The approach is top–down rather than bottom–up, or
pixel-based. The dataset is progressively subdivided into
categories, on the basis of a splitting mechanism which
chooses the ‘best’ feature on which to split the dataset.
There is a range of measures available to calculate the
information content of each feature, and the feature for
which information is maximized is chosen.

Given p classes and k features, the DT classifier firsts
selects a single feature on which to split the dataset into
two parts. There are a number of measures that can be
used to determine which of the k features should be
used to split the dataset. For example, the information
gain, measured by entropy, can be used. The concept of
entropy is used in Chapter 6 in the discussion of image
fusion or pan-sharpening techniques. Other measures
including the Gini impurity index, the chi-square test
are discussed in detail by Tso and Mather (2009) and
Witten and Frank (2005). One notable feature of the DT
approach is that feature selection methods (Section 8.9)
are not required as the rules defining the tree select the
‘best’ feature at each split. A tree will normally have
separate branches, and the feature used to cut the data
need not be the same for each branch at each level. A
simple DT is shown in Figure 8.22.

Trees Shrub Water Swamp

< 10%

> 30%

> 12%

RedGreen

Near IR

≥ 10%≤ 12%

≤ 30%

Figure 8.22 Simple decision tree. The three features used
in the classification (near-IR, red and green reflectance) are
outlined in red. The root node is coloured green, the non-leaf
nodes are yellow and the leaf nodes are light blue. The
percentage values refer to reflectance.

Descriptions of applications of DT techniques to the
classification of remotely sensed data are provided by
Friedl, Brodley and Strahler (1999) and Muchoney et al.
(2000). Pal and Mather (2003) provide a comparison of
the effectiveness of DT, ANN and ML methods in land
cover classification. Tso and Mather (2009) provide a full
description of the method. Other references include Lalib-
erte, Fredrickson and Rango (2007), who compare object-
oriented methods and DTs at different spatial scales, Liu,
Gopal and Woodcock (2004) use an ARTMAP neural
network and a DT to classify land cover. Rogan et al.
(2003) assess land-cover change monitoring with classi-
fication trees using Landsat TM and ancillary data. Sesnie
et al. (2008) attempt to integrate Landsat TM and vari-
ables computed from an interferometric DEM derived
from the SRTM project (Section 9.2) with DTs for habitat
classification and change detection in complex neotropi-
cal environments.

DTs are widely used in data mining (Witten and Frank,
2005). This text contains details of the Weka software
that the authors have developed, which includes DT and
random forest procedures. Quinlan (1993) also includes
DT software (C4.5). Procedures such as ‘pruning’ DTs
and building random forests are described by Witten and
Frank (2005) and by Tso and Mather (2009). Random
forests are collections of DTs built from random samples
drawn from the training dataset. Each tree provides a
label for every pixel, so if there are k trees then each
pixel will have k labels. A voting procedure such as
majority vote is then used to produce the final labelling
scheme. Breiman (2001) suggests that the use of ran-
dom forests is better than boosting because it appears
to produce higher accuracy, it is robust to outliers and
noise, it is faster computationally, and it gives some idea
of the labelling error at each pixel. Esposito, Malerba
and Semeraro (1997) conduct experiments on pruning
methods. Gislason, Benediktsson and Sveinsson (2006)
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explore the use of random forests for land cover clas-
sification. Other worthwhile reading is Breiman (2001)
and Chan and Paelinckx (2008) (who also use boosting
methods described in Section 8.6.3.3), Waske and Braun
(2009), Pal and Mather (2003) and Pal (2005).

Example 8.2 illustrates the results of four different clas-
sification methods – ML, DT, ANN and SVM.2

8.6.3 Other Methods of Classification

In this section, some less-widely used approaches to
image classification are considered. The use of rule-
based classifiers is described in Section 8.6.3.1, together
with the simplification of the rule base using a genetic
algorithm (GA). The newly developing methods of
object-oriented classification are considered next. Most
object-oriented classification exercises reported in the
literature use the Definiens eCognition software, which is
briefly described. Section 8.6.3.3 includes brief descrip-
tions of a number of methods that are not widely applied,
but which have potential for the future, including the use
of hybrid and multiple classifiers, evidential reasoning
and the procedures of bagging and boosting.

8.6.3.1 Rule-Based Classifiers and Genetic
Algorithm

Rule-based classifications are also related to the DT
approach, and represent an attempt to apply artificial
intelligence methods to the problem of determining the
class to which a pixel belongs (Srinivasana and Richards,
1990). The number of rules can become large, and may
require the use of advanced search algorithms to perform
an exhaustive analysis. The GA, which uses an iterative
randomized approach based on the processes of mutation
and crossover, has become popular in recent years as a
robust search procedure. Its use in feature selection is
described in Section 8.9. A brief introduction is provided
by Tso and Mather (2009) while de Castro (2006) has a
chapter on the topic. Seftor and Larch (1995) illustrate
its use in optimizing a rule-based classifier, and Clark
and Cañas (1995) compare the performance of a neural
network and a GA for matching reflectance spectra.
The GA is also described by Zhou and Civco (1996)
as a tool for spatial decision-making. Gopi (2007)
provides MATLAB code for the GA (and for several
other methods mentioned in this chapter, including
ICA (Section 8.5.2) and ANNs (Section 8.4.3)). Press,
Teukolsky and Vetterling (2007) also make available
some C++ code for GAs.

2I am grateful to Dr Mahesh Pal’ assistance with this example.

8.6.3.2 Object-Oriented Methods

The image classification techniques discussed thus far
are based on the labelling of individual pixels in the
expectation that groups of neighbouring pixels will
form regions or patches with some spatial coherence.
This method is usually called the per-pixel approach
to classification. An alternative approach is to use
a process termed segmentation , which – as its name
implies – involves the search for homogeneous areas in
an image set and the identification of these homogeneous
areas with information classes. A hierarchical approach
to segmentation, using the concept of geographical scale,
is used by Woodcock and Harward (1992) to delineate
forest stands. This paper also contains an interesting
discussion of the pros and cons of segmentation versus
the per-pixel approach. Shandley, Franklin and White
(1996) test the Woodcock–Harward image segmentation
algorithm in a study of chaparral and woodland vegeta-
tion in southern California. Zhang et al. (2005) describe
another semiautomatic approach to image segmentation.

Another alternative to the per-pixel approach requires a
priori information about the boundaries of objects in the
image, for example agricultural fields or forest stands. If
the boundaries of these fields or stands are digitized and
registered to the image, then some property or properties
of the pixels lying within the boundaries of the field can
be used to characterize that field. For instance, the means
and standard deviations (or other statistical properties) of
the six non-thermal Landsat TM bands of pixels lying
within agricultural fields could be used as features defin-
ing the properties of the fields. The fields, rather than the
pixels, are then classified. This method thus uses a per-
field approach. Another technique might classify all the
pixels within a field, perhaps excluding those in a pos-
sible buffer zone, as detailed in the next paragraph. The
class memberships for the pixels in the field of interest
are counted up and a voting procedure used to allocate
the field to a class. One easy voting rule is ‘winner takes
all’, but other rules (for example the winner must have
more than 50% of the vote) can be considered.

Normally, the use of map and image data would
take place within a GIS (Chapter 10), which provides
facilities for manipulating digitized boundary lines (for
example checking the set of lines to eliminate duplicated
boundaries, ensuring that lines ‘snap on’ to nodes, and
identifying illogical lines that end unexpectedly). One
useful feature of most GIS is their ability to create buffer
zones on either side of a boundary line (Gomboši and
Žalik, 2005, Section 10.3.1). If a per-field approach is
to be used then it would be sensible to create a buffer
around the boundaries of the objects (e.g. agricultural
fields) to be classified in order to remove pixels which
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are likely to be mixed. Such pixels may represent tractor-
turning zones (headlands) as well as field boundary
vegetation (hedges). The per-field approach is often
used with SAR imagery because the individual pixels
contain speckle noise, which leads to an unsatisfactory
per-pixel classification. Averaging of the pixels within a
defined geographical area such as a field generally gives
to better results (Schotten, van Rooy and Janssen 1995;
Wooding, Zmuda and Griffiths, 1993). Alberga (2007)
and Alberga, Satalino and Staykova (2008) evaluate a
window-based approach to classification of polarimetric
SAR data. Lobo, Chic and Casterad (1996) discuss
the per-pixel and per-field approaches in the context
of Mediterranean agriculture. Tarabalka, Benediktsson
and Chanussot (2009) use a combined unsupervised
clustering method to aid segmentation and a per-pixel
classifier, then fuse the two representations.

The use of the per-field approach in which seg-
mentation precedes classification is an example of the
object-oriented approach, in which the fields (objects)
are classified rather than the pixels making up the image.
This approach is described as object oriented (as opposed
to pixel oriented). Object-oriented methods of image clas-
sification have become more popular in recent years due
to the availability of software (eCognition) developed by
the German company Definiens Imaging. This software
uses a segmentation approach at different scale levels
from coarse to fine, using both spectral properties and
geometric attributes of the regions, such as scale, colour,
smoothness and shape. A hierarchy of regions at different
scale levels is thus developed. Esch et al. (2003) provide
references to the technical details, and compare the
performance of the eCognition approach with that of the
standard ML method. The former proves to be about 8%
more accurate than the latter, though the overall accuracy
(Section 8.10) of the ML result is surprisingly high at
82%. See also Baatz et al. (2004), Chubey, Franklin and
Wulder (2006), Ivits et al. (2005) and Yu et al. (2006)
for examples of the use of object-based classification.
Antonarakis, Richards and Brasington (2008) use airborne
lidar data in an object-based land cover classification.
Bork and Su (2007) also use lidar data in conjunction
with multispectral imagery to classify rangeland data. Yu
et al. (2006) report on a successful use of object-based
classification using DAIS hyperspectral images. A full
description is provided by Navullur (2006) who provides
details of the operational use of eCognition software.
Yet another example is provided by Marçal et al. (2005),
who compare four methods of supervised classification
of land cover, based on an initial segmentation using
eCognition. Marçal and Rodrigues (2009) discuss meth-
ods of evaluating the quality of image segmentations.

A comprehensive source of information and a good start-
ing point for appreciating the object-oriented paradigm
are the contributions to the book edited by Blaschke,
Lang and Hay (2008).

8.6.3.3 Other Methods

8.6.3.3.1 Evidential Reasoning If a single image
set is to be classified using spectral data alone then
the absolute or relative ‘reliability’ of the features is
not usually taken into consideration. All features are
considered to be equally reliable, or important. Where
multisource data are used, the question of reliability
needs to be considered. For example, one might use data
derived from maps, such as elevation, and may even use
derivatives of these features, such as slope and aspect,
as well as datasets acquired by different sensor systems
(Section 8.7). The Dempster–Shafer theory of evidence
(Shafer, 1979) has been used by researchers to develop
the method of evidential reasoning , which is a formal
procedure which weights individual data sources accord-
ing to their reliability or importance. The method uses
the concepts of belief and plausibility to create decision
rules via which the image pixels are labelled. Papers by
Cohen and Shoshan (2005), Duguay and Peddle (1996),
Lein (2003), Lu and Weng (2007), Peddle (1995),
Peddle and Ferguson (2002), Mertikas and Zervakis
(2001) and Tso and Mather (2009) illustrate the uses of
the evidential reasoning approach to classification, and
compare its effectiveness with that of other approaches.

8.6.3.3.2 Bagging, Boosting and Ensembles of
Classifiers Procedures known as ‘bagging’ and
‘boosting’ can be used to try to improve the performance
of a classifier. Bagging operates by generating a series
of training data subsets by random sampling with
replacement from the training dataset, and using each
of these subsets to produce a classification. A voting
procedure is then used to determine the class of a given
pixel. The simplest such method is majority voting;
if the majority of the p classifiers place pixel j into
class k then pixel j is given the label k (Breiman,
1996). Boosting involves the repeated presentation of
the training dataset to a classifier, with each element of
the training set being given a weight that is proportional
to the difficulty of classifying that element correctly.
The initial weights given to the pixels are unity. The
Adaboost method of Freund and Schapire (1996) is
probably the best known of these methods. Chan, Huang
and DeFries (2001) provide a short example of the use of
these procedures in land cover classification. They find
that bagging and boosting do not always result in higher
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classification accuracy, and that behaviour varies with
the classification algorithm used. Thus, they note that
both bagging and boosting increased the accuracy of the
DT classifier from 89.3 to 94.0% (bagging) and 95.8%
(boosting). The classification accuracy for a SOM-type
ANN increased slightly for bagging (from 86.9 to 87.6)
but fell quite sharply for bagging (to 80.3%). An SVM
classifier was unaffected by boosting and bagging.

Other interesting papers on these topics are Drucker,
Schapire and Simard (1993) and Bauer and Kohavi
(1999). Dietterich (2000) reports on an experimental
comparison of bagging, boosting and randomisation for
constructing ensembles of DTs. Pal (2008) looks at the
use of bagging and boosting in the context of SVMs,
and disagrees with authors who suggest that boosting
(specifically AdaBoost) improves SVM performance.
However, he concludes that bagging worked well in some
instances. Sharkey (2000) considers using a number of
ANNs in a multinet system, each of which classifies the
image. Decision fusion then follows, usually a majority
vote (with the possibility of classifying the pixel as
‘other’ if there is only a weak majority). The component
ANNs may differ in terms of initial weights, or topology,
or in input data (bagging again). Other references are
Kittler et al. (1998) on combining classifiers, and Doan
and Foody (2007) who study ways of increasing soft
classification accuracy through the use of an ensemble
of classifiers. Foody, Boyd and Sanchez-Hernandez
(2007) examine the problem of mapping a specific class
with an ensemble of classifiers. Ensembles of SVMs are
used by Pal (2008) in land cover classification. Lee and
Ersoy (2007) use ensembles of SOM (Section 8.4.3) in
a hierarchical approach to classification. Liu, Gopal and
Woodcock (2004) conclude by saying that

. . . The hybrid approach seems suitable to tackle a
variety of classification problems in remote sensing and
may ultimately aid map users in making more informed
decisions (p. 963).

8.7 Incorporation of Non-spectral Features

Two types of feature in addition to spectral values can
be included in a classification procedure. The first kind
are measures of the texture of the neighbourhood of a
pixel, while the second kind represent external (i.e. non-
remotely-sensed) information such as terrain elevation
values or information derived from soil or geology maps.
Use of textural information has been limited in passive
remote sensing, largely because of two difficulties. The
first is the operational definition of texture in terms of
its derivation from the image data, and the second is the
computational cost of carrying out the texture calculations
relative to the increase in classification accuracy, if any.
External data have not been widely used either, though

digital cartographic data have become much more read-
ily available in recent years. A brief review of both these
topics is provided in this section.

8.7.1 Texture

Getting a good definition of texture is almost as difficult
as measuring it. While the grey level of a single pixel or
a group of pixels in a greyscale image can be said to rep-
resent ‘tone’, the texture of the neighbourhood in which
that pixel lies is a more elusive property, for several rea-
sons. At a simple level, texture can be thought of as the
variability in tone within a neighbourhood, or the pattern
of spatial relationships among the grey levels of neigh-
bouring pixels, and which is usually described in terms
such as ‘rough’ or ‘smooth’. Variability is a variable
property, however; it is not necessarily random – indeed,
it may be structured with respect to direction as, for
instance, a sub-parallel drainage pattern on an area
underlain by dipping beds of sandstone. The observation
of texture depends on two factors. One is the scale of
the variation that we are willing to call ‘texture’ – it
might be local or regional. The second is the scale of
observation. Microscale textures that might be detected
by the panchromatic band of the SPOT HRV would not
be detected by the NOAA AVHRR due to the different
spatial resolutions of the two sensor systems (10 m and
1.1 km respectively). We must also be careful to distin-
guish between the real-world texture present, for example
in a field of potatoes (which are generally planted in
parallel rows) and the texture that is measurable from
an image of that field at a given spatial resolution (Ferro
and Warner, 2002; Foody and Curran, 1994).

The fact that texture is difficult to measure is no
reason to ignore it. It has been found to be an important
contributor to the ability to discriminate between targets
of interest where the spatial resolution of the image is
sufficient to make the concept a meaningful and useful
one, for example in manual photo interpretation. The
simplest method of estimating the texture property of
an image is to measure the image variance for each of
a number of moving windows. This approach could be
especially useful in cases where a coregistered panchro-
matic image is supplied with the multispectral image
(e.g. SPOT HRV, Landsat ETM+, IKONOS, QuickBird,
etc.). The variance of the panchromatic channel would
then provide an estimate of texture (Emerson, Siu-Ngan
Lam and Quattrochi, 2005).

The earliest application of texture measurements
to digital remotely-sensed image data was published
by Haralick, Shanmugam and Dinstein (1973). These
authors proposed what has become known as the Grey
Level Co-occurrence Matrix (GLCM), which represents
the distance and angular spatial relationships over
an image subregion of specified size. Each element
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of the GLCM is a measure of the probability of
occurrence of two grey scale values separated by
a given distance in a given direction. The concept
is more easily appreciated via a simple numerical
example. Table 8.3a shows a small segment of a
digital image quantized to four grey levels (0–3). The
number of adjacent pixels with grey levels i and j is
counted and placed in element (i, j ) of the GLCM
P. Four definitions of adjacency are used; horizontal
(0◦), vertical (90◦), diagonal (bottom left to top right
−45◦) and diagonal (top left to bottom right −135◦).
The inter-pixel distance used in these calculations is
1 pixel. Thus, four GLCM are calculated, denoted
P0, P90, P45 and P135 respectively. For example,
the element P0 (0,0) is the number of times a pixel
with grey scale value 0 is horizontally adjacent to a
pixel which also has the grey scale value 0, scanning
from left to right as well as right to left. Element
P0 (1, 0) is the number of pixels with value 1 that are
followed by pixels with value 0, while P0 (0, 1) is the
number of pixels with value 0 that are followed by
pixels with value 1, again looking in both the left-right
and right-left directions. The four GLCM are shown
in Table 8.3b–e.

Haralick, Shanmugam and Dinstein (1973) originally
proposed 32 textural features to be derived from each of
the four GLCM. Few instances of the use of all these fea-
tures can be cited; Jensen and Toll (1982) use only one,
derived from the Landsat 1–3 MSS band 5 image. The
first two of the Haralick measures will be described here
to illustrate the general approach. The first measure (f1)
is termed the angular second moment , and is a measure
of homogeneity. It effectively measures the number of
transitions from one grey level to another and is high for
few transitions. Thus, low values indicate heterogeneity.
The second Haralick texture feature, contrast (f2), gives
non-linearly increasing weight to transitions from low
to high greyscale values. The weight is the square of
the difference in grey level. Its value is a function of
the number of high/low or low/high transitions in grey
level. The two features are formally defined by:

f1 =
N∑

i=1

N∑
j=1

{
P(i, j)

R

}2

f2 =
N−1∑
n=0

N∑
i=1

N∑
j=1

P(i, j)

R
|i − j | = n

Table 8.3 Example data and derived grey-tone spatial dependency matrices. (a) Test dataset. (b–e)
Grey-tone spatial dependency matrices for angles of 0, 45, 90 and 135◦, respectively.

(a)

0 0 0 2 1

0 1 1 2 2

0 1 2 2 3

1 1 2 3 3

(b)

0 1 2 3

0 4 2 1 0

1 2 4 4 0

2 1 4 4 2

3 0 0 2 2

(c)

0 1 2 3

0 2 2 0 0

1 1 4 3 0

2 0 3 6 0

3 0 0 0 2

(d)

0 1 2 3

0 4 3 0 0

1 3 4 2 0

2 0 2 6 2

3 0 0 2 2

(e)

0 1 2 3

0 0 4 1 0

1 4 0 3 0

2 1 3 2 3

3 0 0 3 0
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where N is the number of grey levels, P(i, j) is an
element of one of the four GLCM listed above, and R
is the number of pairs of pixels used in the computation
of the corresponding P. For the horizontal and vertical
directions R is equal to 2N2 while in the diagonal
direction R equals 2(N − 1)2. Haralick, Shanmugam and
Dinstein (1973) and Haralick and Shanmugam (1974)
give examples of the images and corresponding values
of f1 and f2. A grassland area gave low (0.064–0.128)
values of f1 indicating low homogeneity and high
contrast whereas a predominantly water area has values
of f1 ranging from 0.0741 to 0.1016 and of f2 between
2.153 and 3.129 (higher homogeneity, lower contrast).
These values are averages of the values of f1 and f2 for
all four angular grey-tone spatial dependency matrices.
The values of f1 for the example data in Table 8.3 are
(for angles of 0, 45, 90 and 135◦): 0.074, 0.247, 0.104
and 0.216 while the values of f2 for the same data are
0.688, 0.444, 0.438 and 1.555.

Rather than compute the values of these texture fea-
tures for a sequence of moving windows surrounding
a central pixel, Haralick and Shanmugam (1974) derive
them for 64 × 64 pixel subimages. This shortcut is unnec-
essary nowadays, as sufficient computer power is avail-
able to compute local texture measures for individual
pixels. They also use 16 rather than 256 quantization
levels in order to reduce the size of the matrices P. If
all 256 quantization levels of the Landsat TM were to be
used, for example then P would become very large. The
reduction in the number of levels from 256 to 16 or 32
might be seen as an unacceptable price to pay, though
if the levels are chosen after a histogram equalization
enhancement (Section 5.3.2) to ensure equal probability
for each level then a reduction from 256 to 64 grey levels
will give acceptable results (Tso, 1997; Tso and Mather,
2009). Clausi (2002) presents some results on the effects
of quantization levels on the GLCM texture statistics.

The rapid improvements in computing power in recent
years have led to an increased interest in the use of texture
measures. Paola and Schowengerdt (1997) incorporate
texture features into a neural network-based classifica-
tion by including as network inputs the greyscale values
of the eight neighbours of the pixel to be classified. The
central pixel is thus classified on the basis of its spectral
reflectance properties plus the spectral reflectance proper-
ties of the neighbourhood. Although the number of input
features is considerably greater than would be the case
if the central pixel alone were to be input, Paola and
Schowengerdt (1997) report that the extra size of the net-
work is compensated by faster convergence during train-
ing. Clausi and Zhao (2003) present a computationally
fast method of obtaining GLCM texture statistics, and
provide computer code for their technique. Other inter-
esting papers on GLCM based methods are Dutra (1999),

Franklin, Maudie and Lavigne (2001), Puissant, Hirsch
and Weber (2005), Ouma, Tetuko and Tateishi (2008)
and Wang et al. (2004).

A second approach to texture quantization uses band-
pass filters in the frequency domain (Section 7.5) to mea-
sure the relative proportion of high frequency information
in each of a number of moving windows over the image
for which texture is measured. Although this seems to be
intuitively simple and attractive in theory, there have not
been a large number of applications cited in the literature
(Couteron, Barbier and Gautier, 2006; Mather, Tso and
Koch, 1998; Proisy, Couteron and Fromard, 2007; Riou
and Seyler, 1997).

A third approach is based on the calculation of the
fractal or multifractal dimension of a moving window.
There are several ways of calculating fractal dimension,
which is used here as a measure of the roughness of a
surface. Tso and Mather (2009, pp. 224–231) consider
several ways of estimating the fractal dimension, includ-
ing wavelet-based methods, the use of a fractal Brown-
ian motion model and box counting methods. Emerson,
Siu-Ngan Lam and Quattrochi (2005) also uses fractal
dimension as a measure of texture.

Yet another method of quantifying texture is described
by Ouma, Tetuko and Tateishi (2008). They determine
an appropriate window size from the calculation of
semi-variograms, then use eight texture methods derived
from the GLCM to differentiate forest and non-forest
land cover. It is difficult to imagine that a single window
size could satisfy all the requirements for texture quan-
tization of all the land cover types present in the image.
In this study, the GLCM approach is contrasted with the
use of discrete wavelet texture measures (Section 6.7).
The authors obtained higher classification accuracies
using GLCM measures and spectral information, with an
overall accuracy (Section 8.10) of 74% compared with an
average accuracy of 64% for the wavelet-based methods.
Dell’Acqua et al., 2006, use a multi-scale co-occurrence
matrix approach to the classification of SAR images.

Bian (2003) describes a texture measure (entropy)
derived from multiresolution wavelet decomposition.
Entropy is a measure of order, and has been met with
at several points in this book. It is defined for each
central position of a moving window of size n × n by
the relationship:

entropy = −
k∑

i=1

p(i) log2 (p(i))

Where k is the number of grey levels and p(i) is the
probability of grey level i , computed from f (i)/n2, the
frequency of the i th histogram class divided by the num-
ber of pixels in the window. The entropy measure can be
calculated for one or all of the H1, D1 and V1 quadrants
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of the wavelet decomposition (Figure 6.37) or for the
corresponding quadrants at the second or higher decom-
position levels. This ability to measure texture at different
scales is a characteristic that might be developed further.

Further reading on alternative approaches to and
applications of texture measures in image classification
is provided by Bharati, Liu and MacGregor (2004), Bruz-
zone et al. (1997), Buddenbaum et al. (2002), Carlson
and Ebell (1995), Chica-Olmo and Abarca-Hernandez
(2000), Coburn and Roberts (2004), Dekker (2003), de
Jong and Burrough (1995), Dikshit (1996), Lark (1996),
Kuplich, Curran and Atkinson (2005), Maillard (2003),
Ouma, Tetuko and Tateishi (2008), Soares et al. (1997),
Tso (1997) and Tso and Mather (2009). Lloyd et al.
(2004) consider per-field measures of texture.

Given the considerable effort that has gone into the
study of texture measures, two things are surprising: first,
the oldest of these measures, based on the GLCM, is
still widely used and is still one of the top performers
in comparative studies and, secondly, no single mea-
sure has proved to be superior. It is nevertheless the
case that the inclusion of texture features enhances classi-
fier performance. This is particularly appropriate to cases
in which a high-resolution panchromatic band is sup-
plied with the multispectral data (e.g. Landsat ETM+).
The texture features can be based on the panchromatic
band rather than on one or more of the multispectral
bands. Tso and Mather (2009) find that the wavelet-based
method, the multiplicative autoregressive random (MAR)
field and the GLCM perform best in terms of classifica-
tion accuracy (p. 251). Texture features are particularly
badly affected by high signal-to-noise ratios (SNRs), as
high-frequency noise can be confused with texture.

8.7.2 Use of External Data

The term external (or ancillary) is used to describe any
data other than the original image data or measures derived
from these data. Examples include elevation and soil type
information or the results of a classification of another
image of the same spatial area. Some such data are not
measured on a continuous (ratio or interval) scale and it
is therefore difficult to justify their inclusion as additional
feature vectors. Soil type or previous classification results
are examples, both being categorical variables. Where a
continuous variable, such as elevation, is used difficul-
ties are encountered in deriving training samples. Some
classes (such as water) may have little relationship with
land surface height and the incorporation of elevation
information in the training class may well reduce rather
than enhance the efficiency of the classifier in recognizing
those categories.

An external variable may be used to stratify the image
data into a number of categories. If the external variable

is land elevation then, for example the image may be
stratified in terms of land below 500 m, between 500 and
800 m and above 800 m. For each stratum of the data
an estimate of the frequency of occurrence of each class
must be provided by the user. This estimate might be
derived from field observation, sampling of a previously
classified image or from sample estimates obtained from
air photographs or maps. The relative frequencies of each
class are then used as estimates of the prior probabilities
of a pixel belonging to each of the k classes and the ML
algorithm used to take account of these prior probabilities
(Section 8.4.2.3). The category or level of the external
variable is used to point to a set of prior probabilities,
which are then used in the estimation of probabilities of
class membership. This would assist in the distinction
between classes which are spectrally similar but which
have different relationships with the external variable.
Strahler, Logan and Bryant (1978) used elevation and
aspect as external variables; both were separated into
three categories and used as pointers to sets of prior
probabilities. They found that the elevation information
contributed considerably to the improvement in the accu-
racy of forest cover classification. Whereas the spectral
features alone produced a classification with an accuracy
estimated as 57%, the addition of terrain information and
the introduction of prior probability estimates raised this
accuracy level to a more acceptable 71%. The use of
elevation and aspect to point to a set of prior probabil-
ities raised the accuracy further to 77%. Strahler (1980)
provides an excellent review of the use of external cate-
gorical variables and associated sets of prior probabilities
in ML classification. He concludes that the method ‘can
be a powerful and effective aid to improving classifica-
tion accuracy’. Another accessible reference is Hutchin-
son (1982), while Maselli et al. (1995b) discuss integra-
tion of ancillary data using a non-parametric method of
estimating prior probabilities.

Elevation datasets are now available for many parts of
the world, generally at a scale of 1 : 50 000 or coarser.
DEMs can also be derived from stereo SPOT and ASTER
images as well as from interferometric data from SAR
sensors such as TerraSAR-X. The widespread availabil-
ity of GIS means that many users of remotely sensed
data can now derive DEM by digitizing published maps,
or by using photogrammetric software to generate a DEM
from stereoscopic images such as SPOT HRV, ASTER
or IRS-1 LISS. Care should be taken to ensure that the
scale of the DEM matches that of the image. GIS tech-
nology allows the user to alter the scale of a dataset, and
if this operation is performed thoughtlessly then error is
inevitable. Users of DEM derived from digitized contours
should refer to one of the many GIS textbooks now avail-
able (for example Bonham-Carter, 1994; Longley et al.,
2005) to ensure that correct procedures are followed.
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Rather than use an external variable to stratify the
image data for improved classifier performance, users
may prefer to use what has become known as the stacked
vector approach, in which each feature (spectral, textural,
external) is presented to the classifier as an independent
input. Where a statistical classifier, such as ML, is used
then this approach may well not be satisfactory. Some
external variables, such as elevation, may be measured on
a continuous scale but may not be normally distributed or
even unimodal for a given class. Other variables, such as
lithology or soil type, may be represented by a categorical
label that the ML classifier cannot handle. The value of
ANN and DT classifiers is that they are non-parametric,
meaning that the frequency distribution and scale of mea-
surement of the individual input feature is not restricted.
Thus, the ANN-based classifier can accept all kinds of
input features without any assumption concerning the
normality or otherwise of the associated frequency distri-
bution and without consideration of whether the feature
is measured on a continuous, ordinal or categorical scale.
One problem with an indiscriminate approach, however,
is that all features may not have equal influence on the
outcome of the classification process. If one is trying
to distinguish between vultures and dogs, then ‘posses-
sion of wings’ is a more significant discriminating feature
than ‘colour of eyes’, though the latter may have some
value. Evidential reasoning (Section 8.6) offers a more
satisfactory approach.

See Treitz and Howarth (2000) and references therein
for a study of forest classifications involving hyperspec-
tral reflectance, spectral–spatial, textural and geomorpho-
metric variables. They conclude that, in a low to moderate
relief environment, the use of external data together with
remotely-sensed data leads to improved discrimination of
forest ecosystem classes.

8.8 Contextual Information

Geographical phenomena generally display order or
structure, as shown by the observation that landscapes
are not, in general, randomly organized. Thus, trees grow
together in forests and groups of buildings form towns
and villages. The relationship between one element of
a landscape and the whole defines the context of that
element. So too the relationship between one pixel and
the pixels in the remainder of the image is the context
of that pixel. Contextual information is often taken
into account after a preliminary classification has been
produced, though at the research level investigations
are proceeding into algorithms which can incorporate
both contextual and spectral information simultaneously
(Kittler and Föglein, 1984). The simplest methods are
those which are applied following the classification

of the pixels in an image using one of the methods
described in Section 8.4. These methods are similar in
operation to the spatial filtering techniques described in
Chapter 7 for they use a moving window algorithm.

The first of these methods is called a ‘majority filter’.
It is a logical rather than numerical filter since a classified
image consists of labels rather than quantized counts.
The simplest form of the majority filter involves the use
of a filter window, usually measuring three rows by three
columns, is centred on the pixel of interest. The number
of pixels allocated to each of the k classes is counted.
If the centre pixel is not a member of the majority class
(containing five or more pixels within the window) it is
given the label of the majority class. A threshold other
than five (the absolute majority) can be applied – for
example if the centre pixel has fewer than n neighbours
(in the window) that are not of the same class then
relabel that pixel as a member of the majority class. The
effect of this algorithm is to smooth the classified image
by weeding-out isolated pixels which were initially
given labels that were dissimilar to the labels assigned
to the surrounding pixels. These initial dissimilar labels
might be thought of as noise or they may be realistic. If
the latter is the case then the effect of the majority filter
is to treat them as detail of no interest at the scale of
the study, just as contours on a 1 : 50 000-scale map are
generalized (smoothed) in comparison with those on a
map of the same area at a 1 : 25 000 scale. A modification
of the algorithm just described is to disallow changes
in pixel labelling if the centre pixel in the window is
adjacent to a pixel with an identical label. In this context
adjacent can mean having a common boundary (i.e. to
the left or right, above or below) or having a common
corner. The former definition allows four pixels to be
adjacent to the centre pixel, the latter eight.

Harris (1981, 1985) describes a method of post-
classification processing which uses a probabilistic
relaxation model. An estimate of the probability that a
given pixel will be labelled li (i = 1, 2, . . . , k) is required.
Examination of the pixels surrounding the pixel under
consideration is then undertaken to attempt to reduce
the uncertainty in the pixel labelling by ensuring that
pixel labels are locally consistent. The procedure is both
iterative and rather complicated. The results reported
by Harris (1985) show the ability of the technique to
clean up a classified image by eliminating improbable
occurrences (such as isolated urban pixels in a desert
area) while at the same time avoiding smoothing-out
significant and probably correct classifications. However,
the computer time requirements are considerable. Further
discussion of the probabilistic relaxation model is given
in Rosenfeld (1976), Peleg (1980), Kittler (1983) and
Kontoes and Rokos (1996), while an alternative approach
to the problem of specifying an efficient spectral–spatial



Classification 277

classifier is discussed by Landgrebe (2003). An excellent
general survey is Gurney and Townshend (1983).

More recently, attention has been given to the use of
geostatistical methods of characterizing the spatial con-
text of a pixel that is to be classified. Geostatistical meth-
ods are summarized in Section 8.5. Image data are used
to characterize the spectral properties of the candidate
pixel, and geostatistical methods provide a summary of
its spatial context, so that both are simultaneously consid-
ered in the decision-making process. See Lark (1998) and
van der Meer (1994, 1996a, 1996b) for a fuller exposi-
tion. Flygare (1997) gives a review of advanced statistical
methods of characterizing context. Wilson (1992) uses a
modified ML approach to include neighbourhood infor-
mation by the use of a penalty function which increases
the ‘cost’ of labelling a pixel as being different from its
neighbours. Sharma and Sarkar (1998) review a number
of approaches to the inclusion of contextual information
in image classification. Finally, recall the opening para-
graph of this section, where it is noted that the Earth’s
surface is generally ordered, with similarity increasing
with closeness. One could consider modelling this prop-
erty using Markovian methods – what is the probabil-
ity of the correct label for pixel (i, j) given the labels
of the surrounding pixels? The use of Markov Random
Fields is considered by Tso and Mather (2009, Chapter 8).
MRFs have been widely used for 30 years for charac-
terizing contextual information in image segmentation
and image restoration applications. The level of math-
ematics required to fully comprehend the use of MRF is
high, however.

8.9 Feature Selection

Developments in remote sensing instruments over the
last 10 years have resulted in image data of increasingly
higher resolution becoming available in more spectral
channels. Thus, the volume and dimensionality of
datasets being used in image classification is exceeding
the ability of both available software systems and
computer hardware to deal with it. However, as shown
in the discussion of the DT approach to classification
(Section 8.4.6), it is possible to base a classification on
the consideration of the values measured on one spectral
band at a time. In this section the idea will be extended,
so that we will ask: can the dimensions of the data set
be reduced (in order to save computer time) without
losing too much of the information present in the data?
If a subset of the available spectral bands (and other
features such as textural and ancillary data) will provide
almost as good a classification as the full set then there
are very strong arguments for using the subset. We will
consider what ‘almost as good’ means in this context in
the following paragraphs.

Reduction of the dimensionality of a dataset is the aim
of PCA (Section 6.4). An obvious way of performing the
feature selection procedure would be to use the first m
principal components in place of the original p features
(m being smaller than p). This does not, however,
provide a measure of the relative performance of the two
classifications – one based on all p features, the other on
m principal components. Methods of accuracy assess-
ment (Section 8.10) might be used on training and test
sites to evaluate the performance directly. Information,
in terms of principal components, is directly related to
variance or scatter and is not necessarily a function of
inter-class differences. Thus, the information contained
in the last (p − m) components might represent the vital
piece of information needed to discriminate between
class x and class y , as shown in the example of PCA
in Section 6.4. PCA might therefore be seen as a crude
method of feature selection if it is employed without
due care. It could be used in conjunction with a suitable
method for determining which of the possible p compo-
nents should be selected in order to maximize inter-class
differences, as discussed below. Jia and Richards (1999)
propose a method based on a modification of PCA.

Two widely used methods of feature selection are dis-
cussed in this section. The first is based on the derivation
of a measure of the difference between all pairs from the k
groups. It is called divergence. The second is more empir-
ical. It evaluates the performance of a classifier in terms
of a set of test data for which the correct class assign-
ments have been established by ground observations or
by the study of air photographs or maps. The classifier
is applied to subsets of the p features and classification
accuracy measured for each subset using the techniques
described in Section 8.10. A subset is selected that gives
a sufficiently high accuracy for a specific problem.

The technique based on the divergence measure
requires that the measurements on the members of the k
classes are distributed in multivariate normal form. The
effect of departures from this assumption is not known,
but one can be certain that the results of the analysis
would be less reliable as the departures from normality
increased. If the departures are severe then the results
could well be misleading. Hence, the divergence method
is only to be recommended for use in conjunction with
statistical (rather than neural) classifiers. The divergence
measure J based on a subset m of the p features is
computed for classes i and j as follows (Singh, 1984)
with a zero value indicating that the classes are identical.
The greater the value of J (i, j) the greater is the class
separability based on the m selected features.

J (i, j) = 0.5tr
{
(Si − Sj )(S

−1
j − S−1

i )
}

+ 0.5tr
{
(S−1

i + S−1
j )(xi − xj )(xi − xj )

′
}
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The symbol tr(.) means the trace or the sum of the
diagonal elements of the indicated matrix. Si and Sj

are the m × m sample variance–covariance matrices for
classes i and j , computed for the m selected features, and
xi and xj are the corresponding sample mean vectors.
For m = 1 (a single feature) the divergence measure for
classes i and j is:

J (i, j) = 0.5

(
s2
i

s2
j

+ s2
j

s2
i

− 2

)

where s2
i and s2

j are the variances of the single feature
calculated separately for classes i and j . Since the diver-
gence measure takes into account both the mean vectors
and the variance–covariance matrices for the two classes
being compared, it is clear that the interclass difference is
being assessed in terms of (i) the shape of the frequency
distribution and (ii) the location of the centre of the
distribution. The divergence will therefore be zero only
when the variance–covariance matrices and the mean
vectors of the two classes being compared are identical.

The distribution of J (i, j) is not well known so a mea-
sure called the transformed divergence is used instead.
This has the effect of reducing the range of the statistic,
the effect increasing with the magnitude of the diver-
gence. Thus, when averages are taken, the influence of
one or more pairs of widely separated classes will be
reduced. The transformed divergence is obtained from:

JT(i, j) = c(1 − exp[−J (i, j)/8])

with c being a constant used to scale the values of JT onto
a desired range. Sometimes the value 2000 is used as a
scaling factor, but a value of 100 seems to be equally
reasonable as the values of JT can then be interpreted
in the same way as percentages. A value of JT of 80
or more indicates good separability of the corresponding
classes i and j . The values of JT(i, j) are averaged for
all possible mutually exclusive pairs of classes i and j
and the average pairwise divergence is denoted by JTav.

JTav = 2

k(k − 1)

k−1∑
i=1

i∑
j=1

JT(i, j)

Study of the individual JT(i, j) might show that some
pairs of classes are not statistically separable on the basis
of any subset of the available features. The feature selec-
tion process might then also include a class amalgamation
component. It might be worth following another line of
thought. If the aim of feature selection is to produce
the subset of m features that best combines classifica-
tion accuracy and computational economy then, instead
of considering the average separability of all pairs of
classes, why not try to find that set of m features that
maximizes the minimum pairwise divergence? In effect,

this is trying to find the subset of m features that best per-
forms the most difficult classification task. The minimum
pairwise divergence is:

Jmin(i, j) = min J (i, j) i < j

A measure called the Bhattacharyya distance is some-
times used in place of the divergence to measure the
statistical separability (or, more correctly, the probability
of correct classification) of a pair of spectral classes. It
is computed from the expression:

B12 = 1

8
(x1 − x2)

′ S1 + S2

2
(x1 + x2)

+ 1

2
ln

S1−S2
2

|S1|0.5 |S2|0.5

(Haralick and Fu, 1983). The quantity Bij is computed
for every pair of classes given m features. The sum of
Bij for all k(k − 1)/2 classes is obtained and is a mea-
sure of the overall separability of the k classes using m
features. All possible combinations of m out of p fea-
tures are used to decide the best combination. Again,
selection algorithms such as those described above for
the transformed divergence could be used to improve the
efficiency of the method. Like the divergence measure
the Bhattacharyya distance is based on the assumption of
multivariate normality.

Given that the raison d’être of feature selection is the
availability of several (more than four) features, the selec-
tion of combinations of m from p features is a problem.
The number of subsets of size m that can be drawn from
a set with p elements is(

p

m

)
= p!

m!(p − m)!

The symbol ‘!’ indicates ‘factorial’; for example 3! is
3 × 2 × 1 = 6. If p is large then the number of subsets
soon becomes very considerable. Take the Daedalus
airborne scanner as an example. This instrument gen-
erates 12 channels of spectral data. If we assume that
no texture features or ancillary data are added, then the
number of subsets of size m = 4 is 495. If subsets of
size m = 12 are to be drawn from a dataset with p = 24
features then the number of subsets is 2 704 156. Clearly
any brute-force method involving the computation of the
average pairwise divergence for such a large number of
subsets is out of the question. The problem of selection
of optimal subsets is not dissimilar to the problem of
determining the best subset of independent variables in
multiple linear regression. Any of three main approaches
can be used – these are the forward selection, backward
elimination and stepwise procedures. The forward selec-
tion method starts with the best subset of size m = 1.
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Call this feature f1. Now find the best subset of size
m = 2 including f1, that is f1 plus one other feature.
The best subset at the end of the second cycle will be
{f1, f2}. The procedure continues to determine subsets
{f1, f2, f3}, and so on until all features are included.
The user can then evaluate the list of features included
and corresponding divergence value, and must weigh up
the advantages of using fewer features against the cost
of lower classification accuracy.

The backward elimination method works the
opposite way round. Starting with the complete set
{f1, f2, . . . , fp}, remove that feature which contributes
least to the average pairwise divergence. This is done by
computing the average pairwise divergence for all sub-
sets of size p − 1. Repeat until m = 1. Neither procedure
is guaranteed to produce the optimal subset; indeed, both
may produce differing results unless the dataset is so
clearly structured that no selection procedure is needed.

Stepwise methods incorporate both the addition of fea-
tures to the selected set, as in forward selection, and
their removal, as in backward elimination. The single
best feature is selected first, with ‘best’ being defined
as ‘generating the largest classification accuracy’. Call
this feature f1. Now add that feature drawn from the
set of remaining features that, together with f1, produces
the highest classification accuracy for all pairs of fea-
tures that include f1 So now the best subset is {f1, f2}.
The increase in classification accuracy resulting from the
addition of f2 to the best subset can be tested statistically;
if the increase is not statistically significant then f2 is
eliminated and the procedure terminates. If the increase
is acceptably large, then a third feature is added, and
the testing procedure is applied again. A second statisti-
cal test is also used. It is concerned with the question of
whether any of the features included in the best subset can
be eliminated without any significant loss of classifica-
tion accuracy. Features that are included at an early stage
in the selection process can be eliminated later. Interac-
tion (shown by high correlations) between variables is
responsible for these apparent anomalies. The process ter-
minates when no excluded features can be added and no
included features can be eliminated.

Other methods include the use of the GA as a search
procedure. The use of the GA in this role is noted in
Section 8.6. It is also applicable to the feature selection
problem. A good introduction to the workings of the
GA is provided by Holland (1992). Other references are
Coley (1999), Man, Tang and Kwong (1999), Mitchell
(1996), van Coillie, Verbeke and De Wulf (2007) and
Yu, De Backer and Scheunders (2002). The last of
these papers uses an application based on the use of
AVIRIS hyperspectral data. Univariate DT classifiers
(Section 8.4.5) effectively select one feature at each
level, using any one of a range of criteria (Gomez-Chova

et al., 2003; Tso and Mather, 2009). Bazi and Melgani
(2006) also focus on hyperspectral data, but they use a
SVM (Section 8.4.4) to extract features and classify data.
They also conduct a comparative analysis of feature
extraction techniques.

Kumar (1979) describes an experiment in which
the exhaustive search, forward and backward selection
algorithms were employed. He found that the forward
selection method produced results that were almost as
good as exhaustive search and which were better than
those produced by the backward elimination method.
Mao (2004) also uses forward and backwards selection
in an orthogonal space.

Other studies of feature selection are provided by
Aha and Bankert (1996), Baofeng, Gunn and Damper
(2006), Kavzoglu and Mather (2002), Muasher and
Landgrebe (1984) and Ormsby (1992). Yool et al.
(1986) compare the use of transformed divergence and
empirical approaches to the assessment of classification
accuracy (Section 8.10). They found no clear agreement
between the results from the two alternative approaches,
and attributed the differences – which in some instances
were considerable – to departures from normality and
conclude that ‘ . . . a divergence algorithm requiring
normally-distributed data may not be a reliable indicator
of performance’ (Yool et al., 1986, p. 689). However,
if the empirical classification accuracy approach is used
then a classification analysis must be carried out on test
samples for each subset of m features. Kavzoglu and
Mather (2000) use feature selection to reduce the size
of an artificial neural net (Section 8.4.3) and thereby
improve its generalization capabilities.

The availability of high-dimensional multispectral
image data is thus seen to be a mixed blessing. Addi-
tional spectral channels provide more detailed or more
extensive information on the spectral response of the
ground-cover targets, though their use requires additional
computer time. Classification accuracy is dependent
on feature-set size, yet no clear and recommendable
algorithm is available to determine the subset that will
produce the best compromise between accuracy and
cost. Factors other than dimensionality will affect the
choice of subset; the number of classes and their relative
separability will have some influence on the number and
choice of features needed to discriminate between them.
Studies that have been carried out to date indicate that
statistical methods (based on the assumption of normal
distributions) should be used with caution.

Non-parametric feature selection methods do not rely
on assumptions concerning the frequency distribution of
the features. One such method, which has not been widely
used, is proposed by Lee and Landgrebe (1993). Benedik-
tsson and Sveinsson (1997) demonstrate its application.
Pal (2006) uses SVMs (Section 8.6.1) for feature selection.



280 Computer Processing of Remotely-Sensed Images: An Introduction

8.10 Classification Accuracy

The methods discussed in Section 8.9 have as their aim
the establishment of the degree of separability of the k
spectral classes to which the image pixels are to be allo-
cated (though the Bhattacharyya distance is more like a
measure of the probability of mis-classification). Once
a classification exercise has been carried out there is a
need to determine the degree of error in the end product.
These errors could be thought of as being due to incorrect
labelling of the pixels. Conversely, the degree of accu-
racy could be sought. First of all, if a method allowing
a ‘reject’ class has been used then the number of pixels
assigned to this class (which is conventionally labelled
‘0’) will be an indication of the overall representative-
ness of the training classes. If large numbers of pixels
are labelled ‘0’ then the representativeness of the training
datasets is called into question – do they adequately sam-
ple the feature space? The most commonly used method
of representing the degree of accuracy of a classification
is to build a k × k confusion (or error) matrix . The ele-
ments of the rows i of this matrix give the number of
pixels which the operator has identified as being mem-
bers of class i that have been allocated to classes 1 to k
by the classification procedure (see Table 8.4). Element
i of row i (the i th diagonal element) contains the num-
ber of pixels identified by the operator as belonging to
class i that have been correctly labelled by the classi-
fier. The other elements of row i give the number and
distribution of pixels that have been incorrectly labelled.
The classification accuracy for class i is therefore the
number of pixels in cell i divided by the total number
of pixels identified by the operator from ground data as
being class i pixels. The overall classification accuracy
is the average of the individual class accuracies, which
are usually expressed in percentage terms.

Some analysts use a statistical measure, the kappa
coefficient, to summarize the information provided by
the contingency matrix (Bishop, Fienberg and Holland,
1975). Kappa is computed from:

K̂ = N
∑k

i x −∑k
i=1 xi + x + i

N −∑k
i=1 ni + x + i

where k is the number of classes and N the number of
test (reference) data samples. The k × k matrix X is the
confusion matrix.

The xii are the diagonal entries of the confusion matrix.
The notation xi+ and x+i indicates, respectively, the sum
of row i and the sum of column i of the confusion matrix
X. Row totals (xi+) for the confusion matrix shown in
Table 8.4 are listed in the column headed (i) and column
totals are given in the last row. The sum of the diagonal

elements (xii) is 350 (
k∑

i=1
xii for k = 6), and the sum

of the products of the row and column marginal totals

(
k∑

i=1
xi+x+i) is 28 739, and the value of kappa estimated

from the test data is:

κ̂ = 410 × 350 − 28729

168100 − 28739
= 114761

139361
= 0.823

A value of zero indicates no agreement between the
classification and the test data, while a value of 1.0
shows perfect agreement between the classifier output
and the reference data. Montserud and Leamans (1992)
suggest that a value of kappa of 0.75 or greater shows
a ‘very good to excellent’ classifier performance, while
a value of less than 0.4 is ‘poor’. However, these
guidelines are only valid when the assumption that
the data are randomly sampled from a multinomial
distribution, with a large sample size, is met.

Table 8.4 Confusion or error matrix for six classes. The row labels are those given by an operator using ground reference
data. The column labels are those generated by the classification procedure. See text for explanation. (i) Number of pixels in
class from ground reference data. (ii) Estimated classification accuracy (percent). (iii) Class i pixels in reference data but not
given label by classifier. (iv) Pixels given label i by classifier but not class i in reference data. The sum of the diagonal
elements of the confusion matrix is 350, and the overall accuracy is therefore (350/410) × 100 = 85.4%.

Class 1 2 3 4 5 6 (i) (ii) (iii) (iv)

Ref

1| 50 3 0 0 2 5 60 83.3 10 21

2 4 62 3 0 0 1 70 88.5 8 10

3 4 4 70 0 8 3 89 81.4 19 6

4 0 0 0 64 0 0 64 100.0 0 3

5 3 0 2 0 71 1 77 92.2 6 10

6 10 3 1 3 0 33 50 66.0 17 10

Col. sums 71 72 76 67 81 43 410 – 60 60
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The advantages of using kappa (or an estimate of
kappa, to be more precise) is that it takes into account
the probability that some of the agreement between test
data and classified image is due to chance. Also the
variance of the sample estimate of kappa, written ˆvar
(κ̂) can be computed. The hats over var and κ indicate
that these quantities are sample estimates of the true
but unknown population values computed from a large
random sample. The estimated variance is normally
distributed for a large sample and so, in this case, a z
value or standard normal deviate can be computed. First,
set up the null hypothesis that kappa is actually equal to
zero. Next, compute the test statistic, z . The probability
that a value of z as high as the computed value could
occur if the null hypothesis were true can be found from
standard statistical packages that provide a probability
value, α, corresponding to the z value. Some examples
are: z = 1.96, α = 0.025 or 2.5%; z = 2.58, α = 0.01
or 1%; z = 1.64, α = 0.05 or 5%. To understand what
these figures mean, imagine that you have collected a
very large number of test and training datasets and have
used each training dataset to carry out a classification.
For each classification, calculate the estimates of kappa,
the variance of kappa and the z value. If the true value
of kappa really is equal to zero then a z value as high
as 1.96 will be observed in only 2.5% of a large number
of tests using different test and training data. Given a
sample value of kappa equal to 2.58 most people would
consider it reasonable to conclude that kappa is not
equal to zero at a significance level of 0.05. For the
data in Table 8.4 the estimated value of kappa is 0.823
(for comparison, the classification accuracy is 85.4%),
the estimated variance of kappa is 0.000043 and z is
39.9. The α value corresponding to this high value of
z is extremely small (it is so small that my computer
program tells me it is zero). So we can confidently
state that the classification on which Table 8.4 is based
is extremely unlikely to have arisen by chance. The
words ‘by chance’ mean that at each pixel position in
the classified image a random label is chosen from the
range 1 – k .

Another advantage of kappa is that it can be used to
test the null hypothesis that the difference between two
classifications of the same dataset are statistically equiv-
alent. That is to say, the differences between the two
classification results could have occurred by chance.

The equation for estimated kappa is given above. The
estimated variance of estimated kappa is given by

var (κ̂) = 1

N

(
θ1(1 − θ1)

(1 − [θ2)]
2

+ 2(1 − θ1)(2θ1θ2 − θ3)

(1 − θ2)3

+ (1 − θ1)
2
(
θ4 − 4θ2

2

)
(1 − θ2)4

)

where

θ1 = 1

N

k∑
i=1

xii

θ2 = 1

N

k∑
i=1

xi+x+i

θ3 = 1

N2

k∑
i=1

xii(xi+ + x+i )

and

θ4 = 1

N3

k∑
i=1

k∑
j=1

xij (xi+x+i )

The z values for the null hypothesis that the true kappa
value is zero and for the null hypothesis that two classi-
fications are equivalent are given by:

z = κ̂

var (κ̂)

z = |κ̂1 − κ̂2|√
var(κ̂1) + var(κ̂2)

See Congalton and Green (2008), Kalkhan, Reich and
Czaplewski (1997), Stehman (1997), Stehman and Wick-
ham (2006), Stehman, Sohl and Loveland (2005) and
Schott (2007) for more details. Koukoulas and Black-
burn (2001) suggest new accuracy measures for classi-
fication of semi-natural woodlands. Stehman (2004) dis-
cusses the value of normalizing the confusion matrix,
and comes to the conclusion that normalization gener-
ates more problems than it solves. Jenness and Wynne
(2007) describe an ArcView 3× plugin that computes
all of the details given above, and a lot more besides.
Foody (2004) reviews the evaluation of the statistical sig-
nificance of differences in classification accuracy. Foody
(2005) shows that the overall classification accuracy can
hide significant local spatial variations in accuracy. In one
case he showed that while the overall accuracy of a clas-
sifier was 84.0% but that local accuracies ranged from
53.3 to 100.0%. In a later paper, Foody (2008) holds the
view that the remote sensing approach to classification
accuracy is unduly harsh, and considers some of the key
issues. It is clear that (i) tests based on kappa are para-
metric, that is they require the data to follow a specific
distribution and (ii) statistical comparisons of classifica-
tions say nothing about spatial patterns. It is conceivable
that two classifications may produce the same kappa val-
ues (in terms of statistical significance) but the pattern of
labels in the two images may be different.

The confusion matrix procedure stands or falls by the
availability of a test sample of pixels for each of the k
classes. The use of training-class pixels for this purpose is
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dubious and is not recommended – one cannot logically
calibrate and evaluate a procedure using the same dataset.
A separate set of test pixels should be used for the cal-
culation of classification accuracy. Users of the method
should be cautious in interpreting the results if the ground
data from which the test pixels were identified was not
collected on the same date as the remotely sensed image,
for crops can be harvested or forests cleared. Other prob-
lems may arise as a result of differences in scale between
test and training data and the image pixels being clas-
sified. Baccini et al. (2007) discuss the scaling of field
data to calibrate and validate moderate resolution remote
sensing models using an aggregation procedure.

The confusion matrix can be used to assess the nature
of erroneous labels besides allowing the calculation of
classification accuracy. Errors of omission are committed
when patterns that are really class i become labelled as
members of some other class, whereas errors of commis-
sion occur when pixels that are really members of some
other class are labelled as members of class i . Table 8.4
shows how these error rates are calculated. From these
error rates the user may be able to identify the main
sources of classification inaccuracy and alter his or her
strategy appropriately, for example by combining two or
more classes that are not separable on the basis of spec-
tral data alone, or by adding new discriminating features
such as texture.

How to calculate the accuracy of a fuzzy classification
might appear to be a difficult topic; refer to Foody
and Arora (1996), Gómez, Biging and Montero (2008),
Gopal and Woodcock (1994) and Silván-Cárdenas and
Wang (2008). Burrough and Frank (1996) consider the
more general problem of fuzzy geographical boundaries.
The question of estimating area from classified remotely
sensed images is discussed by Canters (1997) with
reference to fuzzy methods. Dymond (1992) provides
a formula to calculate the root mean square error of
this area estimate for ‘hard’ classifications (see also
Lawrence and Ripple, 1996). Czaplewski (1992) dis-
cusses the effect of misclassification on areal estimates
derived from remotely sensed data.

The use of single summary statistics to describe the
degree of association between the spatial distribution of
class labels generated by a classification algorithm and
the corresponding distribution of the true (but unknown)
ground cover types is rather simplistic. First, these statis-
tics tell us nothing about the spatial pattern of agreement
or disagreement. An accuracy level of 50% for a partic-
ular class would be achieved if all the test pixels in the
upper half of the image were correctly classified and those
in the lower half of the image were incorrectly classified,
assuming an equal number of test pixels in both halves of
the image. The same degree of accuracy would be com-
puted if the pixels in agreement (and disagreement) were

randomly distributed over the image area. Second, state-
ments of ‘overall accuracy’ levels can hide a multitude of
sins. For example, a small number of generalized classes
will usually be identified more accurately than would a
larger number of more specific classes, especially if one
of the general classes is ‘water’ (Atkinson and Aplin,
2004; Aplin, 2006; Rahman et al., 2003, Hengl, 2006).
More thought should perhaps be given to the use of mea-
sures of confidence in pixel labelling. It is more useful
and interesting to state that the analyst assigns label x to
a pixel, with the probability of correct labelling being y ,
especially if this information can be presented in quasi-
map form. A possible measure might be the relationship
between the first and second highest membership grades
output by a soft classifier. The use of ground data to test
the output from a classifier is, of course, necessary. It is
not always sufficient, however, as a description or sum-
mary of the value or validity of the classification output.

Foody (2002b) provides a useful summary of the state
of the art in land cover classification accuracy assessment.
He describes a number of problems associated with pro-
cedures based on the confusion matrix, including misreg-
istration, sampling issues and accuracy of the reference
data, and concludes that ‘it is unlikely that a single stan-
dardized method of accuracy assessment and reporting
can be identified’. Vieira and Mather (2000) consider in
more detail one of the points raised by Foody (2002b),
namely, the spatial distribution of error and its visual-
ization. Foody (2004) analyses the statistical significance
of measures of accuracy. He evaluates measures of local
accuracy in a later paper (Foody, 2005). A further analy-
sis of accuracy assessment is well worth reading (Foody,
2008). Brown, Foody and Atkinson (2009) considers per-
pixel thematic uncertainty rather than overall classifi-
cation accuracy. Yu et al. (2008) discuss classification
uncertainty in an image object-based vegetation map-
ping, while Hale and Rock (2003) evaluate the impact of
topographic normalization (Section 4.7) on classification
accuracy. Huang et al. (2008) also investigate the impact
of atmospheric and topographic correction on accuracy.

The question of classification accuracy also involves
the number of features used in the classification. Hughes
(1968) noted that, once a certain point had been passed,
then classification accuracy declined as the number of
features increased. This characteristic is now known as
the Hughes Phenomenon . If we consider a statistical clas-
sifier such as ML (Section 8.4.2) then we need to pro-
vide estimates of the mean vector x (with p elements),
and the p(p − 1) elements of the variance–covariance
matrix. Given a fixed sample size, then as the number
of features p increases so the number of independent
sample elements supporting these p + p(p1) estimates
declines, and they become less stable (in a statistical
sense – see, for example Tadjudin and Landgrebe (2000)
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in the context of mixture modelling). Hence, the effec-
tiveness of the sample in characterizing the class to which
it relates will inevitably decline.

Classification accuracy thus depends not solely on the
method used to measure it but on the properties of the
training data (Section 8.4.1) such as degree of represen-
tativeness (which in turn relates to the heterogeneity of
the pixels falling into the specific class) as well as sam-
ple size. There is some evidence to show that the Hughes
Phenomenon starts to show itself at different numbers of
features/sample size depending on the classifier used. For
example, the SVM may perform well with small train-
ing samples for the same number of features compared to
the ML statistical classifier; for example Lennon, Mercier
and Hubert-Moy (2002) claim that SVM do not suffer
from the effects of increasing dimensionality of the pat-
tern space. Pal and Mather (2004) make the same claim.
ANNs may also perform better (in the sense of producing
higher classification accuracy via increased generalisabil-
ity) with smaller training samples (Section 8.4.3). Foody,
Boyd and Sanchez-Hernandez (2007) discuss the problem
of sample size in the context of an SVM-based classi-
fication in which interest is focused on a single class.
Dobbertin and Biging (1996), Blamire (1996), Foody,
McCullagh and Yates (1995) and Ju, Gopal and Kolaczyk
(2005) all contribute to the debate concerning the rela-
tionship between sample size, sampling method, spatial
scale and spatial autocorrelation on classification accu-
racy. This relationship is worthy of further investigation,
as the cost of collecting training data is high and win-
dows of opportunity (i.e. the coincidence of a cloudless
day and a satellite overpass) are rare. van Niel, McVicar
and Datt (2005) remark that the general rule mentioned
earlier in this chapter governing training class size (i.e.
10–30 times the number of features) does not take into
account the nature of the problem, and they conduct sim-
ulation experiments and that in some instances the rule
produces a figure that is needlessly high. These authors
state that the size of the training dataset should reflect the
complexity of the discrimination problem.

One of the conclusions to arise from the literature
mentioned in the preceding section is that classification
accuracy is a function of the classification algorithm
being used, the complexity of the discrimination prob-
lem, the adequacy of sampling (in terms of spatial
coverage as well as sample size), and the nature of
the terrain (for instance, mountainous terrain poses
greater problems than do areas of low relative relief).
Pal and Mather (2006) conclude that small increases in
classification accuracy can be obtained by using more
sophisticated techniques, but that greater attention should
be paid to the collection of both test and training data
that represent the range of land surface variability at the
spatial scale of interest. Plourde and Congalton (2003)

focus on the effects of sample size and placement on
classification accuracy. Good reviews are provided by
Congalton and Green (2008), Liu, Frazier and Kumar
(2007) and Lunetta and Lyon (2004). An alternative
approach to classification accuracy estimation, using
a Bayesian rather than a frequency-based method, is
described by Denham, Mengersen and Witte (2009).

Classification accuracy must be considered care-
fully when land cover information, derived from
remote sensing sources, is used as input to models of
atmosphere/biosphere interactions. The use of remotely-
sensed data in modelling within a GIS is discussed in
Section 10.6. DeFries and Los (1999) and Bounoua,
Masek and Tourre (2006) demonstrate the errors that
can be generated when land cover classification maps
produced from remotely-sensed data are introduced into
biospheric models.

8.11 Summary

A number of developments in classification methodology
have occurred in recent years. However, the level of
mathematical and statistical sophistication required to
understand and implement the newer methods is well
beyond the scope of this book. Readers requiring more
detail should refer to advanced texts such as Landgrebe
(2003) or Tso and Mather (2009). The use of pattern
recognition techniques is not exclusive to remote sensing,
and useful information can be found from books and
articles targeted at, for instance, medical imaging (Meyer-
Bäse, 2004) or mathematics and statistics (Bishop, 2006;
Theodoridis and Koutraumbas, 2006). Bishop (2006)
includes MATLAB code for major algorithms.

Other questions that are important in an operational
as well as an academic context have not been described
in any detail, such as the effects of misregistration of
image sets or the need for atmospheric correction when
changes in classification labelling over time are used in
change detection studies (this latter point is considered
by Song et al. (2001)).

The use of ANNs, DTs, SVMs, multiple classifiers,
fuzzy methods, new techniques for computing texture
features, and new models of spatial context, which were
introduced into remote sensing during the 2000s, are
now better known. This chapter has hardly scratched the
surface, and readers are encouraged to follow up the
references provided at various points. I have deliberately
avoided providing potted summaries of each paper or
book to which reference is made in order to encourage
readers to spend some of their time in the library (either
real or electronic) because reading requires thought
and discipline. However, ‘learning by doing’ is always
to be encouraged. It is important, however, to acquire
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familiarity with the established methods of image
classification before becoming involved in advanced
methods and applications.

Despite the efforts of geographers following in the
footsteps of Alexander von Humboldt over the last 150
years, we are still a long way from being able to state
with any acceptable degree of accuracy the proportion
of the Earth’s land surface that is occupied by different
cover types. At a regional scale, there is a continuing
need to observe deforestation and other types of land
cover change, and to monitor the extent and productivity
of agricultural crops. More reliable, automatic, methods
of image classification are needed if answers to these
problems are to be provided in an efficient manner. New
sources of data, at both coarse and fine resolution, are
becoming available. The early years of the new mil-
lennium have seen a very considerable increase in the
volumes of Earth observation data being collected from
space platforms, and much greater computer power (with
intelligent software) will be needed if the maximum value
is to be obtained from these data. An integrated approach
to geographical data analysis is now being adopted, and

this having a significant effect on the way image classifi-
cation is performed. The use of non-remotely-sensed data
in image classification process is providing the possibility
of greater accuracy, while – in turn – the greater reliabil-
ity of image-based products is improving the capabilities
of environmental GIS, particularly in respect to studies
of temporal change.

All of these factors present challenges to the remote
sensing and GIS communities. The focus of research will
move away from specialized algorithm development to
the search for methods that satisfy user needs, and which
are broader in scope than the statistically based methods
of the 1980s, which are still widely used in commer-
cial GIS and image processing packages. If progress is
to be made then high-quality interdisciplinary work is
needed, involving mathematicians, statisticians, computer
scientists and engineers as well as Earth scientists and
geographers. See, for example a review by Gautama et al.
(undated) of computer vision techniques for remote sens-
ing. The future has never looked brighter for researchers
in this fascinating and challenging area.



9 Advanced Topics

9.1 Introduction

This chapter deals with three topics (interferometric syn-
thetic aperture radar (InSAR), imaging spectroscopy and
lidar) that are unlikely to be covered in an undergraduate
course but which will be of interest to students following
Masters courses, or undertaking preliminary reading for
postgraduate research degrees. In Section 9.2 the topic
of synthetic aperture radar interferometry (SAR inter-
ferometry or InSAR) is introduced. InSAR is primarily
used to acquire data that can be processed and calibrated
to produce digital elevation models (DEMs) of a tar-
get area. differential interferometric synthetic aperture
radar (DInSAR) uses a time-sequence of interferometric
observations and can detect movements of the order of
centimetres. It has been used in fields such as glaciology,
volcanology and tectonics to measure small changes in
the height of the Earth’s surface or to measure movement
of, for example glaciers or ice sheets (Rott, 2009).

Imaging spectroscopy has been a topic that has
attracted interest from researchers over the past 15 years
or so. The launch of Earth Observer-1 (EO-1), which
carried an imaging spectrometer (Hyperion) into orbit
for the first time, plus the more widespread availability
of data from airborne sensors such as ‘Hyperspectral
Mapper’ (Hymap), DAIS and Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), means that access to
such data is becoming easier. Section 9.3 provides an
introductory description of methods of processing high-
dimensional data in both one and two dimensions (i.e.,
spectrally and spatially). Methods of analysing spectra
used in chemometric analysis are described in the context
of remote sensing, and examples are provided to lead
the reader through some of the more difficult material.

The third topic considered in this chapter is that of the
interpretation and use of lidar data. Ice, Cloud and land
Elevation SATellite (ICESat), launched in early 2003,
carried the first space-borne lidar. It stopped functioning
in late 2009. As in the case of imaging spectroscopy,
lidar data collected by aircraft-mounted sensors are
becoming more widely available, and so these data are

Computer Processing of Remotely-Sensed Images: An Introduction, Fourth Edition Paul M. Mather and Magaly Koch
c© 2011 John Wiley & Sons, Ltd

becoming more familiar to students and researchers.
Lidar, like InSAR, is a ranging technique that measures
distance from the instrument to a point on or above the
ground surface, such as the roof of a building or a tree
canopy. Thus, lidar data can be used to generate a digital
surface model (DSM) of ground and above-ground
elevations. Lidar can penetrate vegetation canopies to a
greater or lesser extent, and more modern lidar sensors
can collect two or more returns from each ground point,
making possible the study of the relationships between
lidar penetration distances and the biophysical properties
of vegetation canopies.

9.2 SAR Interferometry

9.2.1 Basic Principles

A SAR image is generated by processing of millions
of pulses of microwave energy that are transmitted
and received by airborne or satellite-borne antennae
(Section 2.4). The transmitted pulses are scattered by a
target, and the same antenna receives the return pulse of
energy that is backscattered by the target on the ground.
Distance to the target (in the range direction) can be
computed from the time taken between transmission and
reception of the pulse, as the microwave radiation travels
at the speed of light, while the direction of movement
of the platform defines the azimuth direction. When the
magnitudes of the processed pulses, which relate to the
strength of the backscattered signal, are displayed in
both azimuth and range, then we see a radar image.

SAR instruments are described as coherent because
they record information about the phase as well as the
magnitude of the return pulses. Phase is measured as an
angle. Figure 9.1 shows two curves. One is a plot of
sin (x ) and the second is a plot of sin(x + π/2). The
first curve has a phase of zero (i.e. the value of the sine
wave at x = 0 is zero). The second curve lags the first
by π/2 radians. This is seen clearly around the point
x = 6.28 radians. Imagine that the curve of sin(x) is
typical of the microwave energy transmitted by a SAR,
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Figure 9.1 Phase difference between two sine waves. The x-axis is graduated in radians (2π radians = 360◦). The shift of the
peak from the first sine wave to the second is equal to π/3 radians, and this shift is the phase angle. Note that phase angle
cannot be equal to or greater than 2π radians.

and sin(x + π/2) represents the return signal. The differ-
ence in phase between the transmitted and returned pulse
is π/2 radians. The phase difference between transmitted
and received energy as well as the magnitude of the return
signal is recorded for each pixel in a SAR image, and
datasets consisting of phase and magnitude information
can be acquired in the form of single-look complex (SLC)
images. The phase information for a single, independent
image is of no practical value. However, the technique
of interferometry makes use of two or more SLC images
of the same area taken at the same or different times in
order to recover information about the phase differences
between them. The elevations of all pixels above some
geodetic datum, such as WGS84, can be computed from
this phase difference information.

The mathematical and algorithmic details of InSAR
processing are well beyond the scope of this book. How-
ever, the underlying principles are reasonably straightfor-
ward, and these are presented in the following paragraphs.
Readers requiring a more technical account should refer
to Armour et al. (1998), Evans et al. (1992), Gens and
van Genderen (1996a), Hanssen (2001), Massonet (2000),
Massonet and Feigl (1998), Rosen et al. (2000) and Zebker
and Goldstein (1986). InSAR uses the differences in phase
between the signals received by two separate SAR anten-
nae to construct a pixel-by-pixel map of ground surface
elevations. The height h in Figure 9.2 is calculated from
the difference in the phase (or path difference) of the
signals received by antennae A1 and A2, the length of
the baseline B that separates the antennae, and the look
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Figure 9.2 Geometry of SAR interferometry. A1 and A2 are the positions of two SAR antennae. B is the baseline (the distance
between A1 and A2). R1 and R2 are the distances from A1 and A2 to the point P that has an elevation of h above a specified
datum. Angle θ is the look angle of the radar.
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angle of the radar. Figure 9.2 is idealized in the sense
that any vegetation cover that is present may intercept
the microwave radiation before it reaches the ground. The
measurement h may therefore include the height of forest
trees, buildings and other man-made structures and may
therefore be described as a DSM rather than as a DEM.

The configuration of the two antennae A1 and A2
shown in Figure 9.2 can be achieved using one of two
strategies. In single-pass interferometry the two antennae
are carried by a single platform whereas in repeat-pass
interferometry the signal is measured at position A1 on
one orbit and at A2 on a later orbit. The US Shuttle
Radar Topography Mission (SRTM), which took place
during February 2000, used the single-pass approach.
Two radars were carried during the mission. NASA
reused the C-band system from its SIR-C experiment of
1994, and the German Space Agency (DLR) contributed
an X-band radar (Rabus et al., 2003; Rodriguez et al.,
2006; Slater et al., 2006). For each instrument, one
antenna was placed in the Shuttle’s cargo hold and the
other was located at the end of a 60 m mast that was
deployed once the Shuttle reached its orbital altitude
of 233 km. Single-pass systems need only one active
antenna, so the backscatter from the signal transmitted
from antenna A1 in Figure 9.2 is received by both
antenna A1 and A2. Figure 9.3 shows a visualization of
the Cape of Good Hope, South Africa, produced from
C-band interferometric data collected during the SRTM
with Landsat ETM + data as an overlay. Figure 9.4
is a relief map of Ireland generated from SRTM data.
Quality assessment of SRTM data and products is
provided by Smith and Sandwell (2003) and Walker,

Figure 9.3 Three-dimensional view of Cape Town and
the Cape of Good Hope, South Africa. The relief data
was obtained from interferometric processing of C-band
InSAR data from the SRTM (February 2000) and the
colour overlay from Landsat ETM bands 3, 2 and 1 in
R, G and B (June, 2000). From JPL’s Photojournal
(http://photojournal.jpl.nasa.gov/catalog/PIA04961, accessed
31 July 2009). Courtesy of NASA/JPL/NIMA.

Figure 9.4 Relief map of Ireland from C-band SRTM
data. Illumination is from the north-west, so south-east
facing slopes are darker. Colour coding (low–high eleva-
tions): green–yellow–brown–white. From JPL’s Photojournal
(http://photojournal.jpl.nasa.gov/catalog/PIA06672, accessed
31 July 2009). Courtesy of NASA/JPL/NGA.

Kellndorfer and Pierce (2007). The availability of a
constellation of radar satellites such as COSMO/Skymed
(Section 2.4) opens up opportunities for the use of
two satellites a few seconds apart in their orbit giving
effectively single-pass interferometry or alternatively
the orbit separation could be measured in days, giving
repeat-pass interferometry. Both COSMO/Skymed and
TerraSAR-X can produce SAR imagery with sub-metre
spatial resolution; Eineder (2009) illustrates the use of
high-resolution TerraSAR-X data in mapping buildings
and other structures. The paper is worth looking at for
the interferometrically generated image of the Eiffel
Tower, Paris. Moreira et al. (2004) and Krieger et al.
(2007) give details of the planned TanDEM approach to
interferometry. The existing TerraSAR-X system is to
be augmented by a second similar system in close orbit.
The horizontal resolution will be of the order of 12 m
with 10 m vertical accuracy. TeraSAR-X is described in
Section 2.4. The TanDEM home page is at http://www
.dlr.de/hr/en/desktopdefault.aspx/tabid-2317/3669_read-
5488/, and a presentation to the 2009 IGARSS meeting
is linked from the home page. To go to the presen-
tation directly, link to http://www.dlr.de/Portaldata/32/
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Resources/dokumente/tdmx/TanDEM-X_PreLaunch-Sci-
breakenceMeeting_Agenda_Nov08.pdf.

Repeat-pass interferometric data are collected, as the
name implies, at different times. SAR data acquired by the
ERS, ASAR, JERS-1 and Radarsat radars have been used
to derive interferometric DEMs. The first data take occurs
when the satellite is at position A1 in Figure 9.2. At a later
date, when the orbital track is different, a second set of data
is acquired from antenna position A2. The length of time
between successive and suitable ERS orbits varied from
one day (when both ERS-1 and ERS-2 were operating in
tandem mode) to as long as 35 days.

A single-pass interferometric configuration such as
that used in the SRTM (and by aircraft-borne interfer-
ometric systems) has a number of advantages over a
repeat-pass system. First, the target area is imaged under
virtually identical conditions, so that backscattering from
the target to the two antennae is effectively the same.
The SAR images collected by the antennae A1 and A2
(Figure 9.2) are thus highly correlated. The correlation
between two complex-valued (SLC) SAR images is
termed coherence (Wegmüller, 1997; Zebker and Chen,
2005; also see below). High coherence is necessary for
successful interferometry in that the assumption is made
that the characteristics of the backscattered energy from
each pair of corresponding points in the two images
is the same. If a repeat-pass system is used then the
backscattering characteristics of the target may have
changed between the dates that the two SAR images
were collected, and the degree of correlation between
the two images would therefore be reduced, causing
what is known as temporal decorrelation. Temporal
decorrelation leads to a reduced level of accuracy
in height determination and in extreme cases makes
interferometry impossible. Some targets decorrelate very
quickly. For example, Askne et al. (1997) show that
decorrelation can occur within a few minutes for forest
targets, as the individual leaf orientations change quickly
relative to the SAR illumination direction as a result of
wind action. Water bodies also decorrelate very rapidly,
whereas agricultural areas show a moderate reduction of
coherence as the time between the two successive SAR
image collection dates increases. Urban areas show the
lowest temporal decorrelation. In vegetated areas, the
impact of temporal decorrelation depends on wavelength
to some extent, as shorter wavelengths are scattered by
the outer leaves whereas longer wavelengths penetrate
more deeply into the canopy, as noted above. The rate
at which decorrelation occurs can be used to distinguish
between static and dynamic targets, for example urban
areas and growing crops. Llu et al. (2004) use coherence
to detect areas of rapid erosion in south-east Spain.

A second advantage of the single-pass approach is that
atmospheric conditions are similar for the SAR images

collected at antennae positions A1 and A2 in Figure 9.2.
If the dates of image acquisition differ then atmospheric
effects may result in errors in phase angle determination.
The propagation of microwave energy through the atmo-
sphere is affected both by the presence of water vapour
and by tropospheric effects that are not well understood,
but which can cause significant errors in phase determi-
nation from SAR images.

A disadvantage of single-pass interferometry is the
limited baseline length that can be achieved (B in
Figure 9.2). The SRTM used a 60 m mast to serve as the
mounting point for the second antenna, whereas a repeat-
pass configuration could involve a separation between the
two orbits of several hundred metres. Baseline length is
important as it has an effect on the sensitivity of the rela-
tionship between height and phase. The rate of change
of height with phase difference (i.e. height sensitivity) is
directly proportional to baseline length. Thus, if the base-
line is short then – all other things being constant – small
changes in phase angle produce relatively large changes
in computed ground elevations. The opposite is the case
for longer baselines. However, if the baseline becomes
too long then the two SAR ‘views’ of the target become
decorrelated and the phase differences that are used to
calculate terrain elevation cannot be measured. This
critical baseline length for repeat-pass interferometry
using ERS-1 and -2 is of the order of 1 km, but best
results for DEM generation are obtained with a baseline
length of around 200–300 m. The baseline length must
be known accurately. Reigber et al. (1996) state that,
for ERS interferometry to be successful, the baseline
length must be known to an accuracy of less than 5 cm.
During the SRTM the length of the mast on which the
C- and X-band receive-only antennae were placed was
monitored closely, for – as Rabus et al. (2003) note – an
error of 1 mm in measuring its length would lead to an
elevation error of 0.5 m on the ground. Bending of the
mast tip was also a problem. A star-tracking system and
an electronic distance-measuring device were employed
to ensure that the position of the mast tip was known
to a sufficient degree of accuracy. More details of the
SRTM mission are provided by Farr and Kobrick (2000).

Thus far, the question ‘how do we know exactly where
the antennae are?’ has not been considered, yet it is a
fundamental one. The orbits of the ERS-1 and ERS-2
satellites are determined using the Precise Range and
Range Rate Equipment (PRARE) instrument, from laser
retroreflector readings, and from the use of orbital mod-
els, which are described in Section 4.3. The use of lasers
to determine the locations of satellites is called satellite
laser ranging. Laser beams are directed from a ground
station towards the satellite of interest, which carries effi-
cient reflectors called retroreflectors that return the pulse
back to the ground. The round-trip time is measured to a
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high accuracy and the distance is calculated from knowl-
edge of the speed of light. The position of the satellite is
then computed from this distance plus the angle of beam
projection. Using this procedure, the position of the satel-
lite can be fixed to within 1 m. Both ERS and Envisat
are equipped with retroreflectors. Reigber et al. (1996)
discuss the effect of the accuracy of orbit determination
on interferometry.

For airborne InSAR, aircraft platform altitude and
attitude are monitored using GPS and an inertial navi-
gation system (mentioned in Section 9.4.2 in relation to
lidar data collection from aircraft). During the SRTM
the Shuttle’s location in space was determined to an
accuracy of about 1 m by GPS. An inertial navigation
package also provided data on the Shuttle’s attitude
parameters (pitch, roll and yaw).

Both Radarsat and the Envisat ASAR can operate in
a mode known as ScanSAR mode (also known as wide-
swath or global monitoring modes in the case of ASAR).
The radar antenna is capable of scanning several sub-
swaths simultaneously, as illustrated in Figure 9.5. The
penalty is a reduction in spatial resolution. For example,
the ASAR onboard Envisat produces SAR imagery with
a spatial resolution of 30 m for any single subswath in
‘image’ mode, whereas in ‘global monitoring’ mode all
the subswaths are scanned, but at a resolution of 1 km.
The derivation of interferograms from ScanSAR imagery
presents a number of additional problems (Hellwich,

Scan SAR Antenna

Flight direction

Sub-swaths

Figure 9.5 Illustrating the principle of ScanSAR. The antenna
directs separate bursts towards each sub-swath to build up a
large image. The ASAR onboard Envisat can produce a swath
of 400 km in ScanSAR mode, but the penalty is decreased
spatial resolution of either 150 or 1000 m, depending on
requirements.

1999a, 1999b; Monte Guarnieri et al., 1998). First, the
sub swaths have to be scanned in an identical fashion
on the two orbits required for repeat-pass interferometry
and, second, the critical baseline length becomes shorter,
at around 400 m. However, the advantage is a greater
frequency of coverage and the possibility of building
up a global database of interferometric measurements
that could be of value in studies of surface motion. The
spatial resolution of the InSAR is important – compare
the 1 km resolution of ScanSAR with the submetre
spatial resolution of the COSMO/Skymed SAR. Scale,
as has been noted elsewhere in this book, is related
to the characteristics of the proposed application and
a conscious choice should be made depending on the
nature of the use to which the InSAR data are to be put.

A further possibility is the use of polarimetric SAR in
interferometry. The background to polarimetric SAR is
provided in Section 2.4. The SIR-C experiment in 1994
provided polarimetric SAR from space for the first time.
Today, the Envisat ASAR can provide polarimetric SAR
imagery from which both medium (30 m) and coarse
(150/1000 m) resolution interferograms can be derived.
Hellwich (1999a, 1999b) notes that interferograms com-
puted from different polarization modes can be used in a
number of applications, including:

• combining the polarimetric interferograms in order
to create datasets for land cover classification
(Chapter 8),

• improving interferometric DEM accuracy by inter-
comparison between coherence maps produced by
polarimetric SAR and

• deriving information on vegetation height and struc-
ture from the differential interactions between differ-
ently polarized microwaves and the components of
the surface vegetation cover.

Multiple-waveband SAR can also be used to infer the
characteristics of the vegetation canopy. See Cloude and
Papathanassiou (1998) for more details of polarimetric
SAR interferometry. Applications of interferometry are
summarized in Section 9.2.4.

DInSAR is the estimation of differences in surface
location (both plan position and height) from inter-
ferometry. The principle is the same as the use of
ground surveying to collect data from which contour
maps are made. Assume that we have a raster (digital)
contour map of a survey conducted 5 years ago and
a second raster contour map that was completed last
week. (Raster means made up of pixels; in this case, the
pixel values represent elevation.) If the two maps are
exactly the same then subtracting one from the other on
a pixel-by-pixel basis will produce an array of zeros. If
any pixel in the difference map has a non-zero value then
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change has occurred, and the magnitude of that change
is proportional to the pixel value in the difference image
(Section 6.8). In effect, we have used the first (old) raster
contour map to ‘remove the topography’ from the newer
map. The same could be done with two interferometric
DEMs derived from SAR images collected before and
after a significant event such as an earthquake. The
difference between the two interferometric DEMs shows
the change in surface geometry resulting from the
earthquake. Four SLC SAR images would be required
to produce two DEMs. Since the first interferometric
DEM is intended to provide a good approximation to the
land surface elevation, then it should be generated from
a long-baseline interferometric pair, while the second
interferometric DEM should show as much surface detail
as possible and ideally would be derived from a short
baseline interferometric pair. Where the target (such as
a glacier or an ice-stream) is in motion when the second
pair of SLC SAR images is acquired, the baseline should
be even shorter. Critical baseline lengths should be
of the order of 300, 20 and 5 m for DEM generation,
ground displacement and motion analysis applications.

For DInSAR to be successful, the degree of decorrela-
tion (as measured by loss of coherence) between the two
interferograms should be as small as possible. Over water
areas, or areas covered by forest, decorrelation occurs
rapidly and it soon becomes impossible to separate the
effects of ground deformation, land subsidence or ice-
stream motion from the effects of decorrelation. Long
wavelengths tend to decorrelate less rapidly than short
wavelengths, as they penetrate vegetation canopies more
deeply and are less likely to be affected by the geom-
etry of the canopy surface. The ERS and ASAR radars
both operate in C band, which makes them less useful
for DInSAR in vegetated areas. A second disadvantage
is that displacements are measured only along the line
of sight of the SAR. Atmospheric effects may also pro-
duce spurious fringes in the interferograms, especially
if the gap between the dates of the two acquisitions is
relatively long. However, DInSAR is capable, in the-
ory, of measuring displacements at the millimetre scale.
Gabriel, Goldstein and Zebker (1989) and Massonet and
Feigl (1998) are the definitive references on DInSAR.
Applications of DInSAR are discussed in Section 9.2.4.

9.2.2 Interferometric Processing

The requirements for successful SAR interferometry are
discussed in Section 9.2.1. Given a suitable pair of SLC
images, with sufficiently high coherence, known and
accurate orbital parameters and suitable baseline length,
then processing can proceed. The main processing
steps are: coregistering the two SLC images, com-
plex multiplication of the two registered SLC images to

SLC
image
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SLC
image

2

Precise
registration

Complex
multiplication

Phase
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Digital Elevation
Model
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map

Figure 9.6 Processing steps in SAR interferogram generation.

generate the interferogram, computation of the coherence
map, removal of the fringe pattern caused by Earth curva-
ture, phase unwrapping and georeferencing (Figure 9.6).

In mathematical terms, multiplying one SLC SAR
image by the complex conjugate of the other SLC SAR
image generates an interferogram. Recall that in SLC
images the backscatter characteristics of each pixel are
represented by a pair of 32-bit real numbers, which form a
single complex number. A complex number has two com-
ponents, termed the real (a) and imaginary (b) parts in the
expression a + ib. For example, the two elements of the
complex number (4.5, 2.7) represent the terms a and b.
This complex number could be written as 4.5 + i × 2.7,
where i = √−1. The complex conjugate of a complex
number a + ib is simply a − ib. The SAR amplitude
image is computed on a pixel-by-pixel basis from
the expression amplitude = √

a2 + b2 while the phase
value is given by the expression phase = tan−1 a/b.
If the complex number (4.5, 2.7) were the value
recorded for a given pixel in an SLC image then the
corresponding amplitude value could be calculated
as

√
4.52 + 2.72 = √

20.25 + 7.29 = √
27.54 = 5.25,

while the phase value for the same pixel would be
tan−1 2.7/4.5 = tan−1(0.6) = 0.54 radians, or about 31◦.

The complex multiplication operation is a fairly sim-
ple one, but it assumes that matching pixels in the two
SLC images are precisely identifiable in the sense that if
we are given the row and column coordinates of a pixel



Advanced Topics 291

in the first SLC image then we can find the pixel cov-
ering exactly the same ground area in the second SLC
image. The process of aligning the coordinate systems
of two images is called image registration , and it is
described in Section 4.3.4. As noted in the preceding
section, the orbital characteristics of the platform (for
single-pass interferometry) or platforms (for repeat-pass
interferometry) must be known accurately, and so the
principles of orbital geometry can be used to register
Image 1 and Image 2. Correlation methods (Section 4.3)
are also used to coregister the SLC images. The co-
registration must be accurate to within 0.1 of a pixel.
Once the two SLC images are co-registered the com-
plex multiplication procedure is carried out to derive an
interferogram and a coherence image.

The raw interferogram is represented as an image con-
taining a repeating set of fringe patterns (Figure 9.7).
Each fringe represents a single phase-difference cycle
of 2π radians. The elevation range corresponding to a
single phase difference cycle can be calculated. Conven-
tionally, each individual fringe is displayed as a complete
colour cycle from blue (0 radians) to red (2π radians) via

Figure 9.7 Interferogram of the Landers area following
the 1992 earthquake (see Massonet et al., 1993). One
complete colour cycle corresponds to a range displace-
ment of 5 cm. Grey areas are regions of low coherence
and are masked. Surface rupture is shown by solid
lines. The interferogram was calculated using two ERS-2
images, from 24 April 1992 and 18 June 1992. From
http://www-radar.jpl.nasa.gov/insar4crust/LandersCo.html
(accessed 31 July 2009). Courtesy NASA Jet Propulsion
Laboratory. ERS-2 Data c© ESA.

cyan, green and yellow. The raw interferogram must be
corrected further before surface elevations can be derived.
These corrections are discussed below. The coherence
image measures the correlation between the two complex
SAR images over a number of small, overlapping rectan-
gular windows (rather like the filter windows described
in Section 7.2.1). The window is placed over the top
left n × m area of the two registered SLC images, and a
coherence (correlation) value is calculated for the n × m

pixels in each SLC image lying beneath the window.
This value is placed in the output image at the point cor-
responding to the centre of the window. The window is
then moved right by 1 pixel, and the process repeated.
When the window abuts against the right edge of the two
images it is moved down by one line and back to the left
hand side of the images, and the process repeated. The
result is an output image that contains the coherence val-
ues for all possible positions of the n × m window. The
first position of the rectangular moving window is shown
in Figure 9.8. One problem is that the choice of window
size will have an effect on the resulting coherence values.
If the window is too small then the coherence values will
vary considerably from pixel to pixel, while an over-large
window will produce a generalized result. The coherence
map indicates the degree of correspondence between the
backscattered signals from equivalent pixels in the two
SLC images on which the interferogram is based. High
values (close to 1.0) indicate close correspondence and
thus high reliability. In the case of repeat-pass interfer-
ometry, low values show that the one or both of the phase
and amplitude of the backscatter from the two pixels has
changed, and that temporal decorrelation has occurred
(see above). Other factors causing loss of coherence are
considered towards the end of this section.

A complication arises at this point because the phase
differences shown in the raw interferogram are measured
not in terms of the total number of full wavelength cycles
but only in terms of an angular range of 2π radians
(360◦). Each full cycle of 0 − 360◦ or 0 − 2π radians
represents one interferometric fringe. The phase differ-
ences must be ‘unwrapped’ by the addition of appropriate
multiples of 2π before elevation can be extracted. This
step is called phase unwrapping, and its implementation
is difficult. A second difficulty also presents itself – an
interferogram of a completely flat area has a fringe pat-
tern that is parallel to the flight direction. This pattern is
caused by Earth curvature. This ‘flat Earth’ fringe pat-
tern must be removed before the fringes are calibrated in
terms of elevation.

The ‘flat Earth’ correction can be accomplished by
locating an area of flat terrain on the image and assum-
ing that the fringe pattern shown in the corresponding
region of the interferogram represents the desired ‘flat
Earth’ pattern. This pattern is then removed from the



292 Computer Processing of Remotely-Sensed Images: An Introduction

Two registered complex
SAR images Output (coherence) image

Coherence for the complex SAR
pixels in the 3 × 3 window is

calculated...

... and the result is placed here
in the output image

Figure 9.8 Calculation of the coherence image. The initial position of the moving window (dimension 3 × 3 in this example) is
shown on the left, where it is placed over the co-registered SLC images. The coherence for the two sets of nine pixels underlying
the window is computed and the result placed in the output coherence image (right) at the point corresponding to the central
window pixel. The moving window steps right by one pixel and the process is repeated. When the moving window reaches the
right side of the image it drops down by one scan line and returns to the left hand side of the registered SAR images.

interferogram as a whole. Recovering the unwrapped
phase is a rather more difficult problem, and a number
of algorithms have been developed to accomplish this
task. None of them is completely satisfactory, and all
are rather too complicated to be discussed here. Gens
and van Genderen (1996a) provide a useful summary
of available methods. The problem that is faced is that
the phase difference between the signals received at the
two antennae can be measured only on a range of 2π

radians (360◦). An appropriate integer multiple of 2π

must be added to the calculated phase difference in order
to estimate the true phase difference (Figure 9.9). The
unwrapped phase image may also contain empty areas or
holes, representing pixels at which the phase coherence
value is too low for a phase difference to be computed, or
they may represent areas of radar shadow. The wrapped
phase image may also be rather noisy, so smoothing may
be performed by an adaptive median filter (Premelatha,
2001), or by wavelet denoising (Section 9.3.2.2.3;
Braunich, Wu and Kong, 2000) before phase unwrapping
is begun. For the mathematically inclined reader, Gens
(2003) and Ghiglia and Pritt (1998) provide reviews of
phase unwrapping techniques.

At this point the interferogram represents the Earth sur-
face elevation variations in the form of a DEM but is not
calibrated in terms of height above a specific datum, nor
does it fit a map projection. It is also expressed in ‘slant
range’ form (the oblique view resulting from the fact that
SAR is a sideways-looking instrument). The interfero-
gram is first converted to ‘ground range’ form (meaning
the vertical view from above). The next two steps are

known as geocoding, which involves the warping of the
interferometric DEM and interpolating or resampling the
elevation values on to a regular grid. Both warping and
resampling are discussed in Section 4.3. Unless the plat-
form position is known very accurately, ground control
points (defined in Section 4.3.2) will be needed in order
to correct for global height offsets (i.e. the DEM may
over- or under-estimate the surface elevation) and for
other errors, described by Armour et al. (1998).

9.2.3 Problems in SAR Interferometry

The quality of an InSAR DEM is affected by a number of
factors (Premelatha, 2001). These are: system characteris-
tics, baseline length, terrain characteristics and processing
parameters. System characteristics include wavelength
and incidence angle. The property of height sensitivity is
discussed in the preceding section, where it is related to
baseline length. It is also inversely proportional to wave-
length, incidence angle and slant range distance. These
properties of an imaging radar system are examined in
Section 2.4. Variations in slant range distance are not very
significant for satellite-borne systems but may be signif-
icant for airborne InSAR. Height sensitivity increases as
wavelength decreases, so it may be expected that X-band
systems are capable of producing more detailed DEMs
than are L-band systems. This is not a deterministic
statement, but rather an indication of a tendency, for
other factors such as temporal decorrelation may be
more significant at shorter wavelengths. To some extent
this is dependent on surface vegetation type, for longer
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Figure 9.9 The need for phase unwrapping is shown by two signals, represented by solid and dashed lines. Imagine that these
two curves are moving leftwards. The finger of the ‘clock’ at the origin, A, makes a complete revolution of 360◦ or 2π radians as
each full sine wave passes. As point B passes the origin, the clock will show 2.25 revolutions, equivalent to an angular distance
of 4.5π radians, which is the phase difference between the two curves. SAR interferometry measures only the phase difference
in the range 0 − 2πand so the difference in the case shown here would be recorded as 0.5π . The process of phase unwrapping
attempts to determine the number of integer multiples of 2π to add to the recorded phase difference. In this example, two
complete cycles representing 4π radians must be added to produce the correct phase difference of 4.5π radians.

wavelengths penetrate more deeply into the canopy than
do short wavelengths, and so longer wavelengths are
less influenced by short-term changes in the uppermost
layers of the canopy. Also, the critical baseline for longer
wavelengths is greater than for shorter wavelengths.

The effect of vegetation on temporal decorrelation in
repeat-pass interferometry has been mentioned already.
Terrain relief is also an influential factor. In areas of
rugged terrain, the effect of radar shadow is to create gaps
in the spatial coverage of the radar, while foreshorten-
ing and overlay (Section 2.4) can also provide additional
problems. Where slopes are steep, spatial decorrelation
occurs at lower baseline lengths than is the case on flat
terrain, because the local incidence angle changes with
surface slope (Figure 2.17). Finally, the choice of method
of SLC image registration, phase unwrapping and other
processes such as filtering that are not mentioned here
can produce results that differ substantially from each
other. Refer to Gens and van Genderen (1996a, 1996b)
for more detailed discussion of the geometric factors that
influence SAR interferometry.

9.2.4 Applications of SAR Interferometry

The most common application of InSAR is to derive
DSMs of the Earth’s terrain. This was the primary

objective of the SRTM. DInSAR applications are gen-
erally found in accurate measurement of Earth surface
movements, including land subsidence, landslides,
ground movement associated with volcanic activity,
movement of ice-streams and glaciers, and of ocean cur-
rents. A comprehensive survey of DInSAR applications
is provided by Massonet and Feigl (1998) and Massonet
(2000). Smith (2002) is a useful source of reference on
InSAR applications in geomorphology and hydrology.
Applications of SAR interferometry in Earth system
science are comprehensively covered by Rott (2009).

Elevation modelling, using repeat-pass interferometry
or single-pass interferometry (represented by ERS,
JERS-1 and Radarsat for the former and SRTM and
aircraft systems for the latter) is the most common
InSAR application. Planimetric (x , y) accuracies of 10 m
and elevation (z ) accuracies of 10–15 m over swaths
of up to 100 km are claimed for many applications.
Papers reporting the use of InSAR in elevation mod-
elling include Albertini and Ponte (1996), Evans et al.
(1992), Gabriel, Goldstein and Zebker (1989), Garvin
et al. (1998), Madsen and Zebker (1993) and Zebker
and Goldstein (1986). Sties et al. (2000) provide a
comparative analysis of results achieved by InSAR and
lidar (Section 9.4) in elevation modelling. Hodgson et al.
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(2003) and Lin, Vesesky and Zebker (1994) compare
elevation models generated from InSAR with DEMs
generated from maps. Riedman and Haynes (2007)
discuss the use of SAR interferometry in the study of
geohazards. Colesanti and Wasowski (2006) and Rott
and Nagler (2006) investigate landslides using InSAR,
while Fischer, Rott and Björnsson (2003) study glacial
surges in Iceland.

Studies of ocean currents using DInSAR techniques are
described by Goldstein and Zebker (1987) and Shemer,
Marom and Markman (1993). Mouginis-Mark (1995)
and Rosen et al. (1996) use differential interferometry to
monitor ground movements related to volcanic activity,
and Perski and Jura (1999) use similar methods to study
land subsidence patterns. Bindschlander (1998), Gold-
stein et al. (1993), Joughin, Winebrenner and Fahnestock
(1995), Rabus and Fatland (2000) and Rignot, Forster
and Isacks (1996) examine the potential uses of DInSAR
in monitoring movements of ice-sheets and glaciers.
The classic study of surface displacements following
the Landers earthquake is Massonet et al. (1993), while
Hooper, Bursik and Webb (2003) examine the potential
of InSAR in mapping fault scarps for geomorphological
purposes. Xu, Dvorkin and Nur (2001) use ERS SLC
image pairs with a 105-day temporal separation to study
subsidence in an oil field in southern California. Each
fringe represents 30.4 mm vertical displacement. They
were able to measure a vertical displacement of 25 cm
over this time period. A DInSAR DEM of Antarctica
derived from ERS-1/2 SAR images is compared to other
sources of elevation information by Drews et al. (2009).

Repeat-pass InSAR has also been used in vegetation
classification (Chapter 8; Engdahl and Hyyppa, 2003;
Askne et al., 2003) and in studies of canopy character-
istics. The coherence image (described above) provides
an indication of the rate of temporal change of surface
conditions, as can differences in SAR intensity between
the two dates of image acquisition. Some researchers
create false colour composite images (Chapter 3) by dis-
playing coherence, average SAR intensity, and difference
between SAR intensities in red, green and blue respec-
tively. See Askne et al. (1997), Dobson et al. (1995),
Strozzi et al. (1999), Wegmüller and Werner (1997) and
Wegmüller et al. (1995) for examples and further details.

9.3 Imaging Spectroscopy

9.3.1 Introduction

Imaging spectroscopy is the collection of measurements
in a large number of contiguous and narrow spectral
bands. The term hyperspectral sensor is in widespread
use. Since the word hyper actually means ‘beyond’,
it seems to be an inappropriate modifier to the term

‘spectral’, so imaging spectrometer is preferable. A good
source of information to supplement the material con-
tained in this section is van der Meer (2000). Many of the
techniques used in the analysis of reflectance spectra were
developed in the field of analytical chemistry. Huguenin
and Jones (1986) provide an accessible account of devel-
opments in that subject. See also Borengasser, Hungate
and Watkins (2007) for a short, introductory text. Recent
developments are summarized by Plaza et al. (2009).
Chang (2003) is another useful source, while Schaepman
et al. (2009) review applications of imaging spectroscopy
in Earth system science. In many applications of hyper-
spectral data (e.g., Choe et al., 2008) it is important to
carry out ground measurements for calibration purposes
using field spectroscopy (Milton et al., 2009).

It is noted in Chapter 1 that not all of the electromag-
netic spectrum is available for remote sensing, due to
the presence of absorption bands resulting from interac-
tions between incoming radiation and molecules of gases
such as water vapour, ozone and carbon dioxide. Regions
known as atmospheric windows in which remote sensing
is possible separate the absorption bands. The concept
of the spectral reflectance curve that characterizes the
reflectance distribution of a specific material is intro-
duced in Section 1.3 and typical examples of such curves
for materials such as the leaves of plants, rock surfaces
and water are given in that section. The measurements
made by an imaging spectrometer can be acquired only in
regions of low atmospheric absorbance (atmospheric win-
dows). The relationship between the positions of regions
of atmospheric absorbance and the location of the wave-
bands used in a typical imaging spectrometer, the DAIS
7915, is illustrated in Figure 9.10 and Table 9.1. It is
apparent that this instrument’s spectral bands are located
in regions of the spectrum with high transmittance.

The DAIS 7915 sensor is an airborne imaging spe-
ctrometer, built by the Geophysical Environmental
Research Corporation and funded by the European
Union and the German Space Agency, DLR. It has been
used since spring 1995 for experimental remote sensing
applications such as monitoring of land and marine
ecosystems, vegetation status and stress studies, agricul-
ture and forestry resource mapping, geological mapping
and mineral exploration. The instrument is mounted
on an aircraft, and upwelling radiance is directed onto
detectors using a four-faced mirror (each face producing
four scan lines, a procedure that can result in banding
or striping – see Example 9.1) and a beam splitter.
Geometric, radiometric and atmospheric corrections
(Sections 4.3–4.7) are performed by DLR, and the data
supplied to users are in the form of reflectance values.

One of the differences between multispectral data
sets, with fewer than 10 bands of data, and imaging
spectrometer data, collecting data in possibly more than
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Figure 9.10 (a) Relationship between regions of high atmospheric transmittance and the location of DAIS wavebands. DAIS is
an airborne spectrometer with 79 bands, 32 of which cover the range 400–1000 nm (the visible and near infrared), with another
32 bands located in the 2000–2500 nm region. Reflectance in the narrow ‘window’ around 1650 nm is detected by a further 8
bands. Other bands not shown on this diagram are a single broad band covering the wavelengths between 3000 and 5000 nm,
and six narrower bands in the thermal infrared (8000−12 600 nm). The width of the visible, near infrared and shortwave infrared
bands varies from 15 to 45 nm. The bandwidth in the thermal infrared is 900 nm. The DAIS data were recorded by DLR in
the framework of the EC funded ‘Access to Research Infrastructures’ project ‘DAIS/ROSIS – Imaging Spectrometers at DLR’;
Contract No. HPRI-CT-1999-00075 and were kindly made available by DLR (German Aerospace Agency). (b) The full width
half maximum (FWHM) is the wavelength range defined by the two points at which the intensity level is 50% of its peak value.
In the example, the FWHM is (33.5–19.5) = 14 units. The bandpass profile for a remote sensing instrument tends to be Gaussian
in shape.

200 narrow spectral bands, is the fact that the focus of
interest is not limited to the analysis of spatial patterns.
With a Landsat ETM+ image, for example we have
x = 6000 pixels per line and y = 6000 scan lines, plus
z = 7 bands. A DAIS image covers a smaller spatial

area (up to x = 512 and y = 3000 pixels) but the z
dimension is 79 bands. Hence, we have two ways of
looking at image spectrometer data. One is to consider
spatial patterns in the x − y plane. The other is to
consider the properties of the z dimension at specific
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Example 9.1: DAIS 7915 Imaging Spectrometer Data

The three images shown in this example are extracts from a hyperspectral image set collected in June 2000 over a test
site in the La Mancha region of central Spain, using the DAIS 7915 imaging spectrometer. The data were collected
by the German Space Agency on behalf of a team led by Prof. J. Gumuzzio of the Autonomous University of Madrid.

Example 9.1 Figure 1. Extract from DAIS 7915 band 7 image of the La Mancha area of central Spain. Band 7 is centred on
a wavelength of 607 nm, in the red region of the electromagnetic spectrum. Vegetation absorbs electromagnetic energy in
this region of the spectrum, and so photosynthetically active vegetation appears dark.

Example 9.1 Figure 2. This DAIS 7915 image extract covers the same geographical area as the image shown in Example 9.1
Figure 1. The centre waveband of this image is 2395 nm, on the edge of the optical region of the spectrum. The magnitude
of incident radiation is low, and so the effects of striping are much more apparent than in Example 9.1 Figure 1.
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Example 9.1 Figure 1 measures reflectance in the green/red region of the electromagnetic spectrum (band 7,
centre wavelength 607 nm). At this wavelength, the chlorophyll pigments in the leaves of photosynthetically-active
vegetation absorb incident energy, and so appear dark.

The centre waveband in Example 9.1 Figure 2 lies in the short wave infrared region, with a centre wavelength
of 2395 nm (band 72). Solar irradiance in this region of the spectrum is very low relative to irradiance in the
visible bands (Figure 1.17) so the SNR of the image is much lower than the SNR of the green/red image (top) or
the thermal infrared image (bottom). The mechanism used by the scanner also results in horizontal banding of the
image, which is prominent in the centre image.

Example 9.1 Figure 3 shows thermal emission in a waveband centred at 10.941 µm (band 77). This image shows
emitted rather than reflected radiation. DAIS band 77 is close to the Earth’s emittance peak of approximately
10.5 µm. The relationship between land cover type and thermal emittance is evident from visual inspection of the
patterns of light (higher thermal emission) and dark (lower thermal emission).

Example 9.1 Figure 3. Whereas Example 7.2 Figures 1 and 2 show reflected solar radiation at wavelengths of 607 and
2395 nm respectively, this DAIS 7915 image was captured in the thermal infrared region of the spectrum. The centre
wavelength is 10.941 µm, close to the Earth’s emittance peak (see Figure 1.16).

To assist in the process of visual interpretation, the images have been sharpened using the ‘image minus Lapla-
cian’ procedure (Section 7.3.2) and then contrast stretched using a Gaussian stretch (Section 5.3.3).

‘Q-mode’ approaches in multivariate statistical anal-
ysis. R-mode analysis considers relationships such as
correlations among the variables of interest that are
measured on a sample of objects, while Q-mode analysis
focuses on the relationships between the objects, each of
which is characterized by a vector of measurements on
a set of variables or features.

Thus, the analysis of imaging spectrometer data can
take place in the ‘spatial domain’ (the x − y plane) as
illustrated in Example 9.1. Because measurements are
made in a large number of narrow and contiguous wave-
bands, it is also possible to analyse variability in the
z direction (across wavebands) at one or more points.

Figure 9.12 shows the spectral reflectance curves derived
from two pixels selected from the DAIS image data set
shown in Example 9.1. Methods of processing imaging
spectrometer data are considered below (Section 9.3.2).
These methods have been derived from procedures used
in analytical chemistry. In addition, some of the meth-
ods described elsewhere in this book in the context of
multispectral data analysis can also be used to process
imaging spectroscopy data; for example spatial and fre-
quency domain filtering (Chapter 7), image classification
(Chapter 8) and linear spectral unmixing (Section 8.5.1)
as well as procedures used in filtering and denoising.

A second example of an airborne imaging spectrom-
eter is Hymap, produced by Integrated Spectronics
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Table 9.1 Bands 1–32 of the DAIS 7915 Imaging
Spectrometer. The table shows the centre wavelength of
each band together with the full width half maximum
(FWHM) in nanometres (nm). The FWHM is related to the
width of the band. See Figure 9.10.

Band Centre FWHM Band Centre FWHM
number wavelength (nm) number wavelength (nm)

(nm) (nm)

1 502 23 17 783 29

2 517 21 18 802 27

3 535 20 19 819 30

4 554 18 20 837 27

5 571 22 21 854 28

6 589 20 22 873 28

7 607 20 23 890 27

8 625 22 24 906 31

9 641 22 25 923 28

10 659 24 26 939 30

11 678 25 27 955 28

12 695 25 28 972 28

13 711 28 29 990 38

14 729 27 30 1005 38

15 747 28 31 1020 36

16 766 29 32 1033 32

Pty. Ltd., an Australian company. Like the DAIS
7915 sensor, Hymap can collect data in wavebands
ranging from the visible to the thermal infrared. The
version operated by Hyvista Ltd. collects data in the
optical region only in 126 spectral bands (Table 9.2).
The Hymap sensor uses the optomechanical principle
described in Chapter 2 to direct upwelling radiance on to
a beam splitter and thence to the detector elements. Note
that Hymap has more spectral bands available in the
0.4 − 2.5 µm region than has DAIS 7915 (126 against
72) and that the bands are more closely spaced (spectral
sampling interval 13–17 nm, compared with full width
half maximum (FWHM) values of 18–40 nm for DAIS
7915; see Figure 9.12). Also note that Hymap bands are
collected by four spectrometers (rows of Table 9.2) and
that there is an overlap between the data collected by
spectrometers 1 and 2. The bands in the overlap region
are not presented in wavelength order, and this can lead
to problems with some software. Specifically, band 31
has a longer wavelength than band 32.

The AVIRIS was first deployed by NASA in the late
1980s. Since then, the instrument has been continuously
updated. AVIRIS has 224 spectral bands covering the
region 0.4 − 2.45 µm. Each image is 614 pixels wide.
Pixel size depends upon aircraft altitude; at a flying height

Figure 9.11 Hyperspectral data cube. Each horizontal slice
(in the x − y plane) represents a spectral band. The z direction
(front to back) represents the spectra of individual pixels, as
shown in Figure 9.12, while the rows (left–right) and columns
(up–down) are the spatial coordinates. This data cube shows
on its front face a false colour image of part of the Flinders
Range in South Australia, captured on 8 December 2008
by the Hymap instrument using bands 102 (2.083 µm), 32
(0.895 µm) and 3 (0.483 µm), emulating bands 7, 4 and 1 of
the Landsat ETM. There are 126 bands in all (see Table 9.2).
The spatial resolution is 5 m at nadir. Reproduced with
permission from HYVISTA.

of 20 km the pixel size is 20 × 20m. AVIRIS is described
in detail in Vane (1987).

NASA’s experimental EO-1 satellite was launched on
November 21 2000. It is in the same orbit as Landsat-7
with an equatorial crossing time of 1 minute later than
Landsat-7. It carries two Earth-observing sensors. The
Advanced Land Imager (ALI) is a prototype for a
Landsat-7 ETM+ replacement instrument, while the
Hyperion Imaging Spectrometer is the first civilian high
spatial resolution imaging spectrometer to be carried
in orbit. The third instrument carried by EO-1 is a
spectrometer that measures atmospheric water vapour
content. The data produced by this instrument are used
in the process of atmospheric correction (Section 4.4).
ALI and Hyperion data are now available free of charge
from the US Geological Survey.

One of the problems in handling hyperspectral data is
the fact that dimensionality is high yet the colour com-
posite image contains only three components (R, G and
B). Principal components analysis of the hyperspectral
data to reduce dimensionality does not completely solve
the problem. Du et al. (2008) contains an interesting
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Figure 9.12 (a) Plot of DAIS 72 band image pixel from deep clear water. (b) Plot of DAIS 72 band image pixel from salt pan
area. The location of the DAIS bands in the electromagnetic spectrum is shown in Figure 9.10. The bandpass values of bands
1–32 are listed in Table 9.1.The DAIS data were recorded by DLR in the framework of the EC funded ‘Access to Research
Infrastructures’ project ‘DAIS/ROSIS – Imaging Spectrometers at DLR’; Contract No. HPRI-CT-1999-00075 and were kindly
made available by DLR (German Aerospace Agency).
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Table 9.2 Summary of Hymap imaging spectrometer wavebands, bandwidths and
sampling intervals.

Spectral Wavelength Bandwidth Average spectral

region range (nm) (nm) sampling interval

(nm)

Visible 450–890 15–16 15

Near infrared 890–1350 15–16 15

Short-wave infrared 1 1400–1800 15–16 13

Short-wave infrared 2 1950–2480 18–20 17

Based on information from Cocks et al. (1998).

discussion of the problem. Feature selection is also a
problem as the number of bands is considerable. Pu
and Gong (2004) compare three methods – band selec-
tion, principal components analysis (Section 6.4) and
wavelets (Section 6.7) and conclude that wavelet analysis
produces the best subset of features for a subsequent
regression analysis. Prasad and Bruce (2008) also
consider dimensionality reduction and study the use of
principal components analysis to select a reduced set of
features prior to linear discriminant analysis (Esbensen,
2002; Mather, 1976; Rencher, 2002; Timm, 2002).

9.3.2 Processing Imaging Spectroscopy Data

9.3.2.1 Derivative Analysis

A derivative measures the rate of change of the variable
being differentiated (x ) with respect to some other
variable (y), and is written as δx/δy. For example, given
a moving object, one could compute the derivative of its
velocity with respect to distance. The result would show
whether velocity was increasing as distance travelled
increased (acceleration, positive derivative), decreasing
with distance (deceleration, negative derivative) or
remaining constant (zero derivative). Acceleration is
independent of velocity, so that two objects having quite
different velocities could have the same acceleration
(Section 7.3.2).

Derivatives can be computed only for continuous and
single-valued functions. A function is simply an expres-
sion that returns a value when provided with an input.
For instance, if x is an angle then the function cos(x)will
return a value between +1and − 1 for any finite value of
x , such as −125.985◦ or 319276.24135◦. A continuous
function returns a value for any permissible input value.
In the case of the cos function, the only restriction on the
argument x is that it is finite. A single-valued function
returns only one answer, in contrast to a function such
as sqrt which returns two values, except when the argu-
ment is zero. For example, sqrt(4 ) returns two values

(+2 and − 2) for a single value of the argument, and so
the square root function cannot be differentiated.

A digital image can be considered to be an example
of a two-dimensional function that returns the pixel
value (grey level) at a given point defined by the image
row r and column c, so that we could write pixel value
= f (r, c). However, it is not possible to differentiate
f (r , c) because it is not a continuous function that is
defined for every possible value of r and c. The row
and column indices must be integer values. Instead of
the method of differentiation being used to calculate the
rate of change at a particular point, a procedure called
the method of differences is used instead.

The spectral reflectance curve of a target, as collected
by a field radiometer or an imaging spectrometer, is
drawn by interpolating between measured, discrete points
which are spaced apart at intervals such as 15 nm. The
measurements on which the curve is based are discrete or
separate, and so the derivatives are estimated using the
method of differences. If yi and yj represent adjacent,
discrete, reflectance values on a spectral reflectance curve
at wavelengths xi and xj then the first difference value is

given by the expression

y


x
= yi − yj

xi − xj

. The terms 
x

and 
y are pronounced ‘delta x’ and ‘delta y’, and the
left hand side of this equation is pronounced ‘delta-x by
delta-y’. The second difference (i.e. the difference of the
first difference) is calculated in a similar way from the

formula

2y


x2
= 
yi − 
yj


xi − 
xj

. The first difference gives

the rate of change of the function y with distance along
the x axis, which is the same as the slope of the graph
representing the function. The second difference is the
rate of change of slope with distance along the x -axis. If
the curve is flat then both first and second derivatives are
zero. If the curve slopes upwards to the right then the
slope and the first differences are positive, and increase
in magnitude as the curve becomes steeper until, if the
curve becomes vertical, the first difference is infinite in
magnitude. Conversely, as the slope decreases the first
difference reduces in magnitude. When a turning point
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Figure 9.13 (a) Graph of y = sin (x) calculated at 500 dis-
crete points. (b) First difference of y = sin (x) and (c) Graph
of second differences of y = sin (x). Note differences in the
scale of the y-axis. The slope of y = sin (x) is initially positive,
then decreases to zero at a turning point at x = 39, y = 1. The
slope then becomes negative, increases towards y = 0 and
reaches a minimum at x = 114, y = −1. The same pattern
then repeats for each cycle of the sine wave. Figure 9.13b,
c show the first and second differences, which you should
attempt to interpret.

is reached, for example at a maximum or minimum of
the curve, the first difference is zero. If the graph slopes
down to the right, the slope is negative, and it decreases
in value until the curve reaches a minimum. The second
difference shows how rapidly the slope is changing.
Where slope is constant, such as at a maximum or
minimum, then the second difference is zero. Where the
slope gets steeper, the second difference becomes larger
and, conversely, where the slope gets less steep so the
second difference becomes smaller in magnitude. These
ideas are illustrated in Figure 9.13.

First and second differences calculated for one-
dimensional spectra or two-dimensional images are
often described as ‘derivatives’, though it is clear that
they provide a means to approximate the derivatives
of a discrete function that cannot be calculated. Never-
theless, the term ‘derivative’ is used in the remainder
of this section in order to ensure compatibility with
the literature. The first derivative measures a rate of
change. It is not dependent on the magnitude of the
function. For example, if x1 = 6 and x2 = 12 then the
difference is 6. The difference is also 6 if x1 = 106 and
x2 = 112. If y1 = 1 and y2 = 3 then value of the first
difference is 6/2 = 3 in both cases. This means spectral
reflectance curves with the same shape will have the
same first derivative curve, irrespective of their measured
reflectance values. This property can be useful because
it means that objects with similar spectral reflectance
properties located in shadow and in direct sunlight, as
shown in Figure 6.5, have the same derivative though
their apparent (at-sensor) radiances are different.

The first and second derivatives of a single image
band are used in Chapter 7 without particular reference
to the concepts outlined above. For instance, the Roberts
Gradient edge detection operator is an example of a first
derivative, while the Laplacian operator is an example
of a second derivative function (Section 7.3.2). Other
examples of the use of the derivative in image processing
include the analysis of the position and magnitude of
absorption bands in the pixel spectrum (Blackburn, 1998;
Demetriades-Shah, Steven and Clark, 1990; Philpott,
1991; Tsai and Philpott, 1998). Gong, Pu and Yu (1997)
use first derivatives as inputs to a neural network for
classifying coniferous species. Laba et al. (2005) also
use first derivatives in an attempt to find the optimum
dates for the discrimination of invasive species. Bruce
and Li (2001) consider the role of wavelets in smooth-
ing the pixel reflectance spectrum prior to derivative
calculation. Adams, Philpot and Norvell (1999) use the
second derivative to generate a yellowness index to
identify stressed vegetation. Beckera, Luschb and Qi
(2005) identify optimum spectral bands from second
derivative analysis.
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9.3.2.2 Smoothing and Denoising the Reflectance
Spectrum

One of the characteristics of derivative-based methods
is that they amplify any noise that is present in the
data. Even the presence of moderate noise can make
the derivative spectrum unusable. Various methods of
noise removal, ranging from simple filtering to more
complex wavelet-based methods, have been applied
to remote sensing data. In Section 9.3.2.2.1 a method
based on the fitting of local polynomials that have
special properties is described. It was first described
by Savitzky and Golay (1964) in the context of ana-
lytical chemistry. Not surprisingly, it is known as the
Savitzky–Golay (SG) method. An alternative procedure
using the one-dimensional discrete wavelet transform
(DWT, Section 6.7) is described in Section 9.3.2.2.2.
The DWT decomposes a data series into a set of scale
components. The lower-order scale components (levels
1, 2, . . . ) are referred to as ‘detail coefficients’, and
the basic wavelet-based denoising method involves the
thresholding of these detail coefficients in order to sep-
arate noise and high frequency information. In contrast,
simple filtering methods, such as the moving average,
make no distinction between high frequency information
and noise, and are best described as smoothing rather
than denoising functions.

9.3.2.2.1 Savitzky–Golay Polynomial Smoothing
Savitzky and Golay (1964) introduced a technique that
combines smoothing (i.e. low-pass filtering, Section 7.2)
and calculation of derivatives in an elegant and com-
putationally effective fashion. Smoothing is performed
by approximating the data series by a low-order local
polynomial, using a moving window technique. One
might reasonably distinguish between smoothing and
denoising. Smoothing is a purely mathematical operation
that is designed to remove some or all of the high-
frequency components of the data series, either to reduce
the level of detail or to eliminate noise. Denoising has
the aim of characterizing the statistical nature of the

noise and of using estimates of these characteristics to
reduce or remove the effects of that noise.

The user of the SG method must specify a priori (i) the
order of the polynomial and (ii) the size of the moving
window. The larger the window the greater the smoothing
effect. Calculation of a least-squares polynomial at every
moving window position in a data series might seem to
be a lengthy task, but the SG method is a clever one. Only
one set of coefficients is calculated, and this is applied to
the data in every window simply by multiplying the value
at each data point in the window by the corresponding
coefficient value (Figure 9.14). Usually, a polynomial of
order 2 is selected for data smoothing, and an order of 4
is recommended for derivative calculation. The method
is easy to program but more difficult to describe verbally
in the abstract, so a simple example is used.

Assume that we specify a window size of 5, as
shown in Figure 9.14. The centre point (where the
coefficient is labelled ‘0’) has two coefficients to the
left (NL, labelled − 1 and − 2) and two to the right
(NR, labelled 1 and 2). A second-order polynomial
(M = 2) is selected, as the example relates to data
smoothing. Recall from Section 4.3.2 that the classical
least-squares equation is:

c = (A′A)−1A′g (9.1)

where A is the design matrix, c is the vector of least-
squares coefficients and g is the data vector. The elements
aij of the SG design matrix A are given by ai0 = 1 and
aij = ij for i = −NL to NR and j from 1 to M , the
order of the polynomial. We are using a window size of 5
so NL = NR = 2 and we can define NTOT = NR + NL +
1 = 5. For this example, A has NTOT rows and M + 1
columns and its contents are shown in Table 9.3a.

Equation 9.1 shows that we need to compute the
matrix product A′A and then find its inverse (A′A)−1.
The final calculation involves the premultiplication of
A′ by (A′A)−1. These matrices are shown in tables
Table 9.3b–d. The first row of Table 9.3d contains
the required coefficients for data smoothing. None
of the real data is required in the computation of

Data series

Coefficients

p − 5 p − 4 p − 3 p − 2 p −1

−2 0 1 2−1

p p + 1 p + 2 p + 2 p + 3 p + 4

Figure 9.14 One-dimensional moving window. The window starts on the left of the data series and the filter coef-
ficients are multiplied by the corresponding data value. The products are added to give the filter output. In this
example, the output is {data value at (p − 2)x coefficient {(−2)} + {data value at(p − 1)x coefficient (−1)} + {data value at
(p) x coefficient (0)} { data value at (p + 1)x coefficient (1)}{ data value at (p + 2)x coefficient (2)}.
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Table 9.3 Matrices and vectors used in Savitzky–Golay example. (a) The design matrix, A. (b) Matrix product A′A. (c) Inverse
matrix (A′A)−1 and (d) the matrix product (A′A)−1A′.

(a) Design matrix A

1.000 −2.000 4.000

1.000 −1.000 1.000

1.000 0.000 0.000

1.000 1.000 1.000

1.000 2.000 4.000

(b) Matrix product A′A
5.000 0.000 10.000

0.000 10.000 0.000

10.000 0.000 34.000

(c) Inverse of (A′A)

0.486 0.000 −0.143

0.000 0.100 0.000

−0.143 0.000 0.071

(d) Matrix (A′A)−1A′

−0.086 0.343 0.486 0.343 −0.086

−0.200 −0.100 0.000 0.100 0.200

0.143 −0.071 −0.143 −0.071 0.143

these coefficients – that is the advantage of the SG
method. All we need do to calculate the smoothed
value at data point i is to perform an element-by-
element multiplication of the raw spectrum values
{ri−2ri−1 riri+1 ri+2} for i = NL + 1, N − NR with the
coefficients {−0.086 0.343 0.486 0.343 − 0.086}, as
shown in Figure 9.15. Figure 9.16 shows the result of this
operation carried out on a small sample of arbitrary data.
The smoothed curve was calculated using the coefficients
vector shown above. Note that smoothed values for
points 1 and 2 at the beginning and points 14 and 15
at the end of the data series cannot be calculated as
NL = 2 and NR = 2. Remember too that one assumption
of the method is that the data points are equally spaced.
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Figure 9.15 Application of Savitzky–Golay smoothing to an
arbitrary set of set of 15 data points. The raw data points are
indicated by the diamond symbols, which are joined by a
solid line. The smoothed curve (values of which can only be
computed for data points 3–13 inclusive) is shown by the
dashed green line.
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Figure 9.16 First derivative of raw data series shown in
Figure 9.25 (solid line) computed using Savitzky–Golay
smoothing polynomial procedure. Note that the data points
are shifted right along the x-axis by half a unit because the
derivative is estimated using differences between adjacent raw
data points.

The values making up the second row of Table 9.3d
are, perhaps surprisingly, the coefficients required to cal-
culate the first derivative of the SG smoothed polynomial.
To illustrate this, the result of applying the second row of
coefficients (Table 9.3d) to the set of arbitrary data shown
by the solid line in Figure 9.15 is given in Figure 9.16.
The third row of coefficients is used to compute the sec-
ond derivative, and so on. Usually, however, one would
use a polynomial order of 4 rather than 2 for derivative
calculation (Press et al., 1992).

In summary, the one-dimensional SG procedure pro-
vides a computationally efficient means of smoothing a
one-dimensional data series such as a reflectance spec-
trum. It is, however, a smoothing procedure and, as such,
differs from denoising techniques based on the DWT, as
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noted earlier in this section. The following points should
be remembered:

• The data points are assumed to be equally spaced.
Press et al. (1992) suggest that moderate departures
from this assumption are not likely to have any con-
siderable effect on the result.

• The degree of smoothing depends on the order of
the polynomial and on the number of points in the
moving window.

• A polynomial order of 2 for smoothing and 4 for
derivative calculation is generally used.

• The number of points to the left and to the right of
the point of interest (i.e. NL and NR in the discus-
sion above) should normally be equal for smoothing
reflectance spectra.

The SG method can also be applied to two-dimensional
data such as images, in which case a local smoothing
polynomial surface is fitted. The computational procedure
is described by Krumm (2001). The moving window is
now rectangular, and the design matrix is defined in terms
of powers of x and y . Again, it easier to explain by
example. The moving window is size x = 5 and y = 5,
but the x and y values are counted from −2 to + 2
rather than 1 to 5. The 25 cells in the 5 × 5 moving
window are labelled 0–24, counting sequentially left to
right along rows in a zig-zag fashion starting from the top
row (Table 9.4). The leftmost cell in row 1 is labelled ‘0’.

First, think of the 25 cells in Table 9.4 as being stored
as a column vector, with p0 at the top and p24 at the
bottom. The design matrix A is formed by calculating,
for each of these 25 rows, a vector of powers and cross-
products of the (x , y) values associated with that cell.
The arrangement of the terms in this vector is exactly
the same as that used in Section 4.3.1 in the context of
geometric correction. For example, a first order polyno-
mial has terms {1, x, y}. At position p0, the values x =
−2 and y = −2 would be substituted into this expres-
sion, so that the vector of powers and cross-products at
this position for a first-order polynomial is {1, −2, −2}.

Table 9.4 Two-dimensional moving window. The cell
values are referenced by the x and y coordinates in the
usual way.

X

Y −2 −1 0 1 2

−2 P0 P1 P2 P3 P4

−1 P5 P6 P7 P8 P9

0 P10 P11 P12 P13 P14

1 P15 P16 P17 P18 P19

2 P20 P21 P22 P23 P24

At position 17 (p17 in Table 9.4), x = 0 and y =, so
the vector of powers and cross products for a first-order
polynomial is {1, 0, 1}. The vectors of powers and cross
products for low-order polynomials are as follows:

Order 1: {1 , x , y}
Order 2: {1, x, y, x2, xy, y2}
Order 3: {1, x, y, x2, xy, y2, x3, x2y, xy2, y3}
Order 4: {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y,

x2y2, xy3, y4}

For example, the vector of powers and cross-
products at position p11 (which has coordinates x = −1
and y = 0) for a third order polynomial would be
{1, −1, 0, 1, 0, 0, 1, 0, 0, 0}, a total of 10 coefficients.
This vector is calculated simply by substituting
x = −1 and y = 0 into the definition of the order
3 powers and cross products given above, that is
{1, x, y, x2, xy, y2, x3, x2y, xy2, y3}.

Thus, the SG design matrix A, in the case of a
third-order polynomial, has 25 rows corresponding to
the 25 elements of the 5 × 5 moving window and 10
columns, corresponding to the 10 power and cross-
product terms for a third-order polynomial. We now
compute C = (A′A)−1A′as before and find that the 25
smoothing polynomial coefficients are contained in row
1 of C. Rows 2 and 3 of C contain the coefficients
for the first partial derivatives with respect to x and y ,
respectively. Again, note that the values of the elements
of matrix C do not depend on the real data values in the
image. These coefficients are the same for all images.
The 25 values underlying the 5 × 5 moving window
are multiplied by the corresponding coefficient values
in the first row of C, using the labelling scheme shown
in Table 9.4. The 25 products are summed to give the
smoothed value at point (x = 0, y = 0) in the output
image. The moving window, like the classical finger,
moves on and (x = 0, y = 0) now overlies the next
pixel to the left. The concept of the moving window is
illustrated in Figure 9.8.

Example 9.2 illustrates the use of the SG technique in
image smoothing.

9.3.2.2.2 Denoising Using the Discrete Wavelet
Transform The DWT is introduced in Section 6.7.1.
It is shown there that a one-dimensional data series can
be decomposed into a collection of subsets of detail
coefficients, with n/2 first-level detail coefficients, n/4
second-level detail coefficients, and so on, as illustrated
in Figures 6.22 and 6.23. Donoho and Johnstone
(1995) show that the variance of Gaussian-distributed
white noise with zero mean can be estimated from
the higher-order wavelet detail coefficients, and that a
threshold value, which they call the universal threshold
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Example 9.2: Savitzky–Golay Smoothing

This example shows the result of applying a SG smoothing filter to a single band (band 30) of the DAIS 7915
imaging spectrometer data set discussed in Example 9.1. The moving average window size is x = 5 and y = 5.
A second-order polynomial is used for image smoothing (Figure 9.15) and a fourth-order polynomial is used to
calculate the first derivative images. Example 9.2 Figure 1a shows the original DAIS 7915 band 30 image. Next,
Example 9.2 Figure 1b shows the image after smoothing using the SG procedure. Three first derivative images
are displayed in Example 9.2 Figure 1c–e. The first, in Example 9.2 Figure 1a, estimates the horizontal grey level
gradient along the scan lines (rows) of the image. The second (Example 9.2 Figure 1b) is the vertical grey level
gradient, measured down the columns of the image and the third (Example 9.2 Figure 1c) is the spatial derivative
(calculated with respect to both x and y). You can use the Filter|Savitzky-Golay item on the MIPS main
menu to carry out a similar exercise. Compare Example 9.2 Figure 1c–e. Can you say that the filter separates the
horizontal (c) and vertical (d) edges? Why are the edges shown in the spatial derivative image (e) more marked
than those in Example 9.2 Figure 1c,d?

(a) (b)

(e)(d)

(c)

Example 9.2 Figure 1. (a) Band 30 of the DAIS 7915 imaging spectrometry data set described in Example 9.1. The bright
area in the lower centre is a dry salt lake, and the dark area in the upper left corner is a water-filled lake. (b) Image shown in
(a) after smoothing using a Savitzky–Golay polynomial filter (second-order polynomial, window size 5 × 5). (c) First partial
derivative (horizontal) of the image shown in (a) using a Savitzky–Golay polynomial filter. (d) First partial derivative (vertical)
of the image shown in (a) using a Savitzky–Golay polynomial filter. (e) First spatial derivative (with respect to x and y) of the
image shown in (a) using a Savitzky–Golay polynomial filter.
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(UT), can be computed from this noise variance. Other
studies, such as those reported by Cai and Harrington
(1998), Zervakis, Sundararajan and Parhi (2001) and Hor-
gan (1999) discuss the use of the Donoho–Johnstone
method, and suggest that the UT may overestimate the
noise level in the data. Other problems include the choice
of wavelet function (the ‘mother wavelet’), the selection
of the number of levels of detail coefficients, and the
fact that the procedure ideally requires equi-spaced data
points that ideally number a power of 2. The assumption
is also made that the data series is circular in the sense
that we can use points from the end of the series in to
precede the first data point. This may work reasonably
well with functions such as sine waves measured over a
range that is a multiple of 180◦, in which the data val-
ues are similar in magnitude at both ends of the series.
If there is a discrepancy in data magnitude at the start
and end of the series then some instability is present in
the wavelet coefficients. Shafri (2003) gives a detailed
analysis of these problems in relation to both one- and
two-dimensional data series, and Taswell (2000) gives a
tutorial guide to wavelet shrinkage denoising. See also
Shafri and Mather (2005) for further details.

The steps involved in the Donoho and Johnstone
(1995) procedure are:

1. If the data series length, n , is not a power of 2 then
add sufficient zero values to the series so that n = 2j .
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Figure 9.17 Stages in denoising a one-dimensional spectrum of a deciduous leaf. (a) Raw and denoised data. The denoised
data is offset vertically downwards for clarity. (b) First derivative calculated from raw data. (c) Wavelet coefficients. (d) First
derivative calculated from denoised data. (e) Difference between (b) and (d). Data from the ASTER Spectral Library through the
courtesy of the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California. c© 1999, California Institute
of Technology. All rights reserved.

2. Select an appropriate mother wavelet (Section 6.7)
and decompose the data series into a set of j detail
coefficients using the forward DWT.

3. Determine the noise variance from the detail coeffi-
cients at levels 1 − p(p < j).

4. Evaluate the UT and determine an appropriate mul-
tiple of the threshold for this data (usually between
0.4 and 1.0).

5. Use either hard or soft thresholding (see below) to
modify all wavelet coefficients (levels 1 − j).

6. Perform an inverse DWT to reconstruct the
denoised data.

The results of each stage are shown graphically in
Figure 9.17. Although it is difficult to see any differ-
ence between the graphs shown in Figure 9.17a, there
does appear to be a small amount of noise present when
the two series are differenced (Figure 9.17e). Because the
derivative is very sensitive to noise in the raw data, the
use of the wavelet denoising procedure can be justified on
the grounds that the data series is essentially unaffected if
no noise is present, yet the procedure will remove noise
when it is present. Roger and Arnold (1996) discuss the
estimation of noise levels in hyperspectral (AVIRIS) data.

The degree or severity of denoising is related to
the choice of mother wavelet. The Daubechies wavelet
(Section 6.7), for example is implemented in MIPS in
three different forms, with 4, 12 and 20 coefficients.
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Figure 9.17 (continued)

The greater the number of coefficients, the greater
the degree of smoothing. In the example illustrated in
Figure 9.17, a Daubechies-20 wavelet was employed.
The noise variance is computed (following Donoho and
Johnstone, 1995) by firstly selecting the number of levels
of detail coefficients to be used in noise estimation. In
the example above, in which the series length is 512
(after zero padding), a total of five out of a possible nine

levels of detail coefficients were selected (512 = 29;
see also Figure 6.22). The median of the selected
detail coefficients is computed first, then the absolute
deviations of the detail coefficients from this median
are calculated. The median of the absolute deviations
(MADs) is multiplied by

√
2n, where n is the number of

detail coefficients, and divided by the constant 0.6435 to
give the value of the Donoho and Johnstone (1995) UT.



308 Computer Processing of Remotely-Sensed Images: An Introduction

800

600

400

200

−200

−400

−600

0
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00

D
er

iv
at

iv
e

Wavelength

First derivative – denoised data

0.80000

0.60000

0.40000

0.40000 0.60000 0.80000 1.200 1.400 1.600 1.800 21

Raw minus denoised spectrum

0.20000

0.20000

−0.20000

−0.40000

−0.60000

−0.80000

0

D
iff

er
en

ce

Wavelength

(d)

(e)

Figure 9.17 (continued)

The UT can be multiplied or divided by a scaling
factor to increase or decrease its value (Horgan, 1999,
provides some examples using synthetic data). If hard
thresholding is used, all wavelet detail coefficients in the
chosen levels (five in the example above) that are smaller
in magnitude than the scaled UT are set to zero. Other
detail coefficients are left unaltered. If soft thresholding is
used then hard thresholding is followed by the subtraction

of the scaled UT from all the remaining detail coeffi-
cients. Again, Horgan (1999) provides some examples.
The inverse DWT is then used to transform the thresh-
olded detail coefficients back to the spatial domain; this
operation generates the denoised data series.

Two-dimensional denoising follows a similar pattern.
Figure 6.36 shows a three-level wavelet decomposition of
an image. The detail coefficients at each level are divided
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into horizontal, vertical and diagonal components. Any or
all of these can be selected at a chosen number of levels
for the computation of the UT. Often the diagonal detail
coefficients at level one are used. The computation of
the noise variance and the UT follow the same steps as
described above, and hard or soft thresholding is applied
before the inverse wavelet transform is computed. See
Bruce, Mathur and Byrd (2006) for an example of the
use of wavelets in denoising vegetation signatures from
MODIS data.

9.3.2.3 Determination of ‘Red Edge’ Characteristics
of Vegetation

The ‘red edge’ in the reflectance spectrum of active
vegetation has become more widely used as a diagnostic
feature as the volume of data collected by imaging
spectrometers has increased (Boochs and Kupfer, 1990;
Clevers, Kooistra and Salas, 2004; Curran et al., 1991;
Horler, Dockray and Barber, 1983; Smith, Steven and
Colls, 2004; Ustin et al., 1999). An example of a typical
vegetation spectrum is shown in Figure 1.21. The
biophysical factors that give the spectrum of active veg-
etation its typical shape can be summarized as follows:
leaf chemistry is responsible for the absorption charac-
teristics of the leaf spectrum in the visible wavebands,
while the high reflectivity in the near-infrared wavebands
is explained by the internal leaf structure. Different veg-
etation types generally have different spectral reflectance
curves, and these differences can be sufficient to allow
these different vegetation types to be discriminated and
mapped using classification techniques (Chapter 8).
Also, the spectrum of a given plant (or group of plants,
depending size of the individual ground element that is
‘seen’ by the sensor) will change during the day and from
day to day, depending on season, moisture availability
and other stress factors. A number of methods of charac-
terizing vegetation in terms of biomass, leaf area index,
vigour (or response to stress) using features of its spectral
reflectance curve have been developed, such as vegetation
indices (Section 6.2.4). Both the simple vegetation ratio
(IR reflectance divided by red reflectance) and the Nor-
malized Difference Vegetation Index or NDVI attempt to
characterize the spectral reflectance curve of vegetation
by contrasting the high reflectance in the near-infrared
wavebands and the low reflection in the visible red wave-
bands. In effect, such ratios are measuring the steepness
of the red-infrared region of the spectral reflectance
curve, but not the position in the spectrum of the steep
section. Using imaging spectrometer data it is now
possible to attempt to characterize this steep rise in the
reflectance curve in terms of a single wavelength (though
in practice the accuracy of such a determination depends
on the width and the spacing of the wavebands in which

data are acquired by the imaging spectrometer). The posi-
tion of this steep rise in reflectance can be characterized
by the red edge wavelength and the red edge magnitude.

The most common definition of the red edge position
is the point of inflection of the spectral reflectance curve
of vegetation in the red/near-infrared region. A point of
inflection is that point on an upward-sloping curve at
which the gradient (steepness) of the curve stops rising
and starts falling – that is. it is the point of maximum
gradient and it is also the point at which the rate of change
of gradient is zero.

This idea is illustrated in Figure 9.18, in which
the uppermost curve represents an idealized vege-
tation reflectance spectrum for the wavelength range
650–800 nm. This curve is referred to as ‘the function’ in
the following sentences. The central plot in Figure 9.18
shows the slope or first derivative of the function, defined
as the rate of change of the function value (y-axis) per
unit step along the x -axis. The first derivative increases
in value, reaches a maximum and then declines again.
The rate of change of slope (bottom plot in Figure 9.18)
per unit step along the x -axis is the second derivative.
The second derivative curve crosses the x -axis at
the same wavelength as the first derivative reaches a
maximum. This is the point of inflection – defined as a
point at which the first derivative reaches a maximum
and the value of the second derivative changes from
negative to positive (or vice versa). The point at which
the value of a function changes from positive to negative
(or vice versa) is known as a ‘zero crossing’.

If there is random noise in a data series then derivative
analysis will amplify it. Some researchers, for example
Clevers and Jongschaap (2001), whose ideas on red
edge determination are summarized below, suggest
that derivative-based methods are not robust. However,
noise removal (‘denoising’) using methods such as the
one-dimensional DWT (Section 6.7) are effective in
removing additive random noise from both one and two-
dimensional datasets. Thus, it is sensible to use denoising
procedures before carrying out derivative-based red edge
determinations.

An alternative and simpler method of computing
the red edge wavelength is given by Guyot and Baret
(1988) (an accessible account is provided by Clevers
and Jongschaap (2001)). Their method requires only
four reflectance measurements in the red/near-infrared
region of the spectrum. It is therefore suitable for use
with image data that are measured in relatively broad
wavebands, such as the data collected by the MODIS
sensor (Section 2.3.3). Call these four wavebands
R1, R2, R3 and R4 and assume that they are measured at
points 1, 2, 3 and 4 on the spectrum, with point 1 being
close to 670 nm and point 4 being near 780 nm. The red
edge radiance Re is simply the average of R1 and R4. The
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red edge wavelength λe is found by linear interpolation:
λe = R2 + WI [(Re − R2)/(R3 − R2)] The term WI is the
wavelength interval. In Figure 9.19 the WI from 700 to
780 nm is 40 nm. Points R1, R2, R3 and R4 are measured
at wavelengths of 670, 700, 740 and 780 nm (shown in
Figure 9.19 as R670, R700, R740 and R780). Clevers and
Jongschaap (2001) suggest that the Guyot–Baret proce-
dure is more robust than the derivative analysis described
above, and that it produces results that are comparable
with those achieved by more complicated methods.
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Bonham-Carter (1988) describes another method, based
in fitting an inverted Gaussian model. He also provides a
Fortran program to implement the method. Cho and Skid-
more (2006) suggest that there is a bimodal distribution
of red edge position, at around 700 and 725 nm, and they
suggest a method based on linear interpolation. This mea-
sure is compared to existing methods of estimating the
red edge position. Baranoski and Rokne (2005) propose
another method using what they describe as a practical
approach. Clevers et al. (2002) describe a procedure to
compute the red edge position for MERIS data.

Two procedures are available in MIPS to compute the
red edge position. The first uses the derivative-based
approach as follows:

1. Denoise the individual pixel spectra using a DWT
(for example based on the Daubechies-4 wavelet).

2. For each pixel, compute the ratio between the
reflectance values at the wavebands closest to 800
and 660 nm. If the magnitude of this ratio is less
than a specified threshold (such as 2.0) then mark
this pixel as ‘not vegetation’.

3. For all ‘vegetation’ pixels, calculate the first and sec-
ond derivatives of the spectrum.

4. Locate a zero crossing (a change from negative to
positive values or vice-versa) in the second derivative
in the 660–820 nm spectral region that corresponds
to a maximum of the first derivative.

5. Use linear interpolation to estimate the wavelength
of the zero crossing. For example, the zero crossing
is indicated by a positive value in waveband i and
a negative value in waveband i + 1. The magnitudes
of the second derivative at points i and i + 1 are
known, so the wavelength at which the value of the
second derivative are zero can be interpolated.

Figure 9.18 The top curve is a plot of a reflectance spec-
trum covering the wavelengths 600–800 nm. Note the sudden
increase in the gradient of the curve between 680 and 750 nm.
The middle graph shows the gradient of the reflectance spec-
trum, calculated by the method of first differences, which
approximates the first derivative. The gradient increases from
zero in the green–red wavelengths (600 nm), reaches a
maximum, and declines back to zero in the near-infrared
wavelengths (800 nm). The rate of change of this gradient (the
second difference/derivative of the reflectance spectrum) is
shown in the bottom graph. The point at which the second
difference (derivative) curve crosses the x-axis (i.e. changes
from positive to negative, or vice versa) is called a zero cross-
ing. A point of inflection on a curve is indicated by the
correspondence of (i) a zero crossing in the second derivative
and (ii) a maximum in the first derivative. In this example,
such a point is indicated by the vertical line AB. This point
of inflection is often used as an estimate of the red edge
wavelength (approximately 710 nm in this case).
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Figure 9.19 Guyot and Baret’s (1988) linear method of red edge determination uses the reflectance at four points on the
spectrum (the values 670, 700, 740 and 780 nm are used here). These points are marked R670, R700, R740 and R780. The
reflectance Re at the red edge is the average of the reflectance at 780 and 670 nm. The red edge wavelength is determined
by a linear interpolation between the 700 and 780 nm points. Based on Figure 9.2 of Clevers and Jongschaap (2001), Imaging
spectrometry for agriculture. In F. van der Meer and S.M. de Jong (eds), Imaging Spectrometry: Principles and Applications.
Dordrecht: Kluwer Academic Publishers, pp. 157–199. Reproduced with permission from Springer SBM NL.

6. Output the red edge wavelength, the magnitude of
the first derivative at the red edge, and the area under
the first derivative curve between (red edge −30) and
(red edge +30) nm.

The output from the derivative approach using data
collected over Thetford Forest in eastern England by the
Hymap sensor is shown in Figure 9.20a. The same image
data, showing spatial variations in the red edge wave-
length, is shown in Figure 9.20b after the application
of a 3 × 3 median filter. Longer wavelengths are dis-
played in lighter shades of grey. The black area is that
which has been masked by the application of a vegetation
index mask, as described above. The spatial variations in
red edge wavelength and magnitude correlate well with
information about tree species and age for each stand.
Hansen and Schjoerring (2003) do not specifically use
the red edge wavelength position but find, in a study of a
variety of narrow-band vegetation ratios applied to imag-
ing spectrometer data, that most of the ratios used bands
that were located in the red edge region of the spec-
trum. Example 9.3 illustrates the application of wavelet
denoising to two-dimensional images.

9.3.2.4 Continuum Removal

Workers in the field of analytical chemistry have found
that removal of the local trend from a one-dimensional
derivative spectrum can enhance its interpretability. Con-
tinuum removal emphasizes absorption bands that depart
from their local trend line. The local trend line is usually
defined as the upper surface of a convex hull surrounding
the data points. Consider a plot of reflectance (y-axis)
against centre wavelength for a number of spectral bands
at a given pixel (x , y) position. The convex hull is a
line that surrounds the scatter of points representing
measurements of reflectance at each waveband centre
(Figure 9.21). For present purposes the upper surface of
the convex hull is required. The upper convex hull is
defined by a series of unequally spaced points. Values
on the hull at each waveband centre position are interpo-
lated, and the ratio of the reflectance value at waveband
centre i to the corresponding interpolated hull value is
computed to give the continuum removed spectrum. An
example is shown in Figure 9.22. The data used for this
example were derived from a pixel representative of an
area of deciduous woodland in the top right of the region
shown in Figure 9.20 near the north–south river valley.
Clark (1999) and Ustin et al. (1999) describe the use of
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Example 9.3: Image Denoising Using the Wavelet Transform

In this example, a single-band greyscale image is decomposed using the DWT, then the noise variance is estimated
from the detail coefficients, and the denoised image is reconstructed. The image used in this example is referenced
by the dictionary file etm_pan2.inf. You should locate this file before starting the exercise.

Begin by displaying the image etm_pan2.img, which is a 1024 × 1024 Landsat ETM panchromatic band image
of an agricultural area in eastern England. Display the image using View|Display Image and enhance it using
Enhance|Stretch|Use Percentage Limits, selecting 5 and 95% as the lower and upper bounds. This step is
not strictly needed, but it will be useful later to have the original image on-screen for comparative purposes.

Now follow these steps:

1. Choose Transform|Wavelet (2D) Transform.
2. Check the radio button for Mode 1: Single Band, 3 output images.
3. Identify the INF file to be used by double clicking on the entry etm_pan2.inf when the File Selection

dialog box appears.
4. There is only a single band in this image set, so enter 1 in the next dialog box.
5. Choose the default number of decomposition levels, that is 2.
6. Check all three radio buttons to compute the transformed, noise and denoised images.
7. Check all three radio buttons to select the horizontal, vertical and diagonal detail coefficients at level 1 for

noise estimation.
8. Do not select any of the three radio buttons for level 2 noise estimation.
9. After a short wait, select the Daubechies 4 mother wavelet.

10. Opt to save the specially stretched transformed output image (shown in Example 9.3 Figure 2) in which
each quadrant is separately stretched (you can see why that is done at a later stage). Supply a data band
sequential (BSQ), header (HDR) and dictionary (INF) file name for this special 8-bit image.

11. Provide the name of an output BSQ file and the corresponding header (HDR) file that will hold the three
output images (in order: transformed, noise, denoised).

12. Wait a while as the DWT is applied to each of the 1024 rows and 1024 columns of the image.
13. Use a threshold multiplier value of 1.0 (the default) plus hard thresholding.
14. The image is now denoised and the inverse DWT is computed. Eventually, you will see the message

Finished.
15. Select File|INF File Operations|Create ENVI INF File and follow the instructions to create an INF

file that references the three output files created at step 6.
16. Finally, use View|Display Image to view each of the three output files separately.

Example 9.3 Figure 1 shows the original image. The DWT decomposition is shown in Example 9.3 Figure 2.
We chose to do a two-level decomposition simply to discover what the resulting decomposed image would look
like, and we see that the image at level 1 has been transformed into quadrants, as explained in the main text. The
top left quadrant is decomposed into four subquadrants at level 2.

Noise is computed from the 3n/2 detail coefficients in the top right, bottom left and bottom right quadrants.
The noise image is shown in Example 9.3 Figure 3. The denoised image, after hard thresholding using the UT, is
shown in Example 9.3 Figure 4.

There is no noticeable (visible) noise in the original image. You might like to investigate the validity of this
statement by repeating the experiment and using a different mother wavelet. Other questions that you could
investigate are:

• Is there any apparent difference between the results of hard and soft thresholding?
• What happens if you increase or decrease the threshold for wavelet shrinkage by changing the value of the

multiplier at step 12? (The default is 1.0.)
• Wavelet shrinkage is designed for the removal of additive noise. Could you use the method to remove speckle

noise in SAR images? If so, how?
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• What happens if you base the noise threshold on the level 2 detail coefficients (steps 7 and 8) rather than on
level 1? Or if you base the noise estimate on a single quadrant (one of horizontal, vertical and diagonal) at
either level 1 or level 2? Or even level 3 (step 5)?

Example 9.3 Figure 1. Landsat ETM+ panchromatic image of an agricultural area of eastern England.

Example 9.3 Figure 2. Two-level DWT of the image shown in Example 9.3 Figure 9.1, using the Daubechies-4 mother
wavelet.

(Continues on next page)
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Note that the output BSQ file contains the transformed, noise and denoised images. However, you created a
special 8-bit output image at step 10. Display this image, and compare it to the transformed image in the main
output file (it is the first of three images, the others being the noise image and the denoised image). You will see
that a single contrast stretch cannot accommodate the range of values present in the transformed image; that is why
the special image is created. Each of the quadrants and subquadrants in the special image is stretched individually
in order to achieve the optimum display.

Example 9.3 Figure 3. Noise removed from Example 9.3 Figure 1 using wavelet shrinkage. The noise was estimated from
the level 1 (horizontal, vertical and diagonal) detail coefficients of Example 9.3 Figure 2 using hard thresholding.

Example 9.3 Figure 4. Denoised image.
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Figure 9.20 Red edge wavelength for a 512 × 512 area of a Hymap imaging spectrometer image of part of Thetford Forest,
eastern England. (a) Raw output from the MIPS derivative-based red edge wavelength procedure, (b) image shown in (a) after
the application of a 3 × 3 median filter. (c) Colour table used in (a) and (b). Black areas are masked using a vegetation index
threshold and represent bare soil and non-vegetated areas, plus left and right marginal areas resulting from geometric correction
of the image. Data collected for the BNSC/NERC SHAC campaign, 2000.

continuum removal in the context of rock and mineral
identification and geobotany, respectively. Mutanga,
Skidmore and Prins (2004) use continuum-removed
absorption features to predict pasture quality.

9.4 Lidar

9.4.1 Introduction

The word ‘lidar’ is an acronym derived from light
detection and ranging. The same system is also known
as LASER detection and ranging (LADAR), and also
as LASER altimetry. The word LASER is yet another
acronym, of light amplification by stimulated emission
of radiation. The lower-case word ‘lidar’ will be used
here to be consistent with our use of the word ‘radar’,
which is also an acronym. Like radar, a lidar sensor
is an active sensor, the differences between lidar and
radar being: (i) lidar uses electromagnetic energy in the
visible and near-infrared (VNIR) wavelengths, whereas
a radar sensor uses microwave energy, (ii) lidar is a
nadir-looking, but radar is a side-looking instrument,
(iii) a lidar records information at discrete points across
the swath, which is not therefore formed of contiguous
pixels, as is the case with a radar sensor and (iv) because
lidar operates in the VNIR wavelengths, its signal is
affected by atmospheric conditions, whereas at the
wavelengths used in remote sensing, a radar sensor is
weather-independent. Unlike imaging sensors operating
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Figure 9.21 The black circles show the reflectance (y-axis)
plotted against waveband centre (x-axis) for 10 spectral wave-
bands. The solid line joining the extreme points is the convex
hull. Only the upper surface of the hull between the first and
last data points is required.

in the VNIR wavebands, and which record upwelling
electromagnetic energy that is emitted by or reflected
from objects on the Earth’s surface, a lidar instrument
measures the time taken by an energy pulse to reach the
ground, and for a part of the scattered radiation to return
to the sensor. A lidar thus measures the distance from
the sensor to the ground, because electromagnetic energy
travels at the speed of light and so the time taken for the
energy pulse to travel from the lidar instrument to the
ground and back can easily be converted to a distance.
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Figure 9.22 Continuum removal. (a) Reflectance spectrum of the selected pixel and the upper segment of the convex hull. (b)
Continuum-removed spectrum derived from the ratio of the reflectance spectrum and the corresponding convex hull value at
each waveband centre. The positions and features of the absorption bands are more clearly perceived.

If the position of the instrument is known to a sufficient
level of accuracy then these distances can be converted
to elevations above a specified geodetic datum, and a
raster map of these elevations can be generated. The
set of elevation values produced by a lidar does not
necessarily define a DEM, because the lidar pulse is
reflected back by the first object of sufficient size and
density that it meets as it travels downwards from the
instrument. This object may be a branch, a tree crown,
the ground surface or the top of a building, depending on
the area being viewed and the size (or footprint) of the
lidar pulse. The set of point elevation values can be used
to generate a DSM, which shows the elevation of the
highest reflective object on the ground. Thus, data from
lidar sensors can be used to map the highest point on a
building, or of a tree. In order to generate a DEM from
the DSM, the surface objects must be removed, or the

height of the superimposed object must be estimated. The
DSM may be useful in itself. For example, Figure 9.23
is a lidar image produced by National Atmospheric and
Oceanic Administration (NOAA) showing the site of
‘Ground Zero’ in Manhattan, New York, in September
2001. Lidar images collected by aircraft can be used
to generate three-dimensional urban models, or they
can show objects such as forests that project above the
ground surface. As well as recording range or distance, a
lidar records the intensity of the return signal. Donoghue
et al. (2007) attempt to differentiate between coniferous
species using both lidar height and intensity data.

There is a considerable literature in both photogram-
metric and remote sensing journals on the theme of lidar
measurements of ground surface phenomena. Hodgson
and Bresnahan (2004) report the results of an analy-
sis of lidar-derived elevation measurements. The ISPRS
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Figure 9.23 Lidar image of ‘Ground Zero’, Manhattan,
New York, taken on 17 September 2001. The data col-
lection program was the result of a collaboration between
the US National Atmospheric and Oceanic Administration
(NOAA), the US Army Joint Precision Strike Demonstration
(JSD) and the University of Florida, using an aircraft-mounted
Optech lidar. The colours represent elevations between 0
and 200 m. The three-dimensional model helped to locate
original support structures, stairwells, elevator shafts, base-
ments, and so on. Credit: NOAA/U.S. Army JPSD. (From
http://www.noaanews.noaa.gov/stories/s781.htm; accessed
18 August 2009.)

Journal of Photogrammetry and Remote Sensing (2008)
is a special issue on terrestrial laser scanning. Lichti,
Pfeifer and Maas (2008) edited a theme issue of ISPRS
Journal of Photogrammetry and Remote Sensing on the
subject of terrestrial laser scanning. Fraser, Schroeder and
Baudoin (2006) edited another special issue of the same
journal on extraction of topographic information from
high-resolution satellite imagery. Anderson, Thompson
and Austin (2005) consider the influence of lidar point
density and interpolation effects on elevation estimates.
Antonarakis, Richards and Brasington (2008) use lidar
data in a land cover classification exercise, as do Bork
and Su (2007). Uses of lidar in forest classifications are
described by Donoghue et al. (2007), Hill and Thom-
son (2005) and Lim et al. (2003). Liu (2008) gives an
overview of issues surrounding the use of lidar in the
generation of DEMs. Kobler et al. (2007) present an algo-
rithm for extracting a DTM in forested terrain. Shan and
Toth (2008) is an edited volume of papers relevant to
various aspects of the use of laser ranging. Su and Bork
(2006) also consider DEM generation, in this case study-
ing the effects of vegetation cover, slope angle and lidar
view angle on elevation estimates. Zhang and Whitman
(2005) and Zhang et al. (2003) discuss the process of
filtering of lidar data.

We saw in the preceding paragraphs that the conver-
sion of a lidar DSM to a DEM requires that we estimate
the height of the highest reflective object on the ground

at a given point. The lidar instrument itself can in fact,
perform this task. The account given above of lidar oper-
ation describes what is known as a ‘first return’ or ‘first
bounce’ system, which – as the name implies – records
the time taken between the emission of the pulse of
light energy and the reception at the sensor of the first
backscattered return. More sophisticated instruments
(with more sophisticated signal processing software) can
generate two signals for each pulse. One of these is the
first return, as described earlier, while the second is the
position of the last indication of backscatter. This second
event is called the last return, so these systems give ‘first
return – last return’ data for each grid cell of the raster.
There is no difference between the first and last return if
the target object does not transmit light; if it does, then
the time difference between the first and last bounce is
proportional to the height of the object above the ground.
A concrete surface does not transmit light, but a forest
canopy does. Even more sophisticated systems can record
the backscatter events between the first and last return,
and so provide a profile of this backscattering between
the first and last bounce points (Figures 9.24 and 9.25).
As noted already, solid objects like buildings are not pen-
etrated by the electromagnetic energy emitted by a lidar.
For these targets, and for the ground itself, only a single
return is recorded. The ‘first return–last return’ and the
profile data are returned by objects such as trees, forests
and other types of vegetation that are capable of transmit-
ting light energy. See Mallet and Bretar (2009) for a dis-
cussion of what is called full-waveform topographic lidar.

So far, the operation of a lidar system has been
described in terms of the emission of energy pulses, and
the timing of the returned (backscattered) energy. Not
all lidars operate in this way. Some use the continuous
wave (CW) principle, which is described in more detail
in Section 9.2 in the context of SAR interferometry.
Instead of generating discrete pulses of energy, a CW
lidar emits energy in the form of a sinusoidal wave
of known wavelength. Recall that the phase of a wave
(Section 1.2) is the offset between the y-axis and the
waveform crest (Figure 9.1). In effect, the number
of waveforms that are required to cover the distance
between the lidar sensor and the ground is calculated,
with the fractional part being estimated by the phase
difference between the original and the received wave.

An important distinction can be made between ‘small
footprint’ (5–30 cm) and ‘large footprint’ (10–25 m) lidar
sensors. A large-footprint system has a greater swath
width than a small-footprint system. Small-footprint sys-
tems are used for detailed local mapping of surface ele-
vations, as might be required for floodplain mapping.
However, the spacing between the points at which the
lidar pulse hits the target in a small-footprint system may
be such that several points on the surface of a vegetation
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Figure 9.24 Profile of the return pulse magnitude of lidar
interaction with a tree. The lidar sensor receives the returned
(back-scattered) signal (solid line on right). Some systems
record the time from pulse transmission to receipt of the
first return, others record the time to the last return, while
more sophisticated systems take a sample of the inter-
mediate returns. The distance (range) from the sensor to
the target is computed from these timings. Clipart tree
from http://www.clipsahoy.com/webgraphics2/as3313.htm
(accessed 4 January 2009).

canopy may be measured, giving a detailed representation
of that canopy, whereas the large-footprint system will
collect an average value for a greater area of the canopy
surface. This latter measurement may be more useful for
studies of forest canopy response.

Most lidar sensors are flown onboard aircraft. One
experimental lidar sensor, the Lidar In-space Technology
Experiment or LITE, was flown in September 1994 as
part of the STS-64 mission. LITE is a three-wavelength
profiling lidar developed by NASA Langley Research
Center, and is primarily designed for measuring
atmospheric rather than terrestrial phenomena. It takes
simultaneous measurements in three harmonically related
wavelengths of 1064 nm (infrared), 532 nm (visible
green) and 355 nm (ultraviolet) along a profile measuring
approximately 300 m wide at the Earth’s surface.

The Shuttle Laser Altimeter (SLA) was carried on
board two Space Shuttle missions, in January 1996 and
August 1997, respectively. SLA incorporates a laser
operating at a wavelength of 1068 nm, with a sampling
rate of 10 Hz. It has a footprint radius of 100 m. The first
SLA mission (SLA-1) was not as successful as expected,
as the dynamic range of the backscattered echoes was
greater than had been allowed for in the system design.
SLA-2 was modified to provide more flexibility. Data
from the SLA-2 mission can be downloaded from the
Internet (search for ‘SLA data’). Garvin et al. (1998)
provide a review of the SLA program.
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Figure 9.25 (a) Difference between first and last return lidar
data for a 2 × 2 km area near Thetford, Norfolk, United King-
dom. The difference between the two returns is related to
canopy height and to the vertical structure of the vegetation.
The contrast between smooth and busy textures of the forested
and non-forested areas is clear. The visual interpretability of
the image has been be enhanced via the use of a pseudocolour
transform. (b) Colour wedge for Figure 9.26a. Lidar data c©
Environment Agency Geomatics Group 2009.

ICESat, was launched on 13 January 2003. It carries
the Geoscience Laser Altimeter System (GLAS), which
operates at two wavelengths – 1064 and 532 nm. The
position of the ICESat platform is determined by GPS
and by stellar navigation systems. The footprint of the
GLAS is 75 m, and the spacing between points is 175 m.
A comprehensive description of the GLAS instrument
and its applications is provided by Zwally et al. (2002).
Schutz et al. (2005) give an overview of the mission.
Remote sensing of snow and ice is covered by Massom
and Lubin (2006) discuss remote sensing of ice sheets.

9.4.2 Lidar Details

The material in this section summarizes two review
papers, by Baltsavias (1999) and Wehr and Lohr (1999),
to which readers should refer for more detailed accounts.

The basic principle of operation of a lidar sensor is
described briefly above. A typical lidar instrument incor-
porates (i) a laser ranging unit, (ii) an optomechanical
scanner and (iii) a control and processing unit. The laser
ranging unit contains the laser transmitter and receiver.
The transmitter is able to generate a narrow beam of
electromagnetic energy, while the receiver ‘looks’ along
the same path as the transmitter in order to capture the
backscattered return. Most of the present generation of
lidar sensors use the pulse principle, described above;
Wehr and Lohr (1999) note that only one commercial
airborne lidar employs the CW principle to calculate



Advanced Topics 319

range. The principle of the pulsed lidar is quite straight-
forward; if the time between transmission and reception
of the pulse is t and if R is the distance between the
lidar transmitter and the target then R = ct/2, where c
is the speed of light. A CW lidar transmits a continuous
signal on which a sinusoidal wave of known period
is superimposed. If the phase difference between the
transmitted and received signals is computed then the
range R is related to the number of full waveforms plus
the phase difference. Since the phase difference could
be more than 360◦ some ambiguity could be introduced,
analogous to the ‘phase unwrapping’ problem in SAR
interferometry (Section 9.2).

The maximum range of a pulsed lidar system depends
on the maximum time interval that can be measured by
the control unit and on the strength of the backscattered
signal, which is to some extent dependent on the power of
the transmitted pulse (it also depends on the reflectivity
of the surface). An analogy can be made between a laser
and a torch. The range of the torch depends on the battery
power, the properties of the bulb and the focusing power
of the lens. A ‘high-power’ torch can transmit a narrow
beam of light over a considerable distance. If you take
the torch to a dark and isolated location and direct the
torchlight upwards, you will not see anything because
there are no reflective objects within the maximum range
of the torch. The accuracy of the measurements made by
a lidar instrument depends upon the signal to noise ratio
(SNR), which in turn is dependent on electronic noise
in the components of the lidar sensor, as well as on the
power of the transmitted signal.

Wehr and Lohr (1999) note that the most sensitive
detectors for use in the receiver unit operate in the
800–1000 nm region (photographic infrared). In this
wavelength range, eye safety is a consideration and so
longer wavelengths (around 1500 nm) are employed,
because higher power lasers can be used at these wave-
lengths without compromising safety. A further advan-
tage that comes from the use of longer wavelengths is that
the background level of solar radiation is lower than in
the 800–1000 nm region (see Figure 1.7). Lidar systems
that are used for measuring bathymetry, rather than the
properties of terrestrial targets, use shorter wavelengths
(of the order of 500–550 nm) because electromagnetic
energy at longer wavelengths is absorbed by water
bodies, rather than transmitted or reflected (Figure 1.23).

The laser ranging unit described above emits and
receives a pulse of light energy, and the range (or
distance to the target) is calculated from the time
difference between transmission and reflection. A
two-dimensional field of measurements is generated first
by the forward movement of the platform and second
by the employment of a side-to-side scanning system
(Figure 9.26). The lidar footprint, that is the size of the

small area on the ground that is viewed by the lidar,
depends on the instantaneous field of view (IFOV) of
the instrument, on the altitude of the platform, and on
the angle of view. The radius of the footprint is greater
at the edge of the scan than at the centre. The footprint
points are collected at equal angle intervals across the
scan, so that their ground spacing is spatially unequal.
The number of points collected is related to the pulse
rate of the lidar transmitter and to the height of the
aircraft above the ground. Most lidar sensors employ
the scanning mirror principle, as used by the Landsat
ETM+ and NOAA AVHRR sensors. The distribution of
the observed ground points when an oscillating mirror is
used results in a zig-zag pattern, shown in Figure 9.25.
One problem experienced with some oscillating mirror
scanners is that the mirror has to slow down, stop and
accelerate at the end of each scan. Other problems are
caused by variations in the altitude and attitude (pitch,
roll and yaw) of the aircraft. These variations result in
displacements of the ground points from their theoretical
positions.

The range or distance from an aircraft to a point on
the ground is merely of local interest in that it must be
more than zero at nadir, unless the aircraft has landed.
To be of scientific use, range information must be placed
in the context of a coordinate system, that is it must be
converted to a height above an accepted datum such as
WGS84. This transformation can only be achieved if the
position of the sensor relative to some reference point is
known to an acceptable degree of accuracy. Information

Figure 9.26 Schematic illustration of airborne lidar scanner
operation. The mirror oscillates from side to side in the vertical
plane, and the forward motion of the platform results in
a scan line that is oblique to the flight direction. Further
disturbances result from the pitch, roll and yaw of the platform.
The measurement points (yellow circles) are collected at
equal-angle steps across the scan, so their ground spacing
is not constant.
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Example 9.4: Lidar First/Last Return

Example 9.4 Figure 1 shows the difference between a first-return lidar dataset and a last-return lidar dataset for
a 2 × 2 km area near Thetford, Norfolk, in eastern England. The data are processed by the provider, and are
supplied in gridded form as first and last return measurements, with a nominal spatial resolution of 2 m. The
accuracy of the surface elevation measurements is 0.15 m at 1200 m altitude (one sigma, that is. 66% of all points
will be within 15 cm of the true elevation, and 95% will be within 30 cm). The horizontal accuracy is quoted as
0.002 × aircraft altitude.

Example 9.4 Figure 1. The difference between the first and the last return lidar data for a 2 × 2 km area near Thetford,
Norfolk, United Kingdom. The difference between the two returns is related to canopy height and to the vertical structure of
the vegetation. The contrast between smooth and busy textured areas is clear. (The visual interpretability (and impact) of this
type of image can be enhanced via the use of a pseudocolour transform as shown in Example 9.4 Figure 2a).

on the aircraft’s attitude is also required if the positions of
the points on the ground are to be calculated accurately.
Data relating to position and accuracy are collected by
the control and processing unit, which contains a GPS
receiver and an inertial navigation system. The results of
a lidar mission thus consist of two data sets. The first con-
sists of the measurements made by the lidar sensor and
the second contains the positional data collected by the
GPS and inertial navigation unit. Both data sets are used
at the processing stage, in which the lidar measurements
are converted to a regular raster format. The range and
position of each measured ground point are computed,
and the resulting irregular spatial pattern is re-sampled
on a regular grid to produce the output data set. Further
processing is necessary if a ‘bare earth’ DEM is required,
as the lidar range is measured between the sensor and the
first reflector, in the case of a ‘first-return’ lidar. Maas

(2002) provides a useful survey of methods of analysing
errors in lidar data.

The preceding description of the modus operandi of
airborne lidar sensors makes only one reference to the
IFOV of the instrument, and implicitly assumes that the
purpose of any investigation using lidar is to generate a
DEM or a DSM. This is an oversimplification. One of the
main areas of research using lidar is ecology. Here, some
interest lies in the measurement of canopy heights, espe-
cially of forests, but there is an equal if not greater interest
in the measurement of the three-dimensional character-
istics of vegetation. Small-footprint lidars ‘see’ only a
small area on the ground, and these small footprints are
separated by ‘unseen’ areas (Figure 9.25). The spatial
distribution of these small footprints over a forest canopy
may be such that gaps between trees are missed, and it
is also possible for the crown of a tree to be left unob-
served by a small footprint system. The small footprint
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Example 9.4 Figure 2. (a) Pseudocolour-processed version of Example 9.4 Figure 1 using the colour bar shown in (b).
(b) Colour bar corresponding to (a).

Images such as this are used in studies of forest properties. Canopy height can be estimated from the (last–first
return) image, within the accuracy limits noted above. Canopy height correlates with other biophysical variables
such as above-ground biomass, basal area and mean stem diameter.

Example 9.4 Figure 2a is a pseudocolour version of the image shown in Example 9.4 Figure 1. The colour table
used to convert from greyscale to colour is shown in Example 9.4 Figure 2b.

systems also tend to record either or both of the first
return and the last return. Such systems have many valu-
able applications, such as floodplain mapping, in which
a dense grid of points associated with accurate elevation
measurements is required (Jones et al., 2007; Straatsma
and Middelkoop, 2006). Some of these applications are
described in the next section. Other applications need a
larger footprint and a ‘profile’ of laser returns between
the first and last returns. These large-footprint systems
are most use in large area surveys of vegetation char-
acteristics. The applications of lidar systems are briefly
described in the next section.

9.4.3 Lidar Applications

Data from lidar sensors has been used in a range of
applications. Those described here are hydrographic and
coastal mapping, glacier monitoring, ecological studies,
flood modelling and DEM/DSM generation. The use of
first/last return lidar data in forest studies is illustrated in
Example 9.4.

Data coverage from lidar systems flown onboard
aircraft is of the order of 25 km2/h. For small areas,

data collection is very rapid, and the problems of ground
or sea-based fieldwork are avoided. In the coastal
zone, water depths are often too shallow for ship-based
bathymetric surveys, and so wading techniques are
often employed. Because the coastal environment is so
dynamic, the collection of data by these methods is often
less than adequate, as measurements are not collected
simultaneously. Lidar remote sensing can provide
coverage both of beach topography and bathymetry,
without expensive field measurement programmes.
Since the remote sensing mission can be carried out
quickly and relatively cheaply, repeat surveys to provide
more frequent coverage of the area of interest becomes
feasible, and it then becomes possible to establish a
dynamic model of the coastal zone system. The data
provided by lidar remote sensing are used in developing
sediment budgets, monitoring and predicting shoreline
erosion, creating nautical charts and managing navigation
projects (Irish and Lillycrop, 1999).

The US Army Corps of Engineers developed the Scan-
ning Hydrographic Operational Airborne Lidar Survey
(SHOALS) instrument in the early 1990s, and it became
operational in 1994. SHOALS is a small-footprint lidar
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that is able to collect bathymetric and topographic data
simultaneously from an aircraft or a helicopter. It uses
two lasers. One, operating at a wavelength of 1064 nm
in the near infrared, is used to determine the land–water
interface. The wavelength used by the second laser is
532 nm, in the blue–green region of the visible spec-
trum. The discussion of the absorption, transmission and
reflectance properties of water in Chapter 1 explains why
these particular wavelengths were selected. Water absorbs
strongly in wavelengths longer than the visible green, and
so the 1064 nm laser will ‘see’ the water surface but not
the interior of the water body. Shorter-wavelength visible
radiation does penetrate water, with the penetration depth
increasing as wavelength decreases. The first return will
come from the water surface, and the second (last) return
will be from the bed of the water body, providing that the
depth is not too great and the water is clear. The 532 nm
laser will thus penetrate to a depth that depends mainly on
the organic and inorganic content of the water body. For
optically clear waters, the depth of penetration is as much
as 70 m. The 532 nm laser is also used by the SHOALS
instrument to measure the range to points on the beach,
and so can produce both bathymetric and elevation data
for the coastal zone. The lasers have a pulse frequency of
400 kHz, which means that the system collects 400 range
measurements per second. A swath 220 m wide is gen-
erated from an operating aircraft height of 400 m, with
a point spacing of 8 m. The vertical accuracy is claimed
to be±15cm, while horizontal accuracy is dependent on
the GPS used to fix the aircraft position. When kinematic
GPS is used then horizontal accuracy is about 1 m.

Another example of a dynamic environment is the
alpine glacier. It is physically difficult as well as
time-consuming to make measurements on glaciers.
The traditional method is to hammer stakes into the
glacier surface and to survey them at regular intervals
in order to calculate the rate of movement of the glacier
surface. Photogrammetric methods have been used as
an alternative, but it may be difficult to identify the
glacier surface on the photograph and the collection of
identifiable control points to link the photograph to a
coordinate system is also a problem. Lidar may seem
to be a potential solution, as the reflectivity of snow
is high in the 800 nm region, and the use of GPS can
provide accurate location in terms of an established map
projection. Favey et al. (2000) describe a comparative
study using airborne lidar and digital photogrammetry
to map the Lauteraar and Untersar glaciers in the
Swiss Alps. The purpose of the mapping exercise was
to produce a series of DEMs of the glacier surfaces.
Subtraction of successive DEMs provides an estimate of
the volume of ice gained or lost.

The lidar used by Favey et al. (2000) incorporated
a laser scanning system operating at a wavelength of

810 nm, as ice and snow have a high reflectivity at this
wavelength. The system was mounted onboard an air-
craft, which flew at altitudes between 600 and 1100 m,
this latter height being the upper limit for successful use
of the lidar sensor. Submetre accuracy was achieved for
the higher parts of the glacier, but problems were experi-
enced for parts of the glacier covered by debris having a
much lower reflectance than snow and ice. These authors
conclude that laser altimetry is a feasible tool for glacier
monitoring when the flying height is below 750 m. Apart
from the speed of data collection, an added advantage of
the lidar method is that the survey can be extended to the
upper surface of the glacier. Other papers addressing the
use of lidar in glacier mass balance studies are Kennett
and Eitken (1997) and Thomas et al. (1995).

The third example is the use of a small-footprint lidar
in topographic mapping for DEM production. High-
resolution DEM are required for a variety of purposes,
including flood-plain mapping, urban models and deter-
mining line of sight in telecommunications applications.
The use of InSAR to generate high-resolution DEM is
described in Section 9.2. Hodgson et al. (2003) provide
a comparison between DEMs derived from conven-
tional surveying, and DEMs generated from lidar and
InSAR data.

A lidar records the position of the first object encoun-
tered during the downward passage of the energy pulse,
and so produces a DSM rather than a ‘bare-earth’ DEM.
This, of course, is an advantage in the production of urban
models, and in modelling intervisibility, but is a disadvan-
tage when a ‘bare earth’ DEM is required. The distance
to the first return will depend on the nature of the target.
For example, the first return distance for a dense forest
canopy will provide an overestimate of ground surface
elevation. Ground slope also has an effect on vertical
accuracy, with higher errors occurring on steep slopes.
The root mean square error (RMSE) for lidar-derived
ground elevation measurements is of the order of 0.2 m
(Lefsky et al., 2002) though it should be recalled that the
95% confidence estimate is derived by multiplying the
RMSE by the factor 1.96. The removal of unwanted sur-
face detail in order to convert a DSM to the corresponding
DEM is an active research topic. Some algorithms are
proprietary and thus confidential; for example Sties et al.
(2000) note that ’ . . . a detailed functionality of the selec-
tion method (i.e. the method of identifying ‘above ground
objects’) is not known.’ Other methods are based on fil-
tering. InSAR-generated DEMs are also affected by the
presence of vegetation, but microwave energy penetrates
the vegetation canopy to a degree that is dependent on the
radar wavelength (Section 2.4). See Sithole and Vossel-
man (2004), Zhang and Whitman (2005) and Zhang et al.
(2003) for discussion of filtering lidar signals to produce
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‘bare earth’ surfaces. Vosselman (2000) also provides a
review of slope-based filtering of lidar data.

Highly accurate DEMs are required for floodplain
modelling (Cobby, Mason and Davenport, 2001). The
best-available conventional DEMs have a spatial resolu-
tion of 10 m and a vertical accuracy of ±0.5 m, which is
too great for the effective use of hydraulic models. DEMs
derived from lidar data have, at least in theory, a hori-
zontal spacing of less than 10 m and a vertical accuracy
of ±0.15 − 0.25 m. Cobby, Mason and Davenport (2001)
discuss the factors that should be taken into account
when using lidar data to generate high-resolution DEMs,
using the Severn floodplain near Shrewsbury, England,
as a test site. They measured ground elevation at 25
points along a transect between two Ordnance Survey
benchmarks, and compared these ground measurements
with those derived from lidar. They find that the RMSE
is related to the nature of the vegetation, including its
height. Thus, for short vegetation the RMSE is 24 cm,
while for dense deciduous woodland the RMSE rises
to 4 m, even though the lidar DSM had been filtered to
remove surface objects such as vegetation and buildings.
They attribute this disappointing performance to (i)
the ground slope, as it is suggested that both height
and planimetric accuracy decrease as slope increases
and (ii) incomplete penetration of dense vegetation
canopies, that is the ‘last return’ does not come from
the ground.

The final example is taken from the field of ecosystem
research (Dubayah and Drake, 2000; Harding et al.,
2001; Lefsky et al., 2002; Lim et al., 2003). In this
example, interest focuses not so much on the deter-
mination of surface elevations but in estimating the
height and structure of forest canopies. Such information
augments the spectral reflectance information provided
by other remote sensing systems, which provide two-
dimensional information about the spatial distribution of
objects. Lidar remote sensing adds information about
the third dimension, which is important in modelling
the ecological properties of a forest area. It has been
noted already that small-footprint lidars are less useful
in forest studies than are large-footprint lidars, especially
as it is more common for the latter type to produce a
digital profile made up of the first, last and intermediate
returns (Figure 9.24). Of particular interest to ecological
and forestry studies are measurements of canopy height
(which correlates closely with other biophysical indices
such as above-ground biomass, basal area and mean stem
diameter), and the vertical distribution of backscatter,
which can also be used to estimate above-ground
biomass and the successional state of forest vegetation
(Clark, Clark and Roberts, 2004; Dubayah et al., 2000;
Heurich, 2008; Hyyppä et al., 2008; Koch, Heyder and
Welnacker, 2006; Koch et al., 2009).

9.5 Summary

SAR interferometers, imaging spectrometers and lidar
represent developments in remote sensing that are capable
of providing more extensive and more detailed infor-
mation about the Earth’s surface than ever before. The
success of the SRTM in producing global DEMs, plus
developments in the analysis of high-dimensional optical
and infrared data, as well as the increasing use of lidar to
provide detailed local topographic and vegetation infor-
mation, has led to the introduction of increasingly sophis-
ticated methods of processing remotely-sensed data.

Earth observation by remote sensing is expanding
in several directions. One view of the organization of
the discipline is that two separate but interlinked ‘user
communities’ (mapping and modelling) share a common
interest in data processing and information extraction
techniques. Mapping is the representation of the state
of the Earth’s surface in terms of the nature of the
Earth surface cover (e.g. soil, vegetation and water). The
modellers, on the other hand, use remotely-sensed data
to provide quantitative estimates of properties of the
materials making up the Earth’s surface, as well as those
of the atmosphere. This taxonomy of remote sensing is
similar to that proposed by Verstraete, Pinty and Myeni
(1996), whose paper should be widely read.

The aims of these two groups are, in reality, inter-
related in several ways. The mapping community
requires quantitative estimates of atmospheric and
topographic conditions in order to provide a standardized
image product and permit the comparison of map-like
outputs at different points in time. These estimates could
be derived from the outputs of the modelling community,
which in turn can develop the analytical procedures used
by the ‘mappers’ so as to extend their applicability. For
example, the red edge wavelength can be used both as a
surrogate for biomass and as a parameter to be mapped
in its own right, relating (for example) to tree species
type and tree age. Another case in point is the use of
land cover maps derived by remote sensing as inputs
to climate models. The two communities are not as
distinct and separate. They are both reliant on each other,
and on the development (or adaptation) of techniques
of data analysis and information extraction that allow
them to make optimal use of the growing amount of
increasingly sophisticated data that are being collected
by airborne and spaceborne remote sensing instruments.
The distinction between mappers and modellers arises
again in Chapter 10, where the role of remote sensing
in GIS is discussed. Maps from remote sensing sources
provide data layers in GIS (for example land cover)
while biogeophysical variables derived from remote
sensing are being introduced into a range of spatial
models ranging from local to global in scale.





10 Environmental Geographical Information
Systems: A Remote Sensing Perspective

10.1 Introduction

If the reader looks at the web sites of leading image
processing software vendors such as ERDAS and ENVI
you will find that among the top two or three benefits
they offer is a seamless integration with geographical
information systems (GISs) software. The growing links
between GIS and remote sensing (RS) suggest that an
introduction to GIS is an essential part of an advanced
course in RS, just as a GIS course should include mod-
ules in RS and image processing. The purpose of this
chapter is to provide a succinct overview of the relation-
ships between environmental GIS and RS. This chapter
also acts as a shop window displaying results achieved
by the techniques covered in the first nine chapters of
this book. It should not be considered to be an attempt
to cover all aspects of GIS; it focuses on the ways in
which environmental GIS and RS interact, from the input
stage, through the processing stage to the output stage.
There is a two-way relationship between GIS and RS.
Access by RS users to maps, reports, digital elevation
models (DEMs) and global positioning system (GPS)
coordinates stored in a GIS makes possible the success-
ful application of image processing methods while any
environmental GIS would be incomplete without access
to temporal series of processed images and environmen-
tal data such as variations in soil moisture content over
time. One of the major attributes of RS data is that it
provides access to temporal sequences of environmental
and cartographic data. These data can be used in mod-
els and reconstructions at scales from local to global.
Steffen et al. (2005) provide a comprehensive discus-
sion of Earth surface processes and the Earth system.
Lambin and Geist (2006) discuss land use and land cover
change from the perspective of local processes and global
impacts. Chuvieco’s (2008) edited volume should also be
consulted to get the wider picture. The combined use
of GIS and RS is also considered by Mesev (2007),
and Millington, Walsh and Osborne (2004), who cover
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applications in biogeography and ecology, while Pettit
et al. (2008) consider spatial models of natural resources.
Environmental modelling is reviewed by Wainwright and
Mulligan (2005) whereas Scally (2006) looks at GIS and
environmental management. There is no doubt that the
Earth’s climate is changing and these changes will affect
both the geosphere and the biosphere. The use of environ-
mental GIS, with RS data as an essential component, will
be necessary to derive spatial relationships, describe spa-
tial structures and model spatial processes if humankind
is to come to grips with the dynamics of environmen-
tal change. The use of RS in disaster monitoring can be
cited as one example of the incorporation of remotely-
sensed data into decision support systems. The Disaster
Monitoring Constellation has been mentioned in several
places in this book (see Section 2.3.9) and a TerraSAR-X
image of a flooded area in south-west England is shown
in Figure 2.23.

This chapter is divided into two parts. In the first part
(Sections 10.1–10.7), the functional relationship between
GIS and RS is explored in terms of the exchange of data
and results, the processing features of modern GIS and
the output and visualization of results. The remainder
(Sections 10.8–10.10) of the chapter illustrates by means
of examples the joint use of GIS and RS techniques in
solving problems.

We begin with a definition of the term ‘geographical
information system’ (Section 10.1.1), then proceed to
look at the synergistic use of GIS and RS data. Exchange
of data between GIS and RS systems is considered next,
noting that these systems may be close-coupled (i.e. exe-
cuted from a common menu system), or loose-coupled.
In the latter case, a file exchange format is selected
and data and results are exchanged between the two
systems. A GIS may lack, for instance, some key image
processing techniques or there may be no statistics or
modelling software incorporated in the GIS. In such
cases, data have to be imported and exported between
different software packages.
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Section 10.2 deals with data models, data structures
and file formats. The distinction is made between
raster and vector models of reality, and details of
various data structures and file formats are provided.
In Section 10.3 the concepts of buffering and overlay
are explained, while Section 10.4 is concerned with
locational analysis (slope and aspect, proximity analysis
and contiguity/connectivity). Section 10.5 summarizes
the topics of point pattern analysis and interpolation,
exploratory data analysis and data mining and regression
analysis as a procedure for estimating grids of data
values from point samples. Modelling, either static or
dynamic, deterministic or stochastic, is an important
technique in environmental science and a brief account
of the subject is provided in Section 10.6. Output from
an environmental GIS is described in Section 10.7 under
the heading of ‘visualization’ to take account of the fact
that modern techniques of presenting information now
go a lot further than the old-fashioned paper report.

Sections 10.8, 10.9 and 10.10 constitute the second
part of this chapter and illustrate in the form of practi-
cal examples (case studies) how GIS and RS can be used
synergistically. The first two examples (Sections 10.8 and
10.9) deal with hydrogeological applications of GIS/RS
in arid environments, while the third example (Section
10.10) shows the use of GIS/RS techniques in archaeo-
logical studies conducted in a variety of environments,
that is tropical rainforests and semiarid highlands.

Readers are assumed to be familiar with one or
more of the standard GIS textbooks such as Albrecht
(2007), Bonham-Carter (1994), Burrough and McDonald
(1998), Heywood, Cornelius and Carver (2002), Lo and
Yeung (2007), Longley et al. (2005), Madden (2009)
and Wilson and Fotheringham (2008). Computational
aspects of GIS are covered by Worboys and Duckham
(2004) and – at a rather less advanced level – by Wise
(2002). McMaster and Usery’s (2004) edited volume
sets out a research agenda for geographical information
science. The relationship between RS and GIS is
described in the book edited by Mesev (2007). Neteler
and Mitasova (2002) give details of an open-source GIS
called GRASS. Aronoff (2005) is a handbook of RS
aimed at GIS managers.

10.1.1 Definitions

Burrough and McDonnell (1998) define a GIS as ‘. . .
set of tools for collecting, storing, retrieving at will,
transforming and displaying spatial data from the real
world for a particular set of purposes’ (p. 11). This
definition emphasizes the ‘toolbox’ characteristics of
a GIS, which can be used to manipulate both spatial
and non-spatial data using techniques described in the
following sections. A second definition highlights the

science aspects, emphasizing modelling and spatial
analysis rather than data manipulation (Maguire, Batty
and Goodchild, 2005; Skidmore, 2002). A third and
one of the oldest definitions sees GIS more as an
evolved form of information system technology in which
geospatial data are stored and manipulated in a relational
database. This view is set out by Dueker (1979, p. 106)
as follows:

A geographic information system is a special case of infor-
mation systems where the database consists of observations
on spatially distributed features, activities or events, which
are definable in space as points, lines, or areas. A geo-
graphic information system manipulates data about these
points, lines, and areas to retrieve data for ad hoc queries
and analyses.

All of these definitions coincide in emphasizing the
analytical character of GIS. Also, all are motivated by
the fact that the synergistic use of data from multiple
sources generates more useful information than if these
sources are treated separately. This, of course, implies
that remotely-sensed data is more valuable when used
together with, or as a part of, a GIS rather than as a
standalone technology.

In more recent times, terms such as spatial informa-
tion systems or geographic information science have been
introduced that stress the theoretical approach, that is the
scientific study of geographical information, rather than
the practical problem solving (toolbox) approach of GIS.
Longley et al. (2005) offer a variety of definitions rang-
ing from a digital-map-container to a problem-solving-
tool-set; they eventually come to the conclusion that ‘. . .
Everyone has their own favourite definition of a GIS, and
there are many to choose from’ (p. 16).

In this chapter we use the term GIS to address both
the scientific concepts underlying the analysis of geo-
graphical data as well as the technical aspect of col-
lecting, managing and using spatial information to solve
a particular problem. The words spatial, geospatial or
geographical are used to describe objects located on or
near the Earth’s surface and which are the main focus
of this chapter. It is important to establish this differ-
ence because not all information systems that handle spa-
tial features, such as computer-assisted design (CAD) or
computer-assisted manufacturing (CAM) programs, can
be considered to be GIS. Information stored in an envi-
ronmental GIS can be thought of as being formed of
multiple, mutually registered, information layers such as
elevation, slope, soil type, land cover or mean annual
rainfall. These information layers have one crucial char-
acteristic that distinguishes them from all other spatial
information manipulation techniques, namely, the infor-
mation layers are referenced to a common geographical
coordinate system that allows individual data layers to
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be overlaid and represented at various geographic scales
from local to regional or global.

There are other terms used in reference to technolo-
gies that deal with the science and principles of the
use of spatially referenced information, for instance,
geomatics and geocomputation. Geomatics or geomatics
engineering comprises a set of tools and techniques
that are used to survey, collect, interpret and analyse
data related to the Earth’s surface. In the the United
States the term geospatial technologies is preferred
and combines all three technologies, namely GIS, GPS
and RS, that deal with geospatial data. Geocomputation
refers to the use of computer models to describe and
model spatial and dynamic phenomena or processes
using a range of computational tools. These are usually
very sophisticated models (e.g. global circulation models
(GCMs)) and are not part of a GIS but can often be
linked to or even integrated in a GIS. All of these
different names for techniques of storing, querying,
manipulating and displaying spatially referenced data
represent different ways of seeing the same thing. Terms
such as geographical information systems/science are
more common in geography, geology and ecology
whereas engineering departments are more likely to
use the term geomatic engineering , which focuses on
position-fixing, surveying and coordinate systems rather
than environmental modelling or spatial analysis.

Modelling of environmental and social systems is
an integral part of GIS, as has already been mentioned
(Skidmore, 2002; Maguire, Batty and Goodchild, 2005).
A compelling reason for integrating a numerical model
within a GIS environment is that: (i) a GIS database can
be used interactively and concurrently with the modelling
software in an integrated fashion, (ii) information in the
database is available on the same screen during data
layer preparation (so that there is no need to refer to
other external software), (iii) it provides graphical and
attributable error checking (editing) on a continuous
basis, (iv) it saves and analyses spatial data and results
on any GIS layer, (v) it has flexibility of overlaying and
integrating maps and tabular data and (vi) only one copy
of the database is current, so that problems of coordina-
tion of data are minimized. Modelling can be carried out
in loose-coupled mode, in which the modelling software
and the GIS are separate entities that communicate via a
standard file format (so the output from the GIS is the
input to the modelling software), or in close-coupled
mode where one can execute modelling functions from
within the GIS environment. See Goodchild (2005) for
an introduction to modelling in a GIS. The topic of
modelling is covered in more depth in Section 10.6.

Data display and visualization is an important feature
of GIS. The information output by a model or the result
of spatial queries can often be better appreciated if it

Figure 10.1 Visualization of the Los Angeles basin show-
ing land cover derived from Landsat ETM+ draped
over a DEM. From: http://www2.jpl.nasa.gov/srtm/california
.html#PIA03332. Courtesy NASA JPL/NIMA/DLR/ ASI.

is represented in the form of a map or diagram rather
than as text or tables. The use of visualization tools can
help the user to appreciate the relationship between spa-
tial variables, particularly if the visualization incorporates
interactive properties such as choice of viewpoint and
view angles, or dynamic fly-through features. Figure 10.1
shows a visualization of the Los Angeles area using satel-
lite data to depict land use and a DEM to display terrain.
This kind of output is particularly suited to the decision-
maker who may not have map-reading or statistical skills.
Visualization is the topic of Section 10.7.

In summary, we can say that the main advantages of
utilizing a GIS for conducting analyses of geographical or
geospatial information are the ease and speed with which
it allows:

• concurrent handling of spatial and attribute data
• integration of a variety of data types (derived from

multiple sources and programmes)
• processing and analysis of data in a highly flexible

manner
• higher accuracy, time efficiency and repeatability

(compared to manual manipulation of cartographical
products)

• integration of computer modelling (e.g. numerical
groundwater models or soil erosion models)

• the use of visualization tools such as interactive maps
or 2.5-dimensional views such as Figure 10.1.

10.1.2 The Synergy between Remote
Sensing and GIS

The word ‘synergy’ is defined by the Encarta dictio-
nary as

the working together of two or more people, organisations,
or things, especially when the result is greater than the sum
of their individual effects or capabilities.



328 Computer Processing of Remotely-Sensed Images: An Introduction

Its meaning is captured by the phrase ‘the whole is
greater than the sum of the parts’. RS and GIS are two
spatial data capture and analysis technologies and, as
such, ought to share features in common. When GIS first
came into being, satellite imaging technology was in its
infancy and the two technologies developed along paral-
lel tracks. Of the scientists working in the area of GIS,
most were interested in digital cartography (visualiza-
tion) or spatial analysis, while RS experts were concerned
more with image processing and pattern recognition prob-
lems. GIS was mainly seen as vector-based, using lines,
points and areas, while RS was grid-cell or pixel-based
(Section 10.2.1).

As computer power increased and costs decreased,
raster-to-vector and vector-to-raster technology (Section
10.2.4) began to make economic sense and the two
spatial data technologies began to converge as until by
2009 both GIS and RS technology companies began
to market not GIS in isolation or RS in isolation,
but as an integrated, synergistic whole. For example,
Ehlers (1990) suggested that there are three levels of
integration: at the first level there is data exchange,
via ASCII flat files, or some data exchange format, or
by developing routines to read proprietary formats like
ENVI band sequential (BSQ)1 or ESRI shapefiles. The
second level of integration would see a common user
interface with seamless processing. Raster and vector
files of various structures (such as triangulated irregular
networks (TINs)) could be converted from one to the
other and used in GIS/RS analysis. The third and highest
level is a single integrated system, with a unified data
structure (Merchant and Narumalani, 2009).

An example of second-level integration is provided
by the ITT/ENVI Product Manager, Beau Legeer, who
writes in the October 2009 ITT Visual Information
Newsletter as follows:

ENVI users – whether they come from our tradi-
tional scientific spectral community or from the GIS
community – can now experience true integration with
the standard tools they use for GIS visualization and
processing. Spectral imagery users can now add important
information from maps to their data, and GIS users can
add valuable data from imagery to their GIS applications.
This is made possible by a bi-directional integration
between ArcGIS and ENVI, highlighted by best in class
integration with ArcGIS layer files. ArcGIS users can now
drag a file or layer from ArcGIS to ENVI for processing
and to extract vital GIS information. Processing results
are shared back to ArcGIS through the geodatabase
or published from within ENVI using ArcGIS map
generation tools.

1Mention of commercial products does not imply recommendation or
approval.

This level of integration means that environmental GIS
users can benefit from the rapidity of RS data acquisition
at a variety of spatial scales. Such data includes estimates
of variables such as leaf area index (LAI), NDVI, land
cover classification, soil moisture content and others, as
well as topography in the form of DEMs derived whether
by stereoscopic viewing in the optical wavelengths (e.g.
ASTER) or from synthetic aperture radar (SAR) interfer-
ometry. Such information is essential if decision support
systems are to be developed operationally. For example,
SAR sensors are weather independent and so are of great
use in monitoring flood extent when ground survey is
impossible and optical sensors are not useable because
of cloud cover. On the other hand, RS scientists can use
DEMs, forestry stock maps, hydrological network maps
and suchlike to help them to extract better-quality infor-
mation from remotely-sensed images.

The remainder of this chapter is devoted to a summary
of GIS attributes from the point of view of RS, together
with examples of real applications using RS and environ-
mental GIS in a complementary and synergistic fashion.

10.2 Data Models, Data Structures
and File Formats

10.2.1 Spatial Data Models

There are many types of GIS, just as there are many
types of image products, and in this section we explore
the criteria that can be used to classify GIS. The clas-
sification presented here does not take into account the
use to which GIS can be put, though we do point out the
advantages and disadvantages of certain types of GIS for
particular applications. The first criterion for classifying
GIS is the nature of the underlying data model . A model
is a simplified representation of reality, and there can be
several different models of the same phenomenon. Just as
there are two models of electromagnetic energy (the wave
theory and the corpuscular theory), so there are two basic
views of (or models of) the external world from a GIS
point of view. We are careful to avoid defining what con-
stitutes the external world, and accept the empirical view
that the world is what we see, hear, touch and smell. The
two basic views are called the raster and vector models.
A model is in this context defined as a simplified view of
reality. Remotely-sensed data are an example of the raster
representation of reality (Figure 3.1). Raster data consist
of an array of rectangular pixels arranged in columns and
rows. This arrangement is an example of a tessellation;
we could use, for example an array of hexagons. While
some theoretical geographers might prefer the hexagonal
tessellation for technical reasons, the use of rectangular
(preferably square) pixels makes the data easier to manip-
ulate by computer. Each cell or pixel in the raster model
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contains a number, usually in the range 0–255, which
is an encoding of a single property of space at that pixel
position. For example, eight categories of land cover may
be represented by the numbers 1–8.

The second model of the external world is provided
by the vector representation, in which the world is
considered to be composed of spatial entities which
are described by points (zero dimensional), lines (one
dimensional) and areas (two dimensional) (Figure 10.2).
What is or is not a point depends on the scale of the
map. We define a point as a spatial entity of zero dimen-
sionality at the map scale being used. A line joins two
points by a straight segment. Lines have the topological
property of connectivity. Polylines consist of a chained
sequential linkage of lines. Areas are two dimensional
spatial entities which are enclosed by lines, and have
the topological property of contiguity or adjacency.
In this context, the term ‘topology’ is understood to
mean geometric relationships such as connectivity and
contiguity that are not affected by transforms of the
coordinate system. Thus, the United States will be ‘next
to’ Canada irrespective of map projection.

10.2.2 Data Structures

Figure 10.3 shows three polygons, each formed of
areas surrounded by lines that connect points. While
the vector data model tells you that vector data define
these spatial entities, it does not tell you how the
model is implemented. In this section we consider three
vector data structures that implement the vector data
model. The first is topological, the second unordered

Point

Line or Arc

Polyline

Polygon or
Area

Figure 10.2 Vector spatial entities. The simplest such entity
is the point (top). A line is formed by joining two points, while
a polyline consists of several lines. An area entity is enclosed
by several linked lines.

Polygon 3

a

d c

b

e

f

Polygon 1
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1
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Figure 10.3 Spatial data on which Tables 10.1a–c are
based. Table 10.1 shows the data for Polygon 1. Nodes
are shown with character labels (a–f) and lines are numbered
in red (1–6).

and the third is the TIN. The topological model is
illustrated using the polygons shown in Figure 10.3.
The three tables (Table 10.1a–c) can be used to extract
the coordinates of the lines forming the boundaries of
polygon 1 in Figure 10.3. The topological properties of
these polygons are given by the labels of the polygons
to the right and left of polygon 1, thus enabling queries
relating to contiguity. The connectivity of lines can be
ascertained from the coordinates of their start and end
points, thus enabling queries concerned with which lines
are joined to other lines.

A less useful vector data structure is called a spaghetti
or unordered structure. It is, in fact, the lack of a struc-
ture. The individual areas (such as drainage basins or
catchments), lines (representing features such as rivers)
or points (such as well locations) are digitized in a ran-
dom order so that the boundaries between areas may be
digitized twice. This can cause a lot of trouble for the
user, and it is rarely used in an operational GIS context,
though it could be used for drawing maps and diagrams,
where attributes of the points, lines, circles and other
features are of no immediate significance.

Another way of representing continuous surfaces in
vector form is the TIN, in which the surface is stored as
a set of triangles, with nodes, arcs and triangles, which are
equivalent to the polygons of the (point, line, polygon)
structure (Figure 10.4). The data points form the ver-
tices of triangles which are as near-equilateral as possible.
There are several methods of triangulation, the preferred
one being the Delauney method (McCullagh, 1988). TINs
are used to store height data for a topographic surface,
such as the Lidar data points used to generate a DEM
(Section 9.4). Contours can be interpolated through the
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Table 10.1 Data structure used to store coordinate and topological data for polygon 1 in Figure 10.3.

(a)

Point ID x y

A 150 175

B 200 165

C 185 120

D 140 110

E 100 130

F 105 170

(b)

Line ID Start point End point

1 a B

2 b C

3 c D

4 d E

5 e F

6 f a

(c)

Polygon Boundary ID of polygon ID of polygon

ID line ID on left on right

1 1 3 1

1 2 3 1

1 3 0 1

1 4 2 1

1 5 2 1

1 6 0 1

−999 −999 −999 −999

2 4 1 2

(a) Point coordinate table. Point identifiers are listed in column 1 and their (x, y) coordinates are listed in columns 2 and 3, respectively.
(b) Line definition table. The line identifier is specified in column 1 and its start and end points (nodes) are listed in columns 2 and 3. The
coordinates of the start and end points are read from the point coordinate table. (c) Polygon definition table. Column 1 contains the polygon
ID, with −999 being a flag, meaning ‘end of data for this polygon’. Column 2 contains the number of the line forming part of the polygon
boundary, arranged so that line 1 joins line 2 at a node, then line 2 joins line 3 at a second node, and so on. Column 3 contains the ID of
the polygon to the left of the boundary line, moving clockwise, while column 4 contains the ID of the polygon to the right of the boundary
line. Strictly speaking, column 4 is not necessary as it will always be the ID of the polygon being defined, but it is included here for the sake
of clarity. A ‘−999’ flag in the four elements of a row means: ‘End of this polygon definition’. See Figure 10.3.

triangles, as the data points are associated with elevations,
and a DEM can be generated from the contours.

The vector data structure described in Figure 10.3
and Table 10.1 uses (x, y) coordinate pairs to fix the
position of points (and hence lines and polygons). These
coordinates are almost always defined by a map projec-
tion such as Universal Transverse Mercator, Mollweide
or Lambertian. Fenna (2006), Grafarend and Krumm
(2006) and Snyder (1982) contain more information
about map projections.

Two common raster structures are discussed here.
One is the flat file, in which the raster is stored row by
row. The second is the quadtree. The flat file approach
uses a great deal of computer memory, yet it is intuitive
and simple. Since the raster data model does not define
spatial data entities, concepts such as ‘next to’ are not

possible. Nor are explicit location coordinates required
by the raster data model. In the case of rectangular
pixels, the location is computed from the coordinates of
the origin of the grid (usually the top left corner) and the
grid spacing. While the raster model is not as versatile
as the vector model in terms of defining spatial objects
and their relationships, it does allow the use of overlay
operations which are of great value in environmental
GIS. The use of overlay operations is discussed in
Section 10.3.2.

Memory requirements are not as pressing as they once
were, so the inefficiencies of the flat file structure in
terms of storage capacity are more tolerable. However,
there is a rather elegant alternative, called the quadtree
structure, which is illustrated in Figure 10.5 and described
by Mather (1991) and Bonham-Carter (1994). The raster



Environmental Geographical Information Systems: A Remote Sensing Perspective 331

Figure 10.4 A triangulated irregular network (TIN) data struc-
ture. The data points are shown by yellow dots. The red lines
show the Delauney triangulation pattern. Based on Figure 2.8
of Bonham-Carter (1994), Geographic Information Systems for
Geosciences. c© Elsevier (2011).

0 1

2 3
0 1

2 3
0 1

2 3

Figure 10.5 Quadtree data structure for storing raster data.
See Figure 3.9 and refer to text for explanation.

is firstly divided into quarters, and a check is made to see
if the pixel values in each of the quarters are equal. If this
is the case, then that quarter is not subdivided any further.
Quarters that are heterogeneous are divided into subquar-
ters, which are again labelled. Subdivision continues until
the sub (sub-) quarters are internally homogeneous or
until the individual pixel level is reached. Each entity
in the quadtree is represented by the combination of the
labels given at each level of splitting. The mechanics of
this operation are quite simple, and the result is a list of
labels corresponding to the final subdivision. The labels
are generated by an ingenious method that produces what
are called Morton numbers. The quadtree structure, in
computer terms, consists of a list of Morton numbers,
one for each terminal area in the splitting process. The
outcome is a data structure that has large pixels where
the data are homogeneous and small pixels where varia-
tion in the phenomenon being represented is greater. For
example, a flat file representation of a classified image
(Chapter 8) stores one label per pixel while the quadtree
will store one label for each homogeneous area. Not only
does this save storage space, but it also allows the execu-
tion of overlay-type operations (Section 10.3.2) without

unpacking. The downside is that the raster must have
dimensions equal to a power of 2 (though padding with
zeros can be used) and changes in any pixel value require
the recalculation of the entire quadtree.

10.2.3 File Formats

The data structures described in the preceding section
represent the logical ordering of spatial data in order to
meet a given set of specifications. In the case of the vector
topological structure, information corresponding to that
structure is held in three files, as shown in Table 10.1a–c.
In other cases, no hint is provided about how to store
the structured data. For example, a flat raster file could
be stored as (i) a sequence of k data layers, each with
n lines of p pixels, where n and p are the dimensions
of the raster, with line by line values for layer 1 being
followed by line by line values for layer 2, and so on
or (ii) a sequence of k × n × p pixels, with pixel 1 for
layers 1 − k being followed by the k values for pixel 2,
and so on or (iii) as line 1 of band 1 followed by line
1 of band 2, to line n of band n (Figure 3.8). The first
format is called band sequential. The pixel by pixel for-
mat is called band interleaved by pixel (BIP), while the
third format is known as band interleaved by line (BIL).
As the discussion in Section 3.2 demonstrates, there are
many formats for GIS and RS data files. The lowest com-
mon denominator file format is used for data that has
to be moved between processing systems. For example,
lidar data is often stored as an ASCII file with one row
per data point, and with each row containing the (x, y)

coordinates of that data point plus lidar reflectance val-
ues such as first return and last return (Section 9.4). This
format can be read by most GIS/RS software. The num-
ber of GIS data formats is also considerable; the main
ones are ArcView shapefiles, ARC/interchange format
(INFO), Autocad drawing exchange format (DXF), Inter-
graph DGN (Design) format and the USGS digital line
graph (DLG) format. There have been attempts to define
standard formats but as yet none has been universally
adopted. Progress is being made, however, through the
work of the Open Geospatial Consortium (OGC), Inc., the
Committee on Earth Observation Satellites (CEOS), has
produced standard formats which are used, for example to
distribute Radarsat data. Importing data into a GIS is one
of the first problems faced by a user, and is often a time-
consuming and frustrating activity, especially when the
data import function reads the imported file selectively.

10.2.4 Raster to Vector and Vector
to Raster Conversion

Environmental GIS use a variety of data, in both raster
and vector form. Examples are: use of a DEM derived



332 Computer Processing of Remotely-Sensed Images: An Introduction

from a contour map (vector) to perform a Minnaert
correction on a multispectral image (raster), or the use of
a vector DEM to correct an image for topographic dis-
tortion. Classified images contain polygon information in
raster form and the user may wish to convert this raster
map into vector form to integrate it with other data, for
example soil or lithological vector layers. At one time,
the decision to choose raster or vector GIS was taken
at an early stage in the planning for GIS acquisition
and, once one data model was selected, that was that.
Since those days, considerable progress has been made
in converting from one data model to the other. The
most widely used RS software packages, ERDAS, ENVI
and SOCET GXP offer raster to vector and vector to
raster conversion as part of their repositioning strategy
to become geospatial data analysis systems rather than
simply RS data processors.

Two examples will serve to illustrate the process. The
first example concerns the conversion of a contour map
to raster form. This operation can be treated as a line-
following problem. A raster grid of a suitable spatial
resolution is placed over the map and the software follows
each contour in turn and writes its value (e.g. in metres
above mean sea level) into the corresponding grid cell
of the raster. Values for empty cells are then interpolated
(see Section 10.5.1). Difficulties arise where the contours
merge to form cliffs, or where the selected cell size is
too large or too small relative to the scale of the contour
map. In the latter case, several contours could be mapped
into one cell whereas in the second case the size of the
raster output would be inordinately large. Note that the
conversion uses a map showing only contour lines. One
would not try to digitize contours from an Ordnance Sur-
vey or USGS topographic map. Where vector data are to
be converted to a gridded, raster, form then various meth-
ods of interpolation can be used to estimate the values of
the surface from the data points. Methods based on dis-
tance, geostatistics and TIN are discussed in a little more
detail in Section 10.2.2. Bonham-Carter (1994) is a useful
introduction to the topic of point-to-area conversions.

The second example shows how raster data can be
converted to vector form. A classified image (Chapter 8)
of an agricultural area consists of groups of similarly
labelled pixels forming a pattern of fields (e.g. ‘1’ may
indicate grassland, ‘2’ bare soil, and so on). These images
may be obtained from a per-pixel or a per-field (object-
oriented) algorithm. The classified image may in fact
be the outcome of a per-field classifier that used vec-
tor map data to define the fields or objects. A suitable
scale for mapping the raster data onto a vector model
must be selected, and then a line-following procedure
is used to determine the vector map coordinates of a
pixel lying on a field boundary. Each line is converted
only once, and – once completed – the vector lines are

grouped to form polygons before topological information
is computed. Raster to vector conversion is inherently
more complex than vector to raster because of the need
to add topological information to the model.

10.3 Geodata Processing

10.3.1 Buffering

The buffering operation involves the delineation of a zone
of a given width on one or both sides of the arcs forming
a network or a boundary, or surrounding a point. Buffered
areas may be excluded from analysis or may be the focus
of a study. Examples of buffers are: noise thresholds to
either side of a major road, areas irrigated by sprinkler
systems, river flood plains or green corridors in urban
areas that allow animals to move around.

The use of spatial buffers is a possible way of
increasing RS classification accuracy in rural areas. If
we define a buffer of, say, 30 m extent on either side of
a field boundary data layer and then use that buffer to
mask the image data set being classified, then headlands,
hedgerows and other boundary phenomena will be
removed leaving only the crop growing area. If the use
of training data from within the buffer area is avoided
then class characterization is improved and accuracy
is increased.

10.3.2 Overlay

We have already described two data models inherent
in GIS, that is raster and vector (Section 10.2.1). Now
another model is presented: it represents the observed
world as a set of overlays. This overlay model is shown
in Figure 10.6.

Raster overlays can be combined using logical opera-
tors AND, NOT and OR. For example, one could write
the rule: IF land_cover == forest AND elevation >400 m
THEN output 0 ELSE output 1.2 If the vector layers
were converted to raster form and if the operation was
applied to each pixel in turn, this rule would produce a
derived raster map that had a specified numerical label
(for example ‘0’) in those cells which are covered by
forest and have an altitude of more than 400 m with ‘1’s
elsewhere. The capitalized word AND in the rule is a
logical operator. Other logical operators are IF, THEN,
ELSE and NOT. The lower-case words are the names
of specific overlays and the italicized words are com-
mands. Logical operators are sometimes called Boolean
operators after George Boole (1815–1864), Professor of
Mathematics at what is now University College, Cork,

2== means ‘logically equal to’.
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Figure 10.6 Modelling the real world as a series of vector
and raster overlays.

in southern Ireland. Often Boolean operators are asso-
ciated with the arithmetical operators > (greater than),
< (less than), ≤ (less than or equal to), ≥ (greater than
or equal to), = (equal to) and �= (not equal to). These log-
ical and arithmetic operators can be combined to select
specific geographical areas with defined properties, using
one or more overlays. Thus, one may use a data layer
containing slope angle values for each pixel and extract
from that layer all those values lying in a specified range.
For example, if there are n bands of multispectral infor-
mation and if the user wishes to topographically correct
these layers using a Minnaert function (Section 4.7) then
one might create a query of the kind ‘if slope_angle >0
then {perform Minnaert correction}’.

In the example just given, all overlays are given
equal status. However, overlays can be weighted using
either objective or subjective criteria. On the basis of
statistical analysis, subject matter knowledge or inspired
guesswork, one could generate a new layer from an
arithmetic and/or logical combination of various selected
layers. If one wishes to predict the probability of
landslides occurring then one might take the data layers
slope angle, maximum hourly rainfall, soil type and
slope length, and combine these into a pseudoequation
of the form Landslide Probability = 2.5*slope angle +
3.0*maximum hourly rainfall+ 1.5*soil type + 0.9*slope
length . Applying this formula to each pixel in the raster
data layer generates an array of numbers representing
landslide probability, which can be assigned to classes
‘high probability’, ‘moderate probability’ and ‘low prob-
ability’. This kind of analysis depends on the expertise
of the user. It is known as multicriteria decision analysis
(MCDA), and is described by Beinat and Nijkamp
(1998), Hill et al. (2005), McCloy (2006), Malczewski
(1999), Mendoza and Martins (2006) and Pettit et al.
(2008). The method assumes that the criteria (layers,
such as slope angle) are all standardized to the same
range or measured on the same scale otherwise a vari-
able with a range of, say, 0–90 would overwhelmingly
influence the outcome if all other variables are measured

on a 0–1 scale. Continuous variables could be scaled
to z-scores (mean of zero and variance of 1) but it is
difficult to scale a categorical variable such as soil type.
If this type of variable is encountered it is probably best
to scale continuous variables to a 0–100 range, and to
scale categorical variables so that the lowest is 0 and the
highest is 100. For example, with soil type initially being
one of {1, 2, 3} then the rescaled soil types could be 0,
50 and 100. The weights must also be scaled so that they
sum to 1.0. This is to ensure that the output layer is on
the same scale as (i.e. comparable to) the input layers.
Constraints can be added to the analysis, and these can
be expressed as layers containing ‘1’ (permitted) and ‘0’
(not permitted). Thus, a user may say that annual average
rainfall is a criterion to be used in MCDA but that areas
with a mean annual rainfall of more than 150 cm can be
ruled out. One way of achieving this goal is to compute
the MCDA as before. Then, if a new data layer, called
mean_annual_rainfall , is generated in which we code
areas with mean annual rainfall greater than 150 cm as ‘1’
and those of 150 cm or less as ‘0’, then a Boolean overlay
procedure can be used with the criteria ‘(slope_angle
> 5 AND (mean_annual_rainfall == 0)’. The Achilles
heel of the procedure is the choice of weights.

10.4 Locational Analysis

Locational operations are those which use the properties
of the neighbourhood of a pixel. These include the
estimation of variables such as slope and aspect, and
GIS operations based on proximity and connectivity.
Each of these topics is dealt with briefly in the following
subsections.

10.4.1 Slope and Aspect

Maps of continuous variables or properties can be
produced by using neighbourhood operations , a subset
of which determine the rate of change of, for example
elevation or surface flow, using the values of pixels
adjacent to the point of interest to calculate the direction
and magnitude of the particular pixel value in question
(e.g. slope of a DEM, or flow gradient and amount).
The slope map can then be subdivided into classes
representing steep, moderate and gentle slope categories
using a logical operation of the form described above
(Section 10.3.2). Regrouping or separating categories
or features before overlaying them with other map
layers (e.g. slope and lineament maps) simplifies the
interpretation process. Errors in the DEM from which
slope and aspect are calculated will lead to errors in
slope and aspect. As we saw in Section 9.3.2.1, the
computation of derivatives is very sensitive to error.
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The use of measurements of rates of change of a
continuous variable such as rainfall or elevation is akin
to the use of first derivatives, a topic which is dealt with
elsewhere (Section 9.3.2.1). A number of studies have
been published on methods of calculation of and errors
in the derivation of slope and aspect values from raster
DEMs, including Bolstad and Stowe (1994), Fisher
(1998), Hutchinson (2008), Jones (1998), Oksanen and
Sarjakoski (2005), and Zhou and Liu (2004). Hodgson
and Bresnahan (2004) discuss errors in DEM elevation
derived from lidar data (Section 9.4). Hirano, Welch and
Lang (2003) report on the accuracy of DEM derived
from ASTER data (Section 2.3.8; Figure 2.12). Bubenzer
and Bolten (2008) compare the use of shuttle radar
topographic mission (SRTM) interferometrically-derived
DEM (Section 9.2) with ASTER stereo DEM (Section
2.3.8) for geomorphological mapping of sand dunes.
Zevenbergen and Thorne (1987) consider the quantitative
analysis of land surface properties and Barnsley (2007)
discusses their methods and provides a program to
perform the calculations.

The different methods of DEM creation (i.e. gridded
DEM, TIN and vector contour-based models) and the
effects of choice of technique on hydrological modelling
results are discussed by Wise (2007). The use of lidar-
generated DEMs in mapping and extracting geomorpho-
logical information is demonstrated by van Asselen and
Seijmonsbergen (2006). A lucid introduction to the use
of DEM in environmental modelling is Barnsley (2007),
who provides examples and instructions for coding mod-
els and displaying their outputs. Many aspects of DEM
creation and use are contained in the volume edited by
Maune (2001). Trauth et al. (2007) contains MATLAB
code for DEM analysis.

10.4.2 Proximity Analysis

Proximity analysis refers to relative location, which is the
property of nearness to something. In GIS operations it
is often useful to find areas that are near to a point or
to a line. For instance, if the user is interested in know-
ing the relationship between successful water production
wells and a particular fault or fracture zone, a proximity
analysis would help to locate such areas. Furthermore,
the well production rate could be related to the nature
of the fracture (i.e. type, length and interconnectivity
of fracture).

Proximity analysis can also be applied to networks.
The concept of nearness may relate either to spatial dis-
tance, measured in a straight line or along the links of
the network, or it may refer to other concepts such as
water flow amount through a network. If the total distance
of water travelling through a network is known as well
as the losses and gains of water through that trajectory,

then the total amount of water reaching the outlet can be
calculated. Napieralski, Li and Harbor (2006) report on
the use of proximity and conformity analysis in the study
of geological boundaries.

10.4.3 Contiguity and Connectivity

Contiguity analysis is similar to proximity analysis in
that it asks questions such as ‘where in the study area is
rock type A adjacent to rock type B?’ whereas proximity
analysis asks questions about the spatial relationships
that occur within a specified distance rather than next to
a certain object. Contiguity analysis requires that the data
are topologically structured so that each representation
of a geographical object (point, line, area; Section
10.2.2; Table 10.1) within the GIS database contains
information not only on location (geometry) but also on
contiguity (topology). Contiguity is sometimes used as
a constraint, as in spatial cluster analysis using nearest
neighbour (k-means clustering; Section 8.4.2.2) where
the rule ‘find the pair of data patterns (pixel vectors)
that are closest together in Euclidean feature space AND
are spatially contiguous’ could be used to build up a
pattern of regions. This approach, of course, makes
spatial contiguity the key variable.

In the case of networks, contiguity translates into
connectivity so that questions can be asked about the
pathways through a network. The question ‘which
fracture connects to which fracture’ would give the
total fracture volume of a lineament network cluster
(assuming fractures have equal widths and depths). If
an average fracture aperture values is assumed (based
on type and length of each interconnected lineament)
then the groundwater-holding capacity of that particular
fracture network can be calculated. Contiguity analysis
can also be applied to point patterns. A Boolean
overlay would reveal whether the spatial point pattern
of high yielding water wells is associated with certain
rock type(s). Point patterns are considered further in
Section 10.5.1. One specific use of connectivity is the
derivation of river network patterns from a DEM. This
can be a more complicated procedure than one might
think, because rivers flow downhill and a continuous
downstream path may not be represented in the DEM
by a continuous down-slope path due to errors. Places
represented by apparent uphill flow may be lakes or they
may be errors. The use of connectivity analysis using
DEM to derive river patterns (and much more beside) is
covered by Maidment (2002). Contributors to this vol-
ume discuss the use of the Arc Hydro module, in water
resources applications. Maidment, Robayo and Merwade
(2005) explicitly discuss hydrological modelling. Brier-
ley, Fryirs and Jain (2006) address issues relating to
landscape connectivity and geomorphic applications.
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Another application of connectivity analysis is to deter-
mine the connectivity of patches in the landscape that
might, for instance, provide specific habitats for plants
and animals (Nikolakaki, 2004; Schumaker, 1996). One
everyday application of network connectivity is in in-car
navigation, which is reliant on accurate road maps and an
algorithm for finding the shortest/fastest/most economical
route between two points. The shortest route problem is
described by Dantzig (1960). A more elaborate version
of the problem is known as the travelling salesman prob-
lem (Kruskal, 1956) and involves visiting all nodes in a
network in the shortest time or in the shortest distance.

10.5 Spatial Analysis

Spatial analysis (or geospatial analysis) is usually defined
as the application of numerical (statistical or mathemat-
ical) procedures to data that have location coordinates.
The analysis may relate to the pattern of the spatial enti-
ties (points, lines or polygons) or to the values associated
with those points, lines or polygons. In a raster model,
spatial analysis would refer to patterns and covariations
in pixel values of one or more data layer. Topics include
network analysis, point pattern analysis, trend analysis,
spatial interpolation, sampling and exploratory data anal-
ysis. For example, we may have a sample pattern of
points representing wells and wish to ascertain the prob-
ability of the observed sample point pattern occurring by
chance when the true but unknown population pattern is
uncorrelated or random. The alternative hypothesis is that
there is some systematic process that is influencing the
point pattern, for example lithology. Another example
is the compression of data layers measured over a set
of polygons, using a technique such as principal com-
ponents analysis (PCA) (Section 6.4). A third example is
the derivation of a statistical relationship between a set of
sample field measurements and corresponding values or
combinations of values in a remotely-sensed dataset, so
that this relationship might be applied to the dataset as a
whole. This kind of analysis is often performed when the
values of a geophysical or biophysical parameter is to be
determined from remotely-sensed imagery. Examples of
the latter might include the determination of soil moisture
status from microwave images or the derivation of LAI
values from combinations (such as ratios) of remotely-
sensed data.

The material in this section is derived from a number
of sources, including Atkinson and Lloyd (2009) on
geostatistics and spatial interpolation, and the texts on
geospatial analysis by de Smith, Goodchild and Longley
(2007), Fortin and Dale (2005), Fotheringham, Brundson
and Charlton (2000), Fotheringham and Rogerson
(2009), Haining (2003) and O’Sullivan and Unwin

(2003). Anselin, Syabri and Kho (2006) describe GeoDa,
a free software package for spatial analysis.

10.5.1 Point Patterns and Interpolation

Spatial analysis of point patterns, the first of the three
examples in the preceding paragraph, encompasses a
number of applications in geography. The example
above relates to the statistical hypothesis that a point
pattern is random, that is there are no systematic
processes at work. Two instances of the potential use
of point pattern analysis in environmental GIS are: (i)
the analysis of patterns of sample data points used in
calibrating field measurements against remotely-sensed
data and (ii) the analysis of locations of ground control
points used in geometric correction of remotely-sensed
images (Section 4.3). In both cases, a random pattern
is desirable. Texts such as Ripley (1981) should be
consulted to discover methods of determining the nature
of point patterns, which are generally described by the
terms clustered, uniform and random. Random sampling
patterns are generally preferred, but – in cases where
the study area is subdivided into separate regions – a
stratified random sample may be preferable. The paper
on two-dimensional systematic sampling of land use
by Dunn and Harrison (1993) covers spatial aspects of
sampling. Moisen, Edwards and Cutler (1994) deal with
spatial sampling for assessing classification accuracy
(Section 8.10).

If the points represent sampling locations where the
value of a random variable such as soil moisture content
or surface temperature has been measured then one may
wish to interpolate estimated values for all the cells
of a grid, so that the ground sample can be related to
values estimated from remotely-sensed data. One way
of achieving this aim is to fit a low-order least-squares
polynomial (a trend surface) to the data, and read off
the desired values. Computationally, this procedure
is similar to the process of geometric correction of
remotely-sensed imagery using least-squares methods,
described in Chapter 4, whereas the derivation of the
grid cell values is akin to resampling, also dealt with in
Chapter 4. A low-order, two-dimensional polynomial is
computed from the set of point locations (x, y) and the
point value (z). Usually a polynomial order of 4 or less
is used. The procedure attempts to differentiate between
patterns of systematic spatial variation and patterns that
are generated by random or local processes. Figure 10.7a
shows a second-order trend surface for the average annual
rainfall collected at 42 points (rain gauges) near Not-
tingham. Figure 10.7b shows the pattern of residuals or
deviations of the measured values from the trend surface.
Figure 10.7c shows a visualization of the trend surface.
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Figure 10.7 (a) Least squares estimation of a second order least squares polynomial surface from a set of points (shown by
numbered black dots). The points actually represent rain gauges located to the north and south of the Trent valley around
Nottingham. (b) Residuals from the trend surface. Estimated values are computed at each of the sample points and interpolated
onto a grid using an inverse distance weighted procedure and (c) visualization of the trend surface. The x and y axes show
geographic position. The z axis is mean annual rainfall (millimetres).

Other interpolation methods include inverse distance
weighted interpolation and kriging. Inverse distance
weighted interpolation takes a set of point values
(e.g. the black dots representing rainfall stations in
Figure 10.7a, b) and computes an estimate for each cell
in the grid, with a weight that is inversely proportional
to the distance from the point to be interpolated and
the known point (Bonham-Carter, 1994; Lu and Wong,
2008). If ẑi is the value to be interpolated, wi is the

weight for the ith known data point, n is the number
of data points and zi is any data point other than the
interpolated point, then

ẑi =
∑n

1 wizi∑n
1 zi

The weights are usually set to be the reciprocal of
some power, usually 2, of the distance from the inter-
polation point to its neighbours. A circular zone around
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the interpolation point can be specified so that only those
points within the circle have an influence on the inter-
polated value. inverse distance weighting (IDW) is the
simplest interpolator, and one that is incorporated into a
number of GIS. However, the surface produced by IDW
does not honour (i.e. pass through) all of the known data
points. Also, the values of the weights are user-selected
and different weights will give different surfaces.

An alternative is based on geostatistical methods
known as kriging, in which the weights are proportional
both to distance and the directional correlation between
the data points (here, the words directional correlation
are used to mean the correlation in a specific direction,
such as north). Atkinson and Lloyd (2009) and Bonham-
Carter (1994) consider the problem of interpolation from
the point of view of geostatistics. The basic equation for
the kriging procedure is very similar, superficially, to
the IDW method:

ẑi =
n∑

i=1

wizi

where the parameters have the same meaning as in the
IDW example. The weights are defined by the reciprocals
of the distances from the data points to the points being
estimated, written in vector form as d (= di, i = 1, n)

and by the matrix C of spatial correlations between n

pairs of points, where n is the number of data points
(Bonham-Carter, 1994). An autocorrelation factor, µ, is
also involved. The use of spatial correlations ensures that
the estimated value will be in the same range as the
measured data points. Fisher (1998) uses geostatistics
to estimate elevation error, Robertson (1987) describes
geostatistical methods of interpolation in ecology, while
other useful references are Oliver and Webster (1990),
Goovaerts (1999) and Webster and Oliver (2007). Trauth
et al. (2007) contains MATLAB code and discussion of
geostatistics and other geoscience techniques. Pebesma
and Wesseling (1998) give details of a geostatistical soft-
ware library, GSTAT.

Interpolation from a point pattern onto a grid can also
be accomplished by the use of triangulation methods
or TINs (see Section 10.2.4). The Delaunay method is
the most popular, as the triangles it generates are as
near equilateral as possible. Values associated with points
lying within, on the boundaries of, or at the nodes or ver-
tices of individual triangles can be interpolated from the
values at the three vertices. One advantage of the method
is that the resulting surface passes through the data points
exactly. The initial result can appear irregular, and so
smoothing using a low-pass filter can be performed to
blur or smear the result. Further details of the Delaunay
triangulation method are given by Bonham-Carter (1994),
Worboys and Duckham (2004) and de Smith, Goodchild
and Longley (2007).

10.5.2 Relating Field and Remotely-Sensed
Measurements: Statistical Analysis

One of the oldest and most widely used methods of spatial
analysis is regression analysis, which is used to estab-
lish a relationship between selected spectral bands of a
remotely-sensed image set and a geophysical or biophys-
ical variable. An example of a geophysical variable is
soil moisture content. An example of a biophysical vari-
able is LAI. Neither soil moisture content nor LAI can be
measured directly by the instruments carried by aircraft
or satellites, so regression analysis is used to establish
a relationship between the few and expensive ground
measurements of soil moisture content or LAI and the
pixel values in multispectral imagery in which the sample
points lie. The relationship is of the form:

y = β0 + β1x1 + β2x2 + β3x3 + ε

where y is known as the dependent variable as its value
depends on the values of the explanatory variables x1, x2

and x3. The model can handle any number of explana-
tory variables; the three x values used here could be the
values of pixels in a SPOT multispectral image. The beta
values are coefficients or weights, the values of which are
to be estimated from the data, and ε is the error. More
specifically, y is a difficult or expensive to measure vari-
able such as LAI, and the x variables are cheap or easily
obtained measurements, such as SPOT HRV bands 1–3,
that are correlated with y. If we obtain a sample of y val-
ues and read the corresponding SPOT pixel values from
the relevant image then we can calculate sample esti-
mates of the βi using standard formulae (O’Sullivan and
Unwin, 2003; Mather, 1976). Note that we calculate esti-
mates of βi not the βi themselves. The quality of these
estimates can be obtained from formulae involving the
magnitude of ε, the error term, which is a measure of the
goodness of fit of the regression line. Statistical tests are
available to assess the goodness of fit of the line. These
tests assume that (i) the y values follow a Normal or
Gaussian distribution, (ii) that the x values are fixed val-
ues and do not have a probability distribution and (iii) the
sample size is adequate – usually a value of 30 or more
is considered large. If the sample size is inadequate then
the error term can become large and the goodness of fit of
the data to the model can be inadequate. Given field mea-
surements of LAI or soil moisture content or any difficult
to measure geo- or biogeophysical property, estimates of
their can be obtained from regression analysis, and the
result interpolated to every pixel in a raster image data
layer using one of the methods described in the preced-
ing section to produce a new, derived, data layer. Care
should be taken to acknowledge the error present in the
results, especially for small sample sizes. Estimates of
bio- and geophysical properties are often derived in this
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way and provide inputs to geomorphological, hydrolog-
ical and atmospheric models (Chuvieco, 2008; Steffen
et al., 2005).

10.5.3 Exploratory Data Analysis and Data Mining

Other widely used forms of mathematical and statistical
analysis can be grouped together under the general
heading of exploratory data analysis, also known as data
mining. Data mining is a kind of search for meaningful
patterns, trends and anomalies (Witten and Frank,
2005) in large datasets. Data mining includes clustering,
neural nets and decision trees, which are mentioned
in Chapter 8, under the heading ‘classification’, while
PCA is described in Chapter 6. Other methods that
can be used to discover patterns within large datasets
are those which project an n-dimensional pattern onto
a subspace of two or three dimensions, for visual
analysis. These methods can be lumped together under
the heading of ordination techniques, and they include
principal coordinates analysis, and Sammon’s non-linear
mapping (NLM) method. The latter method is described
in Section 8.5.1 in connection with the selection of
end-members in linear mixture modelling.

All of these techniques can be considered to have the
aim of extracting structure or pattern from data. As such
they have found widespread application in a range of
disciplines, such as chemoinformatics (Leach and Gillet,
2007) and biosciences (Fielding, 2007). Other references
are: Lee and Verleysen (2007), Han and Kamber (2006),
Mitra and Acharva (2003) and Abonyi and Feil (2007),
as well as that old but still readable text, Mather (1976).

As Grey notes in his preface to Witten and Frank
(2005), data mining has made ‘stunning progress’ through
the coming together of statistics, machine learning, infor-
mation theory and computing. Old friends like PCA and
unsupervised classification (clustering) are present as well
as relatively new ones like decision trees, artificial neural
networks, fuzzy methods and Bayesian networks. Given
the growth in digital observations of the Earth’s environ-
ment, a data mining approach will be necessary in order
to extract patterns from the contents of large and perhaps
disparate databases. This is an area ripe for exploitation.

10.6 Environmental Modelling

In a scientific context, the word model means a simpli-
fied representation of reality. It represents the modeller’s
view of reality in terms of the objects that are interesting
and the processes that are important. It can be the expres-
sion of a theory or hypothesis, or an attempt to explain
how and why certain features of the Earth’s surface come
to exist. Models are necessarily selective and identify

important objects, processes and relationships. One of
the most interesting ways of looking at dynamic mod-
els is by treating them as models of open systems, which
are made up of a related set of phenomena together with
the relationships between them. Open systems exchange
energy and material with other systems, and have inputs
and outputs as well as internal connections, flows and
storages of energy and matter.

Modelling requires a good understanding of the sys-
tem that is being modelled, and it incorporates several
steps (Barnsley, 2007; Figure 10.8). The first of these
is the definition of the problem in precise terms. The
problem should be amenable to solution at an appro-
priate spatial scale, and the detailed knowledge required
to make the solution practicable should be available or,
in the case of primary research, that knowledge should
be attainable in a reasonable time. Any datasets that are
needed should be accessible and should satisfy the spa-
tial and physical resolutions of the project. Problems can
be applications-driven, relating to a specific topic such
as biomass estimation of forests, or conjectural, that is
scientific. The problem definition should be limited to
a specific domain in time and space. A fuzzy problem
definition leads to ambiguities, gaps and possibly con-
tradictory statements. Problem definition also includes
setting of timescales, derivation of programmes of work
and the determination of funding priorities.

The second step, and the one that requires intellectual
ability and imagination as well as detailed subject-matter
knowledge, is the development of a conceptual model
that gives both an overview and a detailed description of
the model being proposed as a solution to the problem
identified at stage 1. The conceptual model defines
the model parameters and the relationships between
them in terms that can be translated into mathematical
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Figure 10.8 Steps in modelling. Based on Barnsley (2007).
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procedures. These procedures can be converted into a
set of mathematical statements, subject to assumptions
that limit the domain of the model, for example to a
particular climatic zone.

Once the model has been defined in conceptual terms it
has to be set out in a mathematical and/or statistical form.
There are several possible combinations: mathematical or
statistical, and empirical or theoretical. A mathematical
model could also be called ‘deterministic’ and a statistical
model could be described as probabilistic or stochastic.
Models can also be static or dynamic. A static model
takes inputs that specify the parameters of the model and
generate an output, whereas a dynamic model simulates
the changes in model output over time. Whatever form
the model takes, it is specified as a mathematical model
by a series of equations that link model components
(sometimes called variables such as annual rainfall) and
convert from inputs to outputs. The definition of a mathe-
matical model results in a specification that can be used to
develop tractable computer code, using either a high-level
or modelling language or a symbolic editor like ERDAS’s
Spatial Modeller. ArcGIS uses a similar interface, called
ModelBuilder (McCoy, 2004; Goodchild, 2005). DeMers
(2001) describes the use of a modelling language (PCRas-
ter), as do Wainwright and Mulligan (2005).

The PROSPECT model is a good example as it is rela-
tively simple. The model was developed by Jacquemoud
and Baret (1990) and it considers the reflectance, trans-
mittance and absorption of electromagnetic radiation in
the 400–2500 nm range using a series of equations to
control the model’s behaviour. The output is in the form
of a reflectance spectrum (Liang, 2004, Section 3.2.1).
The computer code for the PROSPECT model is avail-
able from the CD that accompanies Liang’s (2004) book,
and it is also incorporated into MIPS. Other models use
a statistical rather than a mathematical formulation of the
relationships between model components, for example
the regression model (Section 10.5.2) may be used to
establish a relationship between input data and the results
from the model. Regression analysis may also be used to
predict or estimate a difficult-to-measure variable from
an easily-measured variable. Thus, the slope of the land
surface can be measured from a DEM relatively easily,
but soil depth measurement requires fieldwork, which is
time consuming and expensive. A regression of soil depth
against DEM-derived slope could be used, if the regres-
sion relationship was a strong one, within a model of, for
instance, landslide prediction.

Sometimes a statistical model is called a stochastic
model, while a mathematical model is said to be
deterministic. Stochastic models are used whenever
there are a number of small, independent process acting;
these components cannot be identified individually
but collectively they can be accounted for by the

use of statistical relationships (between processes and
outcomes) or as random changes to model parameters.
The variance of the random changes is frequently
proportional to our ability to predict the value of the
parameter concerned. Stochastic models of hydrological
processes encompass equations that determine the values
of infiltration, runoff, overland flow, water storage and
other model parameters but they do have a certain
level of randomness in the rainfall input that drives
the model. This randomness could be considered to be
accounting for local effects such as slope, aspect and
wind direction on the amount of rain factually received
at a given site. The distinction between a hydrological
model and the PROSPECT leaf reflectance model is
that the hydrological model is dynamic whereas the leaf
reflectance model is static. A dynamic model contains
feedbacks (either positive or negative) that influence
the relationships between the processes and storages at
each model cycle. Whereas the leaf reflectance model
produces a single spectral reflectance graph, the dynamic
model may run in time steps of minutes, hours, days
or even years to produce a simulated sequence of
events. The depth of knowledge required to specify such
models is considerable. Whatever approach is adopted,
the result is a mathematical–statistical specification of
the model, with inputs, processes and outputs linked
by equations.

Once a model is built it must be calibrated and tested
using real data. Calibration refers to the selection of
parameter values in equations and specifications, while
testing refers to the running of the whole model or parts
of it and comparing the results with reality. This is the
calibration and validation stage, where model outputs
(for static models) and scenarios (for dynamic or sim-
ulation models) are compared to real-world behaviour.
It is often difficult to acquire adequate real-world data
sets that can be used to test models; for example GCMs
which are dynamic in nature may be tested on their
ability to ‘postdict’ the past rather than predict the future.
Simpler models like PROSPECT can be calibrated in
the laboratory. The goodness of fit of the model outputs
at the testing stage frequently is less than satisfactory, so
the conceptual model and its implementation in computer
code may require modification. These modifications may
be the result of gross errors, for example adding rather
than subtracting two numbers, or they may be due to the
misspecification or overlooking of relationships between
model components requiring the alteration of equations
and the recoding of one or more routines. Another
important attribute of a model is the sensitivity of the
output to changes in the values of the mathematical
and statistical parameters specified at the conceptual
stage. Sensitivity can be estimated by changing each
coefficient in turn by a small amount, and assessing the
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resultant change in model behaviour. A good model is
stable rather than sensitive.

Once the model has been calibrated and tested, it can
be evaluated by being run on new data in an operational
context. If the result is acceptable, the model can be
considered to be reliable within its specific domain of
application. The greater the number of successful uses of
a model, especially for prediction purposes, the greater its
acceptability until it becomes the basis of policy-making
or education. For example, the MIPS implementation of
the PROSPECT model can be used to ask (and answer)
the question: ‘What happens if leaf water content falls by
50%?’ The result is shown in Figure 10.9.

Modelling is an important activity in environmental
RS, and inputs from RS are routinely incorporated
into models on scales ranging from the global scale
to the regional and local. Justice et al. (1998) describe
the global data products produced by the two MODIS
instruments currently in orbit, while Zhan et al. (2002)
discuss the use of MODIS products in measuring land
cover change over time. See also Chuvieco (2008) for a
survey of RS contributions to global scale modelling.

At a more local level, remotely-sensed data has been
used in modelling of the environment, for example
habitat suitability models for identifying favourable
habitat conditions for particular species (Krivoruchko
and Gotway Crawford, 2005), wildlife management
models to help save endangered raptor species (Scally,
2006); landscape-scale habitat use (Osborne, Alonso
and Bryant, 2001); transport models for evaluating the
environmental impacts of traffic as well as planning

new infrastructures (Israelsen and Frederiksen, 2005);
and hydrological modelling or a variety of water
planning and management tasks (Maidment, Robayo
and Merwade, 2005). The use of RS and GIS in forest
fire management is considered by Chuvieco and Salas
(1996), while Brivio et al. (2002) and Townsend and
Walsh (1998) discuss the use of GIS and RS in flood
extent mapping. RS and GIS contributions to monitoring
natural disasters are spelled out by Tralli et al. (2005).
Paylor, Evans and Tralli (2005) edit a special issue of
ISPRS Journal of Photogrammetry and Remote Sensing
on the theme of ‘RS and geospatial information for
natural hazards characterization’. Other useful references
are Brimicombe (2010), Gillespie et al. (2007), Paegelow
and Camacho Olmedo (2008), Schumann et al. (2007),
Skidmore (2002) and Wainwright and Mulligan (2005).
DeFries and Los (1999) and Bounoua, Masek and Tourre
(2006) discuss the use of land cover classification maps
produced from remotely-sensed data and demonstrate the
substantial errors that occur when the maps are upscaled
from 1 to 100 km2.

10.7 Visualization

In a scientific context, depicting reality by visual methods
is called visualization. If the representation is of a spa-
tial scene then the technique is called geovisualization
(Demšar, 2009; Dykes, MacEachren and Kraak, 2005;
Hutchinson, 2008; Kraak and Ormeling, 2002). Worboys
and Duckham (2004, p. 305) say that
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Figure 10.9 Output from two runs of the Prospect model, using the MIPS implementation. Run 1 has the leaf equivalent water
content (LEWC) set to 0.024 cm, while run 2 has a LEWC of 0.012. The 50% decrease in water content does not affect the visible
and SWIR portion of the spectrum but from about 900 to 2500 nm the effect of the lower LEWC is to increase reflectance (Run 2
is shown in green). Reproduced with permission of A. Gaber and F. El-Baz.
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Geovisualisation is the process of using computer sys-
tems to gain insights into and understanding of geospatial
information.

Other definitions are similar in nature; for example
Kraak and Ormeling (2002) see visualization as

. . . integrating approaches from image analysis,
exploratory data analysis, and GIS to provide theory,
methods and tools for visual exploration, analysis and
presentation of geospatial data, that is any data having
spatial referencing.

Visualization includes, obviously, a depiction of the
phenomenon of interest – in other words we can visual-
ize feature space (Chapter 8) as well as geographic space.
Visualization can also include interactivity, animation,
active querying of objects and entities in the visualiza-
tion. One extreme form of visualization is virtual reality
(VR), which is used, for example in training pilots on
a flight simulator. The ‘fly-through’ modules on some
image processing systems, like the cinematic experience,
do not include interaction, which is a feature of VR. Infor-
mation can be captured by a user far more quickly if it
is visual in nature rather than text or tables. Of course,
this facility can be misused to distort reality, in ways that
Monmonier (1996) describes and illuminates in his book
How to Lie with Maps . A good example of the use of
visualization tools in both two and three dimensions is
the Atlas of Switzerland (Atlas of Switzerland2, undated;
Sieber and Huber, 2007).

Why visualize? The main reason is that the human eye
and brain form the best object-oriented image processing
system yet developed, and can make intuitive judgements
on the basis of vision alone (e.g. is the old man in a
good mood?) as well as acting as a guidance system for
our interactions with the real world. Some examples will
aid understanding. It is invariably assumed that decision-
makers and managers have no time to read long reports
or understand multivariate statistics. At the same time it
is also assumed that these decision-makers and managers
can take in facts from a graphic display of the same data
at a glance. Several methods can be used as illustration.
The first is called Chernoff faces, after Herman Chernoff
who first introduced the technique in 1973. The character-
istics of a face are each related to some statistical property
of the data being visualized. For example, smiling/not
smiling could mean negative/positive correlation, while
distance between the eyes might be related to variance.
More details are provided by Everett and Nicholls (1975)
and some example faces are shown in Figure 10.10.

A second use of visualization was met in Example 8.1
in which a Landsat TM image of part of the Missis-
sippi valley was subjected to an ISODATA classification.
The relationships between the different classes was not

Figure 10.10 Examples of Chernoff faces. From http://people
.cs.uchicago.edu/∼wiseman/chernoff/.

easy to see on the screen, but a dendrogram derived from
a hierarchical cluster analysis was used to simplify the
transmission of information. Example 8.2 Figures 1 and
2 are reproduced here as Figure 10.11 for convenience.

The classified image uses colour-coding to separate
the classes. The relations between the class centroids
are visualized using a dendrogram, which is derived
from hierarchical clustering. The dendrogram indicates
the similarity (or dissimilarity) between the classes, with
dissimilarity increasing towards the right hand side of
the tree. Visual analysis of the tree diagram indicates
that there are two major sets of classes, that is {1, 7, 3,
11, 5, 8, 12, 9, 14} and {2, 15, 10, 4, 3, 6}. The identity
of these classes can be read from the colour bar (which
is not displayed here). The two sets of classes join at
a dissimilarity value of almost 18. The two sets stay
separate until the subclass {9, 14} splits off from the first
of the two sets at a dissimilarity value of about 10.75.
Individuals split off at decreasing dissimilarity levels
until the individual class centroids remain. Centroids of
the ISODATA classes 1 and 7 are least dissimilar. The
visualization in the form of a dendrogram has therefore
revealed a hierarchical structure in the ISODATA results.
This hierarchical representation can be used to reclassify
the image by combining the least dissimilar classes (as
displayed on the dendrogram) and then assigning these
groups of classes to the same colour. This action will
reduce the displayed number of different classes and
make the classification more general. The penultimate
reclassification would give the two sets discussed above
the names ‘land’ and ‘water’.

The third example of visualization is the interactive
scatter diagram as depicted in Figure 8.10 and repro-
duced here as Figure 10.12. In this case, visualization
is linked to data mining to address the problem of find-
ing outliers in a multi- or hyperspectral training dataset.
The approach is described in Section 8.4.2. Basically, the
approach described by Sammon (1969) is used to map the
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Figure 10.12 Two-dimensional interactive visualization of
the structure of a training sample dataset. The original number
of dimensions is six. Sammon’s (1969) nonlinear mapping
was used to perform the dimensionality reduction. The visu-
alization is interactive as the numeric ID of any point can be
obtained via a mouse-click. The scaling on the two axes is
arbitrary.

point pattern from p to two dimensions by minimizing
the sum of the interpoint distances. The program is listed
in Mather (1976). A more recent account is by Lee and
Verleysen (2007). The result can be shown as a scatter
diagram in which each point represents a pixel. In the
MIPS implementation, moving the mouse cursor close to
a point will list the point number. A more sophisticated
method would list the spectral band values of the selected
point. This illustration shows how data mining methods,
in particular dimensionality reduction techniques, can be
allied to visualization to give considerable ‘value added’
to the result.

Sammon’s (1969) Nonlinear Mapping (NLM) takes
n points in a p-dimensional space, where n is the
number of pixels in the sample and p is the number
of spectral bands, and outputs a configuration of the n

points in a k-dimensional space, where k < p. If dij is
the Euclidean distance between points i and j in the
original p-dimensional space and δij is the corresponding
distance in the k-dimensional space, then the function to
be minimized is E:

E = 1.0∑n
i=1

∑n
j=1 dij

n∑
i=1

n∑
j=1

(δij − dij )
2

δ2
ij

The term E is minimized using a non-linear optimization
procedure, based on the first and second partial deriva-
tives of E. A scaling factor (called the ‘magic factor’ by
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(a) (b)

(c) (d)

Figure 10.13 (a) View towards the west down the Ghibe Valley in the SW Ethiopian highlands. The TM image was acquired
in 1984. It is draped over an ASTER GDEM and the viewpoint is user-selected. (b) Visualization of the Ghibe Valley using an
ASTER GDEM and a Landsat ETM image acquired in 2003. Changes between 1984 and 2003 include the construction of a
large reservoir. The viewpoint is the same as in Figure 10.13a. (c) Looking eastwards up the valley – Landsat TM image (1984)
overlain on a DEM. (d) Looking eastwards in 2003 from the same viewpoint as that used in Figure 10.13c but using a Landsat
ETM image as overlay.

Sammon) is required; it usually lies in the range 0.3–0.4.
A value of 0.3 was used here. The process iterates until
the output coordinates (xij ) stabilize, which can take a
while if the sample is large. This example of the visual-
ization of multidimensional data reduction illustrates the
incorporation of data mining methods in the process of
geovisualization using interactive graphical displays.

Visualization can also be used to give a three-
dimensional view of a landscape. In an interactive
display the user can select the viewpoint in (x, y, z)

coordinates or, in the case of a DEM, can move or fly
through the virtual landscape. Figure 10.13a–d show the
Ghibe Valley in the Ethiopian highlands near the city

of Jimma. In each case a Landsat TM or ETM image
is draped over a DEM (ASTER GDEM). These are
freely available DEMs that can be downloaded from the
following web sites: http://www.gdem.aster.ersdac.or.jp/
and http://asterweb.jpl.nasa.gov/gdem.asp. The images
are separated by a 19-year gap (1984–2003) and signif-
icant differences can be picked out, the most obvious
being a new reservoir. The view for Figure 10.13a, b is
towards the west. Figure 10.13c, d are looking towards
the east.

Overlaying satellite or aircraft imagery on a DEM is a
widely used visualization technique. Some RS expertise
is needed in order to maximize the information content
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of the three-dimensional view, for example the choice
of spectral bands to display should be based on the
characteristics of the target, or some transformation
of the image data (such as Tasselled Cap or PCA)
may be applied before the overlay operation. Contrast
enhancements using single bands (such as linear contrast
stretch or histogram equalization) or using all three
selected bands together (such as decorrelation stretch or
HSI) will improve the visual quality of the image. Some
smoothing or sharpening may be required in addition
to contrast enhancement. Finally, the image set and the
DEM need to be geometrically registered and resampled
to a common pixel size.

A second example of using three-dimensional visual-
ization of a landscape shows how the combination of a
DEM with a natural colour digital overlay can be used
in landscape design.3 The study area is the east-west
Mosedale valley, through which the River Caldew flows,
and which is located to the north-east of Keswick in the
English Lake District. The view is towards the west. The
valley floor has an elevation of about 225 m while the
high ground to the north, west and south of the valley
rises to around 700 m. The small lake in the south (left)
of the area is Bowscale Tarn, and it is a glacial corrie lake.
The landscape is smooth and rounded rather than craggy,
as it is formed on the Palaeozoic Skiddaw Slates with
some outcrops of gabbro. The degree of smoothness is
related to the number of triangles used in approximating
the ground surface, as discussed below.

Figure 10.14 was produced by first taking NEXTMap’s
5 m resolution InSAR DEM and approximating the shape
of the resulting surface by triangulation, with the degree
of generalization being dependent on the number of tri-
angles selected, as shown in Figure 10.15. Next, the
GetMapping colour imagery is projected onto the trian-
gles. Then those screen pixels that are visible from the
chosen viewpoint are identified, and the corresponding
photo texture is determined and sent to the screen. All
these images and triangles can therefore be at different
resolutions as what matters is projected screen pixel reso-
lution required. Thus screen pixels which represent areas
closer to the viewer will use an effectively higher resolu-
tion from the triangles and photo raster, and hence more
detail, than those further away. (M.J. McCullagh, per-
sonal communication, 2009). The free Google SketchUp
software (http://sketchup.google.com/) was used to per-
form the triangulation and projection. A total of 3000
triangles was used in the generation of Figure 10.14. For
comparison, triangulations with 1000 and 30 000 vertices
are illustrated in Figure 10.15.

3The data processing to produce the figures in this example was carried
out by M.J. McCullagh who also commented helpfully on the text.

Figure 10.14 Mosedale Valley from the east. The elevation
model is derived from NEXTMap’s airborne InSAR and has
a spatial resolution of 5 m. A set of triangles is computed
to approximate the elevation data, with the number of trian-
gles determining the level of generalization. See Figure 10.15
for examples of triangulation. Finally, GetMapping’s airborne
colour imagery is projected onto the triangles, and visible
pixels are drawn. See text for discussion. NEXTmap is
a registered trademark of Intermap Technologies. All rights
reserved. Copyright Getmapping Plc.

Now let us assume that a landscape planner has been
employed by a water supply company to carry out an
initial study and local consultation for a programme to
build a dam in the upper Mosedale Valley, and to publish
his thoughts on the Internet. He could use an Ordnance
Survey map with overlays showing the position of the
proposed dam and the extent of the impounded area. Only
a relatively small proportion of the population can ‘read’
a map to the extent that they can visualize the shape
of the land from the contours shown on the map. Our
landscape inspector could, however, choose to use widely
available data to build a scientific visualization which
would be easy to understand and comprehend. It would
be possible to interact with the visualization by rotating
it in the horizontal plane or tilting in the vertical plane.
More advanced interactions may use attributes of places
visible on the diagram.

The planning process is aided by the fact that local
people would have an informed opinion on the subject
and thus engage in rational debate. The visual impact of
a fictitious dam built in the valley can be estimated from
Figure 10.16.

This example demonstrates (i) the combined use of
an airborne InSAR DEM and of digital air photography,
(ii) the value of scientific visualization of landscapes in
the environmental planning process and (iii) the use of
triangulation of gridded elevation data in providing data
storage economies.
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(a) (b)

Figure 10.15 Approximate triangulation based on NEXTMap InSAR DEM using (a) 1000 and (b) 30 000 vertices. The savings
in storage space compared to a raster grid are considerable, even when 30 000 vertices are used. NEXTmap is a registered
trademark of Intermap Technologies. All rights reserved. Copyright Getmapping Plc.

Figure 10.16 Visual impact of a dam in upper Mosedale. The
extent of inundation by the impounded reservoir is shown in
transparent light blue so as not to obscure the valley-floor and
valley-side features. Depending on the nature and number
of comments by members of the public, the colour and
texture and perhaps the type of dam could be changed.
InSAR elevation data and colour photography. NEXTmap is
a registered trademark of Intermap Technologies. All rights
reserved. Copyright Getmapping Plc.

10.8 Multicriteria Decision Analysis
of Groundwater Recharge Zones

10.8.1 Introduction

This case study shows how GIS and RS can be used
in an integrated way for locating potential ground-
water resources in arid environments using MCDA
(Section 10.3.2). The identification of areas favourable

to groundwater recharge is based on establishing the
degree and extent of the spatial relationship between
several factors conducive to surface and subsurface
water accumulation, infiltration and storage. Among the
primary factors affecting groundwater recharge in arid
and semiarid regions are: precipitation, terrain elevation
and slope, lithology and soil, drainage and fracture inter-
section as well as drainage and fracture densities. Their
importance can be expressed in a GIS overlay analysis by
ranking the individual thematic layers representing these
factors and assigning relative weights to each of them.
Such overlay analysis is also called multicriteria decision
analysis (see Section 10.3.2) in which each of the layers
is associated with a weight value that may be determined
by various methods, including statistical analysis, pub-
lished studies and/or professional experience (Ji and Ma,
2008; Murthy and Mamo, 2009). Figure 10.17 shows the
location of the study area in northern United Arab Emi-
rates (UAE) and Figure 10.18 illustrates schematically
the steps followed in the MCDA which was used to
establish favourable conditions for groundwater recharge
in the arid mountain range of UAE. The thematic layers
(step 1 in the flowchart of Figure 10.18) were produced
by Boston University’s Center for Remote Sensing as
part of a study conducted in northern UAE4 (El-Baz
et al., 2004) and are used in this case study as input
layers for the recharge model that follows.

4This study was carried out by staff of the Center for Remote Sens-
ing, Boston University, under contract to the Government of Shar-
jah, UAE. A project summary is available at the BU-CRS webpage:
http://www.bu.edu/remotesensing/research/uae-groundwater/index.html.
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Figure 10.17 MODIS image of UAE showing the
study area utilized in the weighted overlay analy-
sis outlined in red. Credit: Jacques Descloitres, MODIS
Rapid Response Team, NASA/GSFC (http://visibleearth.nasa.
gov/view_rec.php?id=6083.

10.8.2 Data Characteristics

As in all decision models, the first step is to decide
on the number of factors that may contribute to a par-
ticular environmental process or function, in this case
surface water accumulation and infiltration to recharge
the aquifer. Some processes of the hydrological system
can be directly observed and measured (e.g. precipitation)
while others can only be indirectly identified or inferred
(e.g. subsurface flow accumulation). Satellite images and
DEMs can provide very useful information on terrain
features and characteristics that are indicative of ground-
water occurrence. Terrain features that provide direct evi-
dences of groundwater flow (e.g. vegetation and fresh
water springs) have the highest likelihood of indicating
groundwater, whereas indirect evidences (e.g. tensional
or open faults, buried paleo-channels, or alluvial fans)
are based on deductive conclusions of appropriate geo-
logical settings for trapping and accumulating ground-
water. Many of these indicators can be identified and
mapped using image processing techniques such as veg-
etation indices, band ratios, principal component analysis,
classification algorithms and change detection procedures
(see Chapters 6 and 8). Although image processing tools
are invaluable in extracting information and producing
useful thematic maps, GIS is the most appropriate tool
to evaluate and model the resulting image processing
products. In this case study thematic maps are derived
from remotely-sensed data (including DEMs) and eval-
uated in terms of spatial and statistical coincidence of
favourable surface and subsurface terrain characteristics
for groundwater occurrence and accumulation in an arid
environment.

Table 10.2 lists the thematic maps utilized in this
study and the numerical rating scheme used to assign
weights to the individual layers depending on their
importance or influence in determining potential areas
for groundwater recharge. A recharge index equation
was developed based on expert knowledge and published
studies on groundwater recharge processes in arid lands,
particularly in fractured hard-rock aquifer systems
(Krishnamurthy et al., 1996; Saraf and Choudhury,
1998; Jaiswal et al., 2003; Jasrotia, Kumar and Saraf,
2007; Dinesh Kumar, Gopinath and Seralathan, 2007;
Murthy and Mamo, 2009). The index is calculated by
establishing the sum of ranked or weighted scores of
individual thematic layers.

In order to conduct such an analysis, thematic
map layers need first to be generated and prepared
to serve as model input parameters in the equation
listed at the end of Table 10.2. In this example, the
geological/geomorphological map was generated from
classifying ASTER scenes (Section 2.3.8) using a
combination of PCA (Section 6.4) and a decision
tree algorithm (Section 8.6.2). PCA is used to reduce
the number of original bands to produce composites
that provide the most significant spectral separation
between individual rock units. These significant princi-
pal components were used as inputs in the supervised
decision tree classification (Section 8.6.2) procedure
that was based on a decision tree algorithm called
C4.5 (Quinlan, 1993). The algorithm was trained using
spectral characteristics of different geological units that
were previously obtained from training sites identified
by an expert. Figure 10.19 shows that the resulting geo-
logical/geomorphologic classification map is composed
of a few broad categories that were reclassified and
weighted (Table 10.2) according to their hydrological
significance. The reclassification was based on rock
properties such as rock type, solubility, permeability
and weathering/fracturing. Mapping efforts were mainly
focused in the mountain area (crystalline basement rocks
and limestone) and the gravel plains (alluvium) at the
foot of the mountain range where flash floods occur that
may recharge the underlying aquifer. The desert basin
area, and its potential for storing and transmitting water,
would need to be treated separately as it represents a dif-
ferent type of aquifer system (sedimentary aquifer) from
the one encountered in the mountain area (hard-rock
aquifer). Koch and Mather (1997) demonstrate the use
of RS data in characterizing the hydrological function of
crystalline basement aquifers in arid environments.

The precipitation map used in this analysis is the
result of averaging 10 years of annual rainfall. It shows
long-term rainfall distribution pattern rather than yearly
patterns because in arid environments groundwater
recharge occurs predominantly through the cumulative
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Thematic Layers (Step 1)

Derived Layers (Step 2)

Reclassified Layers (Step 3)

Multicriteria Decision Analysis Result (Step 4)

DEM Climate Stations Drainage Fractures Geology

Geology

Slope Precipitation Drainage Density
D/F Intersection

Fracture Density

Slope Precipitation Drainage Density

Recharge Areas

D/F Intersection
Density Fracture Density

D/F Intersection
Density

Figure 10.18 Flowchart outlining the steps used in the weighted overlay analysis.
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Table 10.2 Weights and scores for thematic layers and their classes.

Thematic layers Classes Weights 0–100% Scores 1–9

Geology/geomorphology (hydrogeol.) Desert sand 30 7

Alluvium 9

Limestone 5

Metamorphic rocks 3

Igneous rocks 1

Intersection of drainage and fractures (D&F) Low 20 1

Medium-low 3

Medium 5

Medium-high 7

High 9

Precipitation in mm 10-year average <145 10 1

145–160 3

160–170 5

170–180 7

180–210 9

Terrain slope in percentage 0–1 20 3

1–5 9

5–10 7

10–15 3

>15 1

Fracture density (FD) Low 10 1

Medium-low 3

Medium 5

Medium-high 7

High 9

Drainage density (DD) Low 10 9

Medium-low 7

Medium 5

Medium-high 3

High 1

(Hydrogeology) + (D&F) + (precipitation) + (slope) + (FD) + (DD) = recharge potential

Scores range from 1 (least suitable) to 9 (most suitable). Weights sum to 100%.

effect of rainfall. Precipitation maps can be generated
either from the interpolation of rainfall amounts mea-
sured at climatic stations or from satellite radar sensors
such as tropical rainfall mapping mission (TRMM,
http://trmm.gsfc.nasa.gov/) or NEXRAD (NOAA’s Next
Generation Radar; http://www.roc.noaa.gov/WSR88D/).
The latter method is especially attractive in regions that
do not have a dense network of climatic stations. How-
ever, there are two problems attached to space-derived
rainfall measurements in arid lands: one is the coarse
spatial resolution of current radar sensors and the second

is the lack of long-term archived records. Rainstorms are
very much localized in arid environments and occur in
large temporal scales. The precipitation map used in this
study was generated from the interpolation (using the
inverse distance weighted method in ArcGIS) of rainfall
data obtained at 15 climatic station (Figure 10.20)
between the years 1990–1991 and 1999–2000.

The slope map was generated from a DEM obtained
from remotely-sensed data (Figure 10.21). In the
past DEMs were created from digitizing or scan-
ning contours on a topographic map. Nowadays,
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Figure 10.19 Geological map before and after reclassification. Bedrock units were generalized and the vegetation class was
removed.
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Figure 10.21 Slope map derived from a DEM generated by the SRTM.

many medium to coarse resolution (>20 m) DEMs
are produced from satellite-borne (SRTM (Section
9.2) or ASTER (Section 2.3.8; Figure 2.22)) or
airborne systems (lidar) (Section 9.4) and are
increasingly being made available to the general
public at no cost (http://www2.jpl.nasa.gov/srtm/and
https://wist.echo.nasa.gov/api/). A slope map was
derived from the SRTM DEM (Section 9.2), which has a
resolution of 90 m. This DEM was reclassified into five
elevation zones (i.e. 0–1, 1–5, 5–10, 10–1 5 and >15;
values are in percentages), which represent categories of
terrain in terms of suitability for rainwater to infiltrate.
The scores are assigned according to terrain slope and
water flow conditions. Gentle slopes (1–5%) show
the best recharge potential for runoff, while building
a certain hydraulic gradient for near surface water to
continue flowing downhill, whereas areas having zero
to very low (0–1%) and moderate to very high (10–15
and >15%) slopes are considered unfavourable because
water may flow too slowly and stagnate and pound or
simply flow too fast for infiltration to occur. Therefore,
slopes between 1 and 10% receive the highest scores.
This slope classification is also supported by groundwa-
ter recharge studies conducted in similar semiarid and
arid environments (Saraf and Choudhury, 1998; Jaiswal
et al., 2003; Jasrotia, Kumar and Saraf, 2007).

DEMs are also useful for deriving drainage channel
networks. However, they are prone to error, especially in
flattish areas, so visual inspection, either on the ground
or using high resolution images, is recommended.

Fracture networks can be easily mapped on satellite
images especially in areas with no or little vegetation
cover. In this case study both drainage and fracture
network maps were obtained from satellite data through
visual interpretation and onscreen digitizing by an
expert (Figure 10.22). Drainage channels and lineaments
representing fractures and faults were mapped at a scale
of 1:50 000 from an edge-enhanced ASTER colour
composite using the first three bands with a pixel
resolution of 15 m. The respective density maps were
produced by counting the number or length of lines
(either fractures or drainage channels) per unit area
(1 km2) and interpolating the resulting density values.
The scores in each category reflect recharge potential
with low values for high drainage density and high
values for low drainage density areas. In the case of
fracture density an inverse relationship applies, with high
weights corresponding to high fracture density values
and vice versa. Similarly, the drainage and fracture
intersection density map was produced and scores were
assigned in accordance to recharge suitability (i.e. high
intersection density values = high recharge potential and
vice versa).

The purpose of representing the fracture or drainage
network in the form of density maps is to facilitate the
comparison of their spatial distribution with other terrain
characteristics (e.g. geology, geomorphology, etc.) and
to identify the main trends in the data. For instance,
long and possibly deep seated faults that cross an area
with high fracture density values (brittle rocks) have



Environmental Geographical Information Systems: A Remote Sensing Perspective 351

Figure 10.22 Drainage and fracture networks derived from the interpretation of ASTER satellite images.

the potential of being good groundwater collectors and
transmitters if other terrain factors such as slope, rock
type and tectonic forces are favourable. Furthermore,
overlaying or intersecting the drainage and fracture net-
work helps to identify which drainage systems may act
as potential recharge zones, especially if they are prone
to flash floods. High intersection density areas in the
drainage/fracture intersection map denote good crosscut-
ting relationships between wadis (ephemeral channels)
and fractures and are often depicted as isolated clusters.

10.8.3 Multicriteria Decision Analysis

The thematic layers were finally ranked or weighted
according to importance giving higher weights to those
layers that have more influence to groundwater recharge
occurrence. The total sum of the weights is always 1 or
100% (depending on whether floating point or discrete
integer rasters are used), while the scores always range
from one extreme of the scale to the other extreme. The
evaluation scale may contain any number of increments;
however, the same scale has to be applied to all thematic
layers. In this case study we selected a range of nine
values (from 1 to 9) and applied the scores to the
individual layers according to expert knowledge (e.g.
annual precipitations between 0 and 145 mm are less
probable to generate sufficient runoff for subsurface
infiltration to occur) or by simply dividing the whole
range into equally space increments (e.g. density maps
where the extremes clearly represent either less or highly

suitable attributes but the values in-between are more
difficult to assess). Weights are more difficult to assign
as they determine the combined effect of all thematic
layers in the model. Here again expert knowledge is
essential in determining the degree of influence that each
layer should have in the model. In this case study the
geological/geomorphologic map (with a weight of 30%)
is ranked as the most important factor followed by the
drainage and fracture intersection map and slope map
(with a weight of 20% respectively). All other thematic
layers are given a 10% weight, meaning their influence
is treated equally, but is less than the layers representing
lithology, slope and the relationship between wadis
(dry river channels) and fractures. The thematic layers
were then multiplied by their corresponding scores
and these products were then summed to obtain the
groundwater recharge potential map (Figure 10.23). This
was done by utilizing the arithmetic overlay approach
(weighted overlay or weighted sum) built into ArcGIS
ModelBuilder . Such an arithmetic overlay process
accepts both continuous and discrete grid layers, and
the derived recharge potential map is a discrete grid
data layer with seven classes that were reclassified into
three categories: no or little recharge, moderate, high to
very high recharge. The first four classes were added
to one class (low recharge potential), and the last three
classes were kept and relabelled to moderate (fifth class)
and high (sixth and seventh class) recharge potential.
The reclassification was based on visual comparison of
the resulting recharge map with the original thematic
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Figure 10.23 Output map of the recharge potential equation in Table 10.2.

layers used in the analysis, especially geology, fracture
and drainage intersection and slope. Figure 10.24
shows the resulting recharge potential classes draped
over a hill-shaded SRTM DEM of the study area and
Figure 10.25 shows a three-dimensional view with major
faults (representing structural trends) superimposed.

10.8.4 Evaluation

Inspection of the potential recharge areas (shown in light
and dark blue colours in Figures 10.24 and 10.25) in rela-
tion to main fracture network, terrain characteristics and
geology (Figure 10.26) reveals: (i) a close relationship
between potential recharge areas in the alluvial gravel
plain area with major structures (faults); existing wells
located in the proximity of the highlighted areas con-
firm the high recharge potentiality (El-Baz et al., 2004);
(ii) the coastal plain area in the north-east shows high
recharge potential as it receives both direct (rainfall) and
indirect (flash flood) recharge; and (iii) the alluvial plain
west of the mountain front shows a higher recharge poten-
tial than its eastern counterpart because it has more space
to develop large alluvial fans and is not abruptly termi-
nated by the sea. Also rainfall patterns are another factor
contributing to its higher recharge potential, since the
north-western region receives rain during the winter and

summer whereas the eastern region receives rain mainly
during the winter.

Correlation of the final recharge potential map in
Figure 10.24 with the distribution pattern of vegetation
as derived by applying a vegetation index (NDVI) to the
ASTER images confirms the location of high recharge
potential areas (Figure 10.27). In arid environments
vegetation is an excellent indicator of surface or near
surface water. The large patches of vegetated areas in
Figure 10.27 are irrigated farms, mostly date palms
and fruit trees. They are generally located where
groundwater is accessible via shallow wells. The NDVI
values showing the location of vegetated areas were not
used in the MCDA and the distribution of NDVI values
therefore represents an independent test of the recharge
potential map. Comparison of the spatial distribution
of NDVI with modelled recharge potential indicates a
significant agreement between both data sets and thus
validates the model used in this case study.

10.8.5 Conclusions

In summary, MCDA is a very attractive geospatial
analysis technique because of its simplicity and straight-
forwardness. It uses a set of maps that provide evidence
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Figure 10.24 Recharge potential map of the study area. Background layer is a hill-shaded SRTM DEM. See text for discussion
of the derived recharge potentiality map.
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Figure 10.25 Three-dimensional view of potential recharge areas with major faults overlaid.
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Figure 10.26 Three-dimensional view of main geologic units.
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of a certain process (in this case groundwater recharge)
to occur if certain criteria are fulfilled. Of course the
analysis has to be based on a sound conceptual model
otherwise the predictive model will not work. Neverthe-
less, there are some shortcomings related to this method
of which the user should be aware. First, the selection
of weights is not an easy task even for an expert in the
particular research field being investigated. Although
professional judgement and/or statistical methods are
often used for assigning weights, they may still be
subject to errors. Second, the impact or sensitivity that
slight changes in the weight values may have on the
model needs to be assessed. Some factors (thematic
maps) describing the phenomenon or process that is
under investigation, are less sensitive to weight-value
changes than others. Therefore, variations of the weights
and their contrast should be tested before deciding
which set of weights to use for each map layer. Third,
possible dependencies between the data sets selected
for predicting a phenomenon should also be checked.
This can be done by adding/removing a map layer from
the analysis and then checking the model result for
any significant output variations. In general, input maps
should represent independent variables otherwise the
information they supply to the model will be redundant.
By taking these and other possible sources of errors
into account, MCDA can be a very viable and reliable
prediction tool.

10.9 Assessing Flash Flood Hazards
by Classifying Wadi Deposits
in Arid Environments

10.9.1 Introduction

Surface water resources in arid regions are scarce
due to low annual rainfall amounts and high evap-
oration rates. In the Middle East region, ephemeral
watercourses (wadis) are of great importance for water
supply. Following infrequent rainfall events, surface
water accumulates in these wadis, producing two
different effects, namely, flash floods and groundwater
recharge. With rising water demands for population
and agriculture in arid regions, proper surface water
management through flood mitigation and harvesting
schemes is increasingly needed. However, the lack of
long-term rainfall and runoff/discharge records makes
it difficult to predict which of the wadi systems are
most active in carrying and discharging surface water
in the event of a rainstorm. In this example we present
a methodology for mapping and classifying drainage
systems and identifying active wadis (i.e. flash flood
prone wadis) in arid lands using satellite images. Optical

multispectral (Landsat ETM+) images are used in
conjunction with microwave (Radarsat-1 and PALSAR)5

images to determine the spectral and textural properties
of the alluvial wadi floor materials. Indicators of recent
surface water flow, such as source rock composition of
alluvial fills, presence of desert varnish and/or vegetation
and textural characteristics of the bed load are derived
from these images by a combination of data fusion
and classification methodology. The results are used to
classify the wadis in terms of their efficiency in carrying
bed load sediments and, thus, surface water flow. A
recent study by Gaber, Koch and El-Baz (2010) in Wadi
Feiran basin of south-western Sinai Peninsula, Egypt, is
used to illustrate this methodology.

10.9.2 Water Resources in Arid Lands

The availability of water resources in arid lands is still
poorly understood because of the difficulty of data acqui-
sition and inaccessibility of many such areas. Flash flood-
ing in arid regions is a double-edged natural phenomenon:
being a blessing and at the same time a curse. It is a bless-
ing as it is a major source of groundwater recharge in arid
regions. It is, however, a curse as the tremendous power
of the water flow causes devastation along its pathway.
Flash floods in desert regions are extremely difficult to
predict due to the sporadic and spatially variable nature
of rainfall-runoff events (Graef and Haigis, 2001; Gheith
and Sultan, 2002; Masoud, 2009). Generally, desert rain-
storms are highly localized, with only part of a drainage
basin receiving rain and contributing directly to surface
runoff along drainage channels or wadis (Sharon, 1972).
The lack of sufficiently long rainfall and river discharge
records limits the application of hydrological models of
storm runoff generation. These models are often inap-
propriate because they were developed and calibrated in
more humid environments (Ouattara, Gwyn and Dubois
2004; Masoud, 2009).

The ability to monitor and predict sites prone to flash
flooding is also necessary to ensure the safety of peo-
ple, as well as the protection of property and infras-
tructure. Moreover, the scarcity of fresh water in these
regions presses the need for harvesting floods in order
to take advantage of these water resources before reach-
ing the coast and flowing into the sea or evaporating
into the atmosphere. However, before these floodwaters
can be managed, a more comprehensive understanding
must be achieved to improve our ability to monitor and
predict flood events. In the absence of detailed field mea-
surements (a common problem in arid environments) an

5The Radarsat-1 image was supplied by the KACST facility in Riyadh,
Saudi Arabia. PALSAR images were supplied by JAXA, Japan. Both
datasets were obtained by BU-CRS through a data user agreement.
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alternative approach is to assess flash flood generation
potential by studying associated sedimentary transport
and deposition behaviour in ephemeral streams. This can
be achieved by using satellite images to identify and clas-
sify sediment types and transport in active wadis based on
terrain properties (slope, channel surface roughness and
moisture) and spectral properties of wadi fill materials
(source-rock fragments, residuals from suspended sedi-
ments, desert varnish and vegetation). A study conducted
by Laronne and Reid (1993) showed that ephemeral rivers
in the Israeli drylands are up to 400 times more efficient
at transporting coarse material than their perennial coun-
terparts in humid zones.

10.9.3 Case Study from the Sinai Peninsula, Egypt

The example presented here is based on a study con-
ducted by Gaber, Koch and El-Baz (2010) in Wadi
Feiran drainage basin in southwest Sinai Peninsula,
Egypt (Figure 10.28). The basin covers an area of
approximately 1850 km2, and is largely composed of

a rugged mountain range of igneous and metamorphic
rocks of Pre-Cambrian age. Wadi Feiran is intersected by
numerous tributaries, all potentially contributing runoff
to a large alluvial fan located at the basin outlet at the
coast of the Gulf of Suez. This basin was chosen to illus-
trate the use of image processing techniques (data fusion
and classification) supported by GIS analysis techniques
to identify tributaries that are prone to flash flooding
and erosion or may serve as groundwater recharge areas
based on their bed load and terrain characteristics. High
stream power generally produces more erosion and
therefore larger quantities of large rock fragments. Low
stream power carries smaller rock fragments often great
distances from the source rock area. If wadi deposits
can be characterized in terms of their fragment size and
rock composition then this information could be used
to identify their original source area and transportation
route as well as their flash flood generation capacity. For
an in-depth discussion on stream power index and other
geomorphic indices to determine the ability of a stream
to erode its bed and transport sediments, the reader is
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Figure 10.28 Simplified geological map of the Wadi Feiran basin, southwest Sinai. c© Gaber, Koch and El-Baz (2010).
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referred to the excellent work of Kelley and Pinter (2002)
and more recently that of Masoud (2009) on estimating
flash flood risks in southern Sinai Peninsula, Egypt.

10.9.4 Optical and Microwave Data Fusion

Radarsat-1 (C-band, HH-polarized) and PALSAR (L-
band, HH-polarized) SAR images were used together
with Landsat ETM+ images to analyse the drainage basin
area covered by alluvium. Two sets of optical/microwave
images were utilized in this study. One set comprises the
ETM+/Radarsat-1 datasets for November–December
2000 and the second set represents the ETM+/PALSAR
of January–March 2008 (Figure 10.29). The Landsat
scenes were selected to match the acquisition dates of
the microwave images as close as possible. For the first
dataset only single Radarsat-1 and Landsat ETM+ scene
were needed to cover the basin area. However, for the
second dataset two PALSAR as well as two Landsat
ETM+ scenes needed to be mosaicked to cover the

entire study area. In addition, the Landsat ETM+ of
2008 shows numerous stripes with no data due to the
malfunctioning of the scan line corrector (SLC). A list
of image scenes and their main characteristics is shown
in Table 10.3.

Data fusion was performed by applying a principal
component transformation to the Landsat ETM+ scene
and replacing PC1 with the SAR image as the high-
resolution image followed by an inverse transformation
(Section 6.9). The resulting fused image is a hybrid image
in which the colour component of the multispectral image
is added to an intensity component derived from the SAR
image. In this study, the integration of ETM+ and SAR
data introduces information that is correlated with the sur-
face roughness of the wadi floors. Surface roughness in
wadi floors and alluvial fans is a function of the distribu-
tion and density of sand, pebbles, boulders and vegetation
(mainly shrubs) (Arkin, Ichoku and Karnieli, 1999). Dif-
ferent surface types show different backscattering coef-
ficient values that relate to (i) the radar characteristics,

(a)

2000 2008

(b)

(c) (d)

Figure 10.29 Optical/radar data sets used in this example: Landsat ETM+ of 2000 (a) and of 2008 (b) were respectively
merged with Radarsat-1 of 2000 (c) and PALSAR of 2008 (d). The 2000 set represents single scenes whereas the 2008 represents
mosaicked scenes. Credits: Radarsat-1 data c© CSA 2000, recieved and processed by KACST, King Abdullah Aziz City for
Science & Technology, Riyadh, Saudi Arabia. Distribyted under licence from MDA Geospatial Services Inc. PALSAR data was
provided by JAXA/METI.
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Table 10.3 Satellite dataset characteristics.

Sensor type Radar Optical

Radarsat-1 PALSAR ETM + (SLC on) ETM + (SLC off)

Acquisition date 18 November 2000 26 January and 24
February 2008

22 December 2000 21 February and 15
March 2008

Bands (polarization) 1 C-band (HH) 1 L-band (HH) 7 reflective bands 7 reflective bands

Incident angle 35.085◦ 34.3◦ Nadir Nadir

Resolution (m) 12.5 6.25 28.5/14.25 28.5/14.25

Swath width (km) 150 70 185 185

for example wavelength, polarization and look angle and
(ii) the surface material properties, such as surface slope,
roughness, orientation and dielectric constant (Henderson
and Lewis, 1998). SAR images are more sensitive to sur-
face roughness variations than optical spectral images.
In relatively flat areas with little vegetation, subtle tex-
tural variations of the alluvial infill are mainly due to
changing particle sizes of wadi deposits and soil mois-
ture content. Therefore, these surface properties can be
used together with the spectral information obtained from
Landsat ETM+ data to improve the classification of bed
load materials in wadi systems. The aim of classifying
wadi beds is to distinguish fine to medium-grained sandy
areas (indicating low stream power values) from surfaces
completely covered by boulders (indicating high stream
power values). The ability of SAR data to discriminate
different surface textures is especially useful in areas that
show similar spectral responses on ETM+ images, as is
the case for example in the interior Wadi Feiran basin
area, which is made up of low contrasting granites and
metamorphic rocks (Figures 10.28 and 10.29).

Prior to the multisensor data fusion a Lee filter (Section
7.2.3) with a kernel size of 3 × 3 was applied to the raw
Radarsat-1 and PALSAR images before converting from
16- to 8-bit representation for data fusion. This ensured
that some noise (speckle) inherent in the radar images
was removed without too much information loss (when
filtering the smaller 8-bit data range) while improving the
appearance of the image for subsequent ground control
point selection (Pohl and van Genderen, 1998). Using the
filtered 16-bit data, control points were selected only in
the flat alluvial areas because no topographic distortion
correction was performed to the SAR image to compen-
sate for foreshortening, layover and shadow effects in
mountainous areas. Since we are mainly interested in
the textural information of low relief areas (i.e. wadi
deposits), geometric distortions in mountain areas were
considered to be irrelevant to the analysis. The SAR
images were resampled to the same pixel size as the
panchromatic band of the ETM+ image using 35 well-
distributed control points in the case of the Radarsat-1

image and 48 in the case of the PALSAR image. A
second order polynomial function was used to register
the ETM+ and SAR images, with an RMS error of less
than 1 pixel (14.25 m) (Section 4.3.2). Furthermore, all
reflective ETM+ bands (1–5 and 7) were resampled to
the same resolution as band 8 (14.25 m) before fusing
them with the SAR data.

Figure 10.30 shows the two resulting hybrid
ETM+/SAR images of Wadi Feiran basin. Figure 10.30a
represents the PCA fused ETM+/Radarsat-1 images of
November–December 2000 while Figure 10.30b repre-
sents the ETM+/PALSAR images of January–March
2008. Note that for generating the 2008 fused image
(Figure 10.30b) pairs of ETM+ scenes (February and
March 2008) and PALSAR scenes (January and February
2008) (Figure 10.29b, d) had to be mosaicked, resulting
in a slightly different colour-contrast hybrid image
compared to the one of 2000 (Figure 10.30a) which is
produced by fusing single scenes only (Figure 10.29a, c).
Also, the 2008 hybrid image shows strips with no data
due to the SLC problem that affects all ETM+ scenes
after May 2003. Therefore, the colour contrast between
the limestone, granite and metamorphic units is slightly
different (i.e. less pronounced) in the ETM+/Radarsat-1
image than in the ETM+/PALSAR image although
the same band combinations were used. These colour
differences are also due to the different backscatter
properties of Radarsat-1 and PALSAR. Alluvial areas
show, in general, good contrast with respect to the
rugged rock outcrops due to the smoothness of their
surfaces especially in wide wadi beds (dark areas in
Figure 10.30). The next section explores in more detail
the different backscatter properties of Radarsat-1 C-band
and PALSAR L-band in relation to wadi bed deposits. It
is postulated that the higher frequency of C-band radar
is capable of differentiating more accurately surface
deposits of various sizes (sand, pebbles, cobbles and
boulders) than the lower frequency of L-band, even
though the spatial resolution of the C-band image is
lower (12.5 m) than the L-band image (6.25 m).
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Figure 10.30 Fused images of Landsat ETM+ (bands 7, 4, 2 as RGB) with (a) Radarsat-1 and (b) PALSAR data. c© Gaber, Koch
and El-Baz (2010). See Figure 10.29 for credits.
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10.9.5 Classification of Wadi Deposits

A classification using an unsupervised k-means cluster-
ing algorithm (with 10 initial classes and five iterations)
was performed on each of the ETM+/SAR fused
images. K-means clustering is described in Section 8.3.1
and Example 8.1. Each hybrid data set consists of six
reflective ETM+ bands fused with the corresponding
SAR image by means of PCA (see previous section).
An unsupervised classification was chosen rather than
a supervised classification because of the complexity
of the spectral and textural response pattern of wadi
deposits. Unsupervised classifiers are ideal for exploring
the natural groupings (clusters) of spectral and textural
pixel values contained in an image. Wadi deposits are
by nature a mixture of rock types of different mineral
compositions and sizes and, therefore, produce a whole
range of mixed pixels in an image. Prior to running
the k-means classifier a mask was applied to restrict
the classification to alluvial areas. Restricting the image
data to the area of interest helped to reduce the number
of classes to five and improved the interpretability of
the classification results. A majority filter with a 5 × 5
kernel size was applied to the resulting classifications in
order to remove noise (spurious pixels) from the data and
thus reducing the variance within the resulting clusters.

Figure 10.31a, b shows the respective classifi-
cation results for the ETM+/Radarsat-1 (a) and
ETM+/PALSAR (b) images. The colours of the five
resulting classes were matched based on their spatial
relationship to facilitate visual comparison of the class
distribution in the two datasets. However, similarly
coloured classes do not necessarily represent the exact
same surface features. Two examples are illustrated in
Figure 10.31 (boxes A and B), where slight differences
in class distribution are due to the way in which C- and
L-band SAR detect textural variations of fluvial surface
deposits. These differences were further investigated by
extracting the mean backscatter values of Radarsat-1
and PALSAR at 41 field sites using ArcGIS Extract

Values to Points tool. This function extracts the cell
values of a raster based on a set of points, in this case
the field points. The field points also served to verify the
surface roughness conditions of the five hybrid classes
and were labelled accordingly. The scatter plot shown in
Figure 10.32 shows the relationship between the mean
backscatter values of Radarsat-1 and PALSAR at the 41
field sites. The points are colour-coded according to the
surface roughness they represent in the field (with red
being the smoothest class and cyan the roughest class). A
clear trend is visible in the relationship between surface
roughness and SAR backscatter values. Furthermore, the
backscatter values derived from Radarsat-1 and PALSAR
data show a positive correlation, with PALSAR showing
consistently higher values than Radarsat-1. This is

probably due to the fact that uncalibrated raw DN values
are being used in this comparison.

Nevertheless, the scatter plot shown in Figure 10.32
shows that both datasets produced comparable classes.
The red and green classes represent very smooth to inter-
mediate smooth areas and are found in the alluvial fan
area (west) as well as in the wider sections of the wadis in
the upper basin area (east). The yellow and cyan colours
represent intermediate to very rough surfaces and are
found mainly in the smaller and narrower tributaries. The
blue class is a textural class lying between both extremes.
In order to interpret the meaning of the different classes,
and evaluate their usefulness in mapping active wadi sys-
tems, a comparison of both classification results with the
distribution of lithological units, terrain slope and field
observations was performed using GIS techniques.

10.9.6 Correlation of Classification Results
with Geology and Terrain Data

A geological map (CONOCO, 1987) at scale 1:500 000
and a digital terrain model (DEM) obtained from the
SRTM (Section 9.2) with a 3-arcsec (90 m) horizontal
resolution and a 16 m vertical accuracy (USGS, 2008)
were used as reference data on which the interpretation
of the classification results was based. The geological
map was used as a reference for identifying the main
host rock components of the bed load sediments. The
DEM provided useful information on terrain properties
such as slope and elevation that correlates with textural
and spectral properties of main wadi infill and alluvial
fan deposits. A field survey was conducted in February
2008 along the main channel of Wadi Feiran basin. A
total of 41 field sites was investigated (Figure 10.31),
and at each site wadi deposit type and size as well as
their GPS locations were recorded and photographs were
taken (Figure 10.33). The correlation between image
derived information (e.g. classification results and radar
backscatter coefficients), maps (geology and DEM) and
field observation was carried out in a GIS environment.

The alluvial area of the Wadi Feiran drainage basin
shows the following general surface sediment characteris-
tics: the soils are typical of desert environments (aridosols
and entisols) and important accumulations are found in
few vegetated areas mainly in wadi gorges and terraces.
The soils are light or yellowish brown in colour, and
sandy to loamy sand in texture with low content of silt
and clay (Abd El-Wahab et al., 2006). Wadi sediment
deposits become more gravelly and rocky as one moves
away from the coast into the mountains, showing rocky
surfaces with large boulders in the upper portions of the
basin (Figure 10.33). According to pedological studies
conducted in Wadi Feiran the soils here are of fluvial
origin (torriorthents and torrifluvents) and of relatively
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Figure 10.31 Unsupervised classification of wadi deposits using two sets of fused optical/microwave images: (a)
ETM+/Radarsat-1 and (b) ETM+/PALSAR. Enlarged sections (A and B) highlight class distribution differences. c© Gaber,
Koch and El-Baz (2010). See Figure 10.29 for credits.
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Figure 10.32 Correlation of mean backscatter DN values of
Radarsat-1 and PALSAR at surveyed field locations along Wadi
Feiran. Point colours match class colours in Figure 10.31.

good soil quality (El-Araby and El-Demerdashe, 1981;
Abd El-Wahab et al., 2006). Torriorthents and torriflu-
vents are very gravelly soils usually found on recently
formed terraces and incized channels, and are associated
to flooding events.

In order to investigate the nature of the unsupervised
classification results of the ETM+/SAR hybrid images,
individual classes were cross-checked with information
obtained in the field (at 41 sites) as well as with map
information on geology and topography. The main goal
was to determine whether wadi deposits were success-
fully classified into similar spectral groups (i.e. the
main lithological units, such as sedimentary, volcanic,
granitic and metamorphic rocks) and textural groups
(i.e. rough, medium, smooth surfaces). In addition,
differences between the two ETM+/SAR classification
results were examined, as C- and L-band show different
sensitivities in detecting surface roughness. Correlation
procedures were carried out in ArcGIS using its Zonal

Statistics Tools which calculates statistics on values
of a raster within the zones of another dataset. Zones
can be rasterized points (e.g. field sites), polygons (e.g.
lithological units) or classes from a classified image (e.g.
hybrid classes). Statistics for each zone are extracted
from another raster image or map (e.g. backscatter or
slope values) and include pixel count, area, minimum
and maximum values, range, mean, standard deviation
and sum depending on the type of statistical analysis per-
formed. For example the command Zonal Statistics

As Table would have the following syntax in ArcGIS:

ZonalStatisticsAsTable<in_zone_data>
<zone_field><in_value_raster><out_table>
{DATA|NODATA}

where:
in_zone_data = dataset that defines the zone
zone_field = field that holds the values that

define each zone
in_value_raster = raster that contains the values for

which to calculate a statistic

out_table = output table that will contain the
summary of the values in each
zone

DATA|NODATA = denotes whether NoData values
are ignored.

Zonal Statistics was one of the main GIS functions
used in the Wadi Feiran study conducted by Gaber, Koch
and El-Baz (2010). Here we illustrate some of the steps
used in deriving the results published in that paper. How-
ever, for a more complete description of the study the
reader is referred to the original publication.

In order to carry out the statistical correlation analysis,
individual classes produced by the two sets of unsuper-
vised classifications were used as zones, that is over-
laid on the respective median-filtered 16-bit SAR data to
determine the median backscatter coefficient (in DN val-
ues) corresponding to each class. The reason for using
the original 16-bit data instead of the 8-bit data used for
data fusion with ETM+ (which are in 8-bit) is that bet-
ter class discrimination could be achieved by using the
original unscaled image. The five classes resulting from
the two hybrid classifications fall into well-defined data
ranges that indicate an increase in surface roughness and
thus rock fragment/sediment grain size with increasing
backscatter median values (Table 10.4).

The results displayed in Table 10.4 show that class 1
(red in Figure 10.31) represents the smoothest wadi sur-
face made up of sand and pebbles (Figure 10.33a) and
classes 2 (green) and 3 (blue) are more gravelly surfaces
(Figure 10.33b). Class 4 (yellow) corresponds to a mix-
ture of sand, stones and cobbles (Figure 10.33c). Class 5
(cyan) has the highest backscatter value as it represents
a mixture of small to large boulders (Figure 10.33d).

Second, a spatial correlation of individual hybrid
classes with main lithological units (Figure 10.28) and
slope was performed. The classified hybrid images were
used as zone layers for which statistics were calculated
for each zone (class) in terms of main lithological unit
underlying each class and their mean slope value. A
schematic representation of this procedure is shown in
Figure 10.34. The results reveal that hybrid classes of
both data sets (ETM/RSAT-1 and ETM/PALSAR) show
similar trends with respect to underlying geology and
slope (Table 10.5). Note that wadi sediments are a mix-
ture of eroded bedrock fragments, some of which travel a
long distance and their composition does not necessarily
need to resemble that of the host rock flanking the wadi
segment where they are deposited. However, landforms
are a function of geological substratum, tectonic forces
and surface processes acting upon them. Therefore,
the interpretation of the results in Table 10.4 (surface
roughness/fragment size) and Table 10.5 (geology/slope)
may tell us something about the nature, transportation
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Figure 10.33 Field photographs displaying the typical grain/fragment sizes of wadi deposits corresponding to the following
hybrid classes: (a) class 1 and 2: sand and pebbles, (b) class 3: gravels, (c) class 4: stones and cobbles and (d) class 5: small and
large boulders. Photographs taken by A. Gaber.

and deposition of wadi materials, that is the erosive
power of streams carrying those materials and their
resistance to weathering processes.

Classes 1 and 2 which represent the smoothest wadi
surface deposits are mainly located in gently sloping ter-
rains within the old weathered granite unit which makes
up most of the central part of the basin. This unit is char-
acterized by relatively gentle landforms and class 1 and
2 deposits are predominantly found in low relief plains
where wadi beds become wider (box A in Figure 10.31a,
b). Class 3 is mainly represented by the sedimentary rocks
(sands, marls and carbonates) which are found at the
lower and upper reaches of the basin (Figure 10.28). A
combination of very wide and relatively flat wadi floors,
with short, narrow tributaries draining into the flats char-
acterizes this unit as less resistant to erosion than the

older Pre-Cambrian units. However, some escarpments
are found here along the more resistant layers depending
on the sediment material.

Class 4 deposits are located predominantly in the
younger granitic unit (Figure 10.28) which is character-
ized by high mountain relief, straight and narrow wadis
(gorges) and very resistant (undeformed) granitic rocks.
The average slopes of class 3 and 4 show increased
steepness of the wadi floor surface. Class 5 has the
highest average wadi floor surface slope values as well
as surface roughness and is predominantly located in
the metamorphic unit that underlies the main wadi trunk
where it becomes narrower and starts meandering.

The correlation analysis described above highlights the
distribution of predominant wadi sediment texture and
size within the mountain area where bedrocks outcrop. It
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Figure 10.34 Concept of zonal statistic analysis in ArcGIS.
Copyright c© ESRI. All Rights Reserved. Used by permission.
www.esri.com.

does not include the delta plain (alluvial fan area) at the
mouth of the basin where finer particles (class 1) tend
to concentrate. Also, the analysis does not conclusively
reveal the mineral composition of the wadi sediments,
as for this type of analysis sub-pixel classifications such
as spectral unmixing (Section 8.5) are more appropriate
techniques than a combination of data fusion and unsu-
pervised classification. Indeed, spectral unmixing was the

approached used by Gaber, Koch and El-Baz (2010) in
Wadi Feiran and their results show a slightly different
distribution of rock composition within each hybrid class.
Their results are summarized in Table 10.6 and show that
the predominant end member (rock type) making up each
hybrid class does not necessarily match the predominant
lithology where the hybrid classes are found. This means
that the rock mineral composition of wadi bed materi-
als differ from the host rocks where they are eventually
deposited. It also shows the degree of compositional het-
erogeneity of wadi deposits which makes it so difficult to
accurately classify them with medium spatial resolution
images with a limited number of spectral bands.

Comparison of Tables 10.4 and 10.6 further reveals
that as the surface roughness of wadi materials increases
(from pebbles to cobbles and boulders) their composition
seems to shift from rock units that are presently most
prone to erosion (especially carbonates and young gran-
ites) to those rock units that show largely eroded and
therefore less rugged surfaces (older weathered granites)
or are more resistant to erosion (metamorphics and vol-
canics). This finding is also in accordance with the land-
forms and elevations where these rock-units outcrop, with
older granites forming low relief areas in mid-altitude
plateaus and younger granites forming high relief areas
with pronounced peaks in the upper reaches of Wadi
Feiran basin.

Table 10.4 Median backscatter (DN) values of Radarsat-1 and PALSAR
data for each of the five classes with corresponding roughness/grain size
as observed in the field.

Class (colour) Backscatter (median) Roughness and grain size

Radarsat-1 PALSAR

Class 1 (red) 862 1378

Class 2 (green) 1060 1720

Class 3 (blue) 1280 2193

Class 4 (yellow) 1581 2761

Class 5 (cyan) 1913 3698

Smooth (sand, pebble)

Rough (cobble, boulder)

To

Modified after Gaber, Koch and El-Baz (2010).

Table 10.5 Spatial correlation of hybrid classes (ETM+/Radarsat-1 and
ETM+/PALSAR) with main underlying lithological units and mean slope values.

Class (colour) Geology Slope (%)

ETM/Radarsat-1 ETM/PALSAR ETM/RSAT-1 ETM/PALSAR

Class 1 (red) Old granite Old granite 2.50 2.34

Class 2 (green) Old granite Old granite 3.09 3.02

Class 3 (blue) Sedimentary Sedimentary 4.25 4.93

Class 4 (yellow) Young granite Young granite 6.40 9.55

Class 5 (cyan) Metamorphics Metamorphics 9.16 13.22

to

Gentle

Steep
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Table 10.6 Predominant rock composition (end members) within each class produced by unsupervised classification of the
hybrid image.

Classes Carbonate Old granite Young granite Metamorphic Volcanic Predominant EM

1 XXX XX XXX X XX Young granite and carbonate

2 XXXX X XXXX XXX X Young granite, carbonate and metamorphic

3 XXXX XX XXX XXX X Carbonate, young granite and metamorphic

4 XX XXXX XX XX XXX Old granite and volcanic

5 X XXX X XXXX XXXX Metamorphic and volcanic

X = Low, XX = Low to Medium, XXX = Medium to High, XXXX = High and EM = End member.
c© Gaber, Koch and El-Baz (2010) http://www.mdpi.com/2072-4292/2/1/52/ http://creativecommons.org/licenses/by/3.0/.

10.9.7 Conclusions

This case study demonstrates how GIS spatial correla-
tion tools (Value Extraction and Zonal Statistics

Tools in ArcGIS) can assist in the interpretation of unsu-
pervised classification results of multisensor data, in this
case optical and microwave images. The example used in
this classification study is especially complex as it deals
with very heterogeneous materials (wadi bed loads) that
are transported over long distances where they mix and
change in shape and size before finally being deposited
as fine sediments in the coastal alluvial plain. Textural
and compositional characteristics of wadi deposits were
assessed using a combination of RS techniques supported
by GIS statistical analysis to determine the source area
of wadi sediments that are most actively being eroded.

10.10 Remote Sensing and GIS in
Archaeological Studies

10.10.1 Introduction

In the preceding examples we demonstrated the use
of RS and GIS applications in water resources studies.
These types of studies are typically conducted by first
analysing the regional context in which a particular
natural resource occurs before selecting promising areas
where detailed studies, conducted at a local scale, may
reveal additional information about the status and avail-
ability of the resource. Thus, the typical approach in most
geological exploration and resources assessment studies
is firstly to study the natural system as a whole before
focusing on specific target areas for detailed examination.

In archaeological studies, an opposite approach has
been traditionally adopted, in that site-specific studies are
usually conducted first before analysis is undertaken of
the broader environmental context in which they occur.
More recently, however, as geospatial technologies
and high resolution images become more accessible,
archaeologists are increasingly initiating their surveys
with a regional exploration of archaeological sites.

However, one reason for using a local approach first
in archaeological studies is that by studying individual
archaeological sites much knowledge can be gained
about the cultural and natural environment that existed
at the time when these ancient settlements were built
and occupied. Once a number of archaeological sites
are discovered and surveyed, their distribution in space
and time may become a priority research goal as
they may hold important clues in understanding how
humans interacted with their environment and how
the environment may have contributed to the rise and
fall of ancient civilizations. Landscape archaeology
is an important aspect in archaeological studies and
includes the reconstruction of the paleoenvironment and
human–environment interactions.

In this third case study we illustrate the use of RS
and GIS technology in archaeology by presenting two
archaeological field studies conducted in very different
environments. The first example deals with the recent
discovery and exploration of hidden Maya temples under
the thick rainforest of the Holmul region in Guatemala,
and is based on an investigation led by Estrada-Belli
and Koch (2007). In this study, a combination of a
radar derived DEM and multispectral images were used
to pin-point promising areas for detailed surveys. The
second example is located in northern Ethiopia where
an important and powerful civilization (the ancient
Aksumite kingdom) existed for many centuries. The
Aksumites developed a sophisticated system of utilizing
the natural resources (soils, rocks, water) which enabled
them to become an important socioeconomic centre in
the Horn of Africa (Michels, 1979, 1994, 2005). In the
example presented here, RS and GIS tools were utilized
by Sernicola (2009) to map and correlate the distribution
of changing settlement patterns in relation to natural
resources availability.

10.10.2 Homul (Guatemala) Case Study

Homul is an ancient Maya city located in the Petén
region in northeast Guatemala near the Belize border
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Figure 10.35 Map showing the location of ancient Maya cities. Holmul is one of them and is located in northeastern Guatemala
near the border with Belize. Reproduced with permission from F. Estrada Belli, Archaeology Dept, Boston University.

(Figure 10.35). It lies in a wetland area known as
the Maya Lowlands and existed between 1000 bc and
900 ad when it was finally abandoned. The causes for
the collapse of this longest-occupied Maya settlement
remains unclear to the present time, but possible
explanations are destructive wars between rival Mayan
cities, environmental change caused by deforestation and
draining of the wetland areas as well as overpopulation
leading to the depletion of natural resources (Culbert,
1988; Shaw, 2003; Beach et al., 2009).

Detailed mapping of ancient Maya settlements in the
Holmul area has been carried out between 2000 and
2009 by Estrada-Belli and his team utilizing a combi-
nation of RS, field work and test excavations of sample
sites (Estrada-Belli, 2003, 2010; Estrada-Belli and Koch,
2007). The landscape in Holmul is characterized by lime-
stone ridges and basins covered with a thick rainforest
canopy (Figure 10.36). The thick vegetation makes it
extremely difficult to locate buried structures from the
ground as well as from above (Figures 10.37 and 10.38).
Applying standard image processing techniques to optical
imagery does not necessarily reveal the buried pyramids

beneath the forest. However, there are some clues that
may reveal these structures on satellite images. One clue
is that archaeologists know that Mayans built their tem-
ples or pyramids as sacred sites mimicking mountains
and hills, thus creating a topographic rise in an over-
all flat canopy surface. Another clue is that Maya sites
show very characteristic vegetation types and densities
that are well adapted to the type of rocks (limestone)
used as building material for the temples and the thin
soil cover found in these sites (Estrada-Belli and Koch,
2007). In essence, archaeologists use the anomalies in
vegetation colours as proxies for the presence/absence of
buried Maya architecture. These two clues can be used
to identify hidden structures on remotely sensed images
as illustrated in the following paragraphs.

One way archaeologists may discover new Maya
sites is by mapping rainforest texture to locate textural
anomalies caused by trees growing on top of pyramid
structures (man-made hills) that would cause a bump in
the overall flat canopy surface (Sever and Irwin, 2003).
Textural mapping is best done by radar images because
this type of imagery is sensitive to the relative roughness
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Figure 10.36 Three dimensional view of a Landsat ETM+ image showing a sequence of limestone ridges and seasonal wetlands
(bajos shown in pink colours). The location names refer to discovered Maya sites. Deforestation activities are responsible for the
bright colours in the lower right corner. Reproduced with permission from F. Estrada Belli, Archaeology Dept, Boston University.

and smoothness of target surfaces (textural anomalies).
In addition, radar images can be acquired regardless
of cloud cover, an important aspect to consider in
tropical environments.

High resolution DEMs are also very useful in iden-
tifying slight height variations in canopy surfaces. In
this respect, DEMs generated from radar interferometry
(InSAR, Section 9.2) are particularly helpful in rainforest
environments as they are able to detect vegetation height
variations with high precision (Sever and Irwin, 2003).
A DEM generated from airborne STAR-3i radar imagery
of the Holmul region and acquired through NASA’s
Scientific Data Purchase (SDP) programme, was used
to explore the canopy surface for height anomalies
(Figure 10.39). This InSAR DEM has a spatial reso-
lution of 10 m with an absolute vertical and horizontal
accuracy of respectively 3 and 2.5 m and was originally
developed by NASA’s Jet Propulsion Laboratory (JPL)
and operated by Intermap Technologies (Sever and

Irwin, 2003). A shaded relief image was produced from
this high precision DEM and the vertical axis was
exaggerated to enhance very subtle elevation variations
(Figure 10.40). Figure 10.40 shows the rainforest canopy
with groups or individual tree crowns forming a rugged
surface. The most elevated areas in the canopy surface
are promising areas for discovering new Maya pyramids.

In order to predict the location of new undiscovered
Maya sites, a GIS analysis of least-cost pathways across
the Holmul landscape was performed (Estrada-Belli and
Koch, 2007). Least-cost or least-resistance pathway anal-
ysis, as the name implies, consists of calculating the
least-cost path or paths in terms of one or more variables
or quantities between two selected locations. To find the
path, the user computes a friction map in which land-
scape features such as slope and aspect serve as factors
that add cost to movement in any direction. In addition,
a cumulative cost is generated detailing the pixel-by-
pixel accumulation of cost outward from one location
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Figure 10.37 Maya temples in Holmul are hardly visible
from above (aerial photographs or high resolution images) as
well as from the ground because they are overgrown by dense
rainforest vegetation. Reproduced with permission from F.
Estrada Belli, Archaeology Dept, Boston University.

Figure 10.38 Rainforest canopy of the Holmul region viewed
from the top of a Maya pyramid. Elevated areas in the back-
ground are forested limestone ridges. Photo: M. Koch.

to another. The cost feature uses the friction map as a
basis for determining the set of pixels of lowest cumula-
tive cost (or path of least resistance) from the starting to
the stopping location to form a least-cost route.

In the Holmul case, two separate sets of friction maps
were generated as input criteria for the least-cost route
analysis. The first set included the simple terrain features
of slope and aspect. The slope map was reclassified to
reduce the map’s original values of slope expressed in
percentages from 0 to 90%, into friction factors 1–4
(1 = flat, 2 = low gradient, 3 = steep, 4 = very steep).
The aspect map was reclassified to reduce the original
values expressed in compass degrees (0–360) into fric-
tion factors 1–7. The factors were adjusted according to
the direction of movement. For example, for an eastward
route the west-facing side of hills received a factor value
of 7 while the east-facing hillsides were given a factor

Figure 10.39 High resolution radar STAR-3i DEM of Holmul
region. Lowlands (wetlands) are shown in green and highlands
(limestone ridges) in blue and purple colours. Reproduced
with permission from F. Estrada Belli, Archaeology Dept,
Boston University.

Figure 10.40 Vertically exaggerated shaded relief map of
radar STAR-3i DEM highlighting elevated areas in the rainfor-
est canopy in blue colours. These are possible sites of Mayan
pyramids. Reproduced with permission from F. Estrada Belli,
Archaeology Dept, Boston University.

value of 1. All other sides of hills were given a mild
difficulty factor of 2. In this manner an aspect factor map
was generated for each of four directions of movement.
The second set of friction maps included the criteria of
visibility. Areas visible from the destination site were
given a neutral cost factor value of 1, while areas not
visible from the same location received a friction-cost
factor of 7.

The following step included generating a cost map
which would map out the cost of traversing the vari-
ous friction features located on the landscape. This was
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done with an algorithm that calculated the incremental
costs of movement on a pixel-by-pixel basis as measured
from the destination location outwards towards the edges
of the map. In this manner, the cost of crossing any pixel
was multiplied by the relative friction factor for that pixel
and added the initial cost for the next pixel calculation.

The final step was to run an algorithm that searched the
map for the lowest-cost pixels that connected the starting
location to the stopping location. Once located, the lowest
cost pixels were threaded together to form a continuous
path. As an option, the user could request that the pixels
for the generated path represent cumulative cost values
as measured from the starting location.

Through the above described steps, Estrada-Belli and
Koch (2007) generated optimal routes from a number
of random locations along the edges of the map for all
directions, all ending at the site of Holmul (Figure 10.41).
Interesting patterns immediately emerged. First, the var-
ious paths from any particular random point along the
edge of the map quickly converged and followed the
same route into Holmul. As a result, there was really
only one best route for approaching Holmul from each
direction as one came within 5 km from the centre. A
second interesting pattern was that the set of routes gen-
erated according to the visibility criterion also converged
at certain distances from Holmul. In the east, south and
west these location tended to coincide with the edge of the

upland plateau where Holmul’s peripheral centres of T’ot,
Riverona and K’o were situated (Figure 10.42). Each site
was located at approximately 5 km distance from Hol-
mul. Because of these observed regularities in three areas
(south, west and east) Estrada-Belli and Koch (2007)
hypothesized that in the two remaining areas, which had
not been surveyed, to the north and northeast of Hol-
mul, as well, there might be an important ceremonial
centre at the specified location along the optimal path
and at the expected distance of roughly 5 km. In the
following field season Estrada-Belli and his team were
able to confirm these hypothesis by locating the two
ceremonial centres of Hamontun, located to the north-
east of Holmul at 5 km distance and along the visibility-
predicted optimal path, and Hahakab, located to the north
of Holmul at the expected location where the visibil-
ity and the non-visibility paths converged at 4 km from
Holmul (Figure 10.41). The discovery of these two sites
was significant not only because it completed the set of
secondary centres around Holmul, but also because rei-
fied the initial hypothesis according to which secondary
centres were located in locations that controlled land
resources around Holmul and access to the centre from
all directions. The latter function may have served rit-
ual as well as protection purposes. Each of the centres
included a large elite palace, the residence of lesser lords
of the kingdom closely allied with the Holmul rulers.

Hahakab

HamontunCIVAL

Riverona

N

HOLMUL

TOT

YALOCH

NAKUM

Figure 10.41 Digital elevation model generated from a 1:50 000 topographic map showing paths (in red and black) of least
resistance to Holmul (centre) and associated Maya sites. Squares indicate new Maya sites discovered by means of least-cost
route analysis. Reproduced with permission from F. Estrada Belli, Archaeology Dept, Boston University.
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Figure 10.42 Landsat TM image draped over a DEM showing the location of secondary Maya centres around Holmul, most
of them situated along the edges of the upland plateau. Reproduced with permission from F. Estrada Belli, Archaeology Dept,
Boston University.

Aside from the least-cost path, another source of
data led Estrada-Belli and Koch (2007) to locating
the secondary centres of Holmul, a DEM with ground
resolution of 10 m. This dataset was produced by
interferometry on data obtained in 1999 for NASA by
the STAR-3i AIRSAR radar instrument. The elevation
data, when displayed in a three-dimensional tool such
as the NVIZ visualization programme in the GRASS
GIS software (Neteler and Mitasova, 2002) allows the
user to identify anomalies in the ground cover of the
Holmul region. Because the area is uniformly covered
by 30 m tall trees, only the largest of Maya buildings
can be detected using this procedure. These are typically
pyramids and large platforms that range from 10 to
30 m in height and up to 100 m in width. In the radar
imagery groups of tree crowns can be discriminated.
Those trees that grow on pyramids and platforms
appear as anomalous sharp peaks in the forest canopy
(Figure 10.40). Clearly, in many cases, larger tree species
can exist in the forest canopies and these also appear
as peaks in the forest. These are typically rare, such

as the mahogany or the ceiba trees. However, because
these trees grow as individually and are surrounded by
other smaller trees they can be easily separated from
those anomalies reflecting Maya ruins. The pyramids
lie under groups of several trees that appear to be
taller than their surroundings. Using these expedient
procedures Estrada-Belli and his team (Estrada-Belli,
2003, 2010; Estrada-Belli and Koch, 2007) were able to
isolate with high precision the location of several of the
ceremonial centres around Holmul that included large
pyramids and platforms. These included Hahakab and
Hamontun, whose taller structures were observed along
the least-cost paths.

This case study demonstrates that GIS can be suc-
cessfully used in archaeological studies, but (i) a high
level of detailed subject-matter knowledge is required
to define what can or cannot be seen from remotely-
sensed imagery, (ii) a good knowledge of different types
of remotely-sensed data and their properties is essential,
leading to the intelligent use of GIS layers derived from
remotely-sensed data, such as DEMs and their derivatives
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Figure 10.43 Location of Aksum in Tigray region, northern Ethiopia. Data courtesy NASA World Wind.

and (iii) the need to use data that have a spatial resolution
that is appropriate for the phenomena of interest, such as
the Maya temples in this case study.

10.10.3 Aksum (Ethiopia) Case Study

The Aksum region of Tigray province, in the northern
highlands of Ethiopia (Figure 10.43) is of considerable
importance in terms of the development of Holocene
culture in the Horn of Africa. The earliest evidence of
large-scale sedentary settlement in this region dates to the
Pre-Aksumite period (about 800 to 300 bc) when the first
towns and urban centres appeared (Michels, 1979, 1994,
2005). In the centuries that followed, the regional popu-
lation grew and settlements proliferated as the Aksumite
kingdom (about 300 bc to 800 ad) arose and eventu-
ally became a powerful empire with economic ties to
the Graeco-Roman and Indian Ocean worlds (Bard et al.,
2000, 2003; Fattovich et al., 2000; DiBlasi, 2005).

Today, however, Tigray is considered one of Ethiopia’s
most environmentally degraded regions (Feoli, Vuerich
and Woldu, 2002a, 2002b). The ecosystem is very
sensitive to climatic changes and the region as a whole is
prone to severe erosion, depletion of the natural resource
base, and frequent droughts (Feoli, Vuerich and Woldu,
2002a, 2002b; Machado, Pérez-González and Benito,
1998). Despite this region’s important history and its

potential as a study area for investigating the dynamics of
environmental change and degradation, very few system-
atic regional studies have been conducted that integrate
environmental and archaeological research to examine
the history of human-environment interactions that
contributed to Tigray’s current environmental conditions
(see Bard, 1997; Nyssen et al., 2004; Sernicola, 2009).

Geospatial technology tools are opening new opportu-
nities for archaeologists to integrate historical, cultural
and environmental variables. Maps depicting geomor-
phology, hydrology, geology, vegetation and soil can be
generated from satellite images and DEMs, and comple-
mented by field visits. These maps can be used to identify
environmental correlates of settlement and examine how
these have changed through time. One example of such
an approach is currently underway in the Aksum region in
northern Ethiopia by the collaborative efforts of an inter-
national team of researchers from the United States, Italy,
Spain, United Kingdom and Ethiopia (Bard et al., 2000;
Fattovich et al., 2000; Schmid et al., 2008; Ciampalini
et al., 2006; Sernicola, 2009; Sulas, Madella and French,
2009; French et al., 2009).

The integration of GIS landscape analysis techniques
with archaeological research enhances the ability
to understand the history of landscape development
and land use in the Aksum region. By integrating
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Figure 10.44 Proximity analysis of Proto-Aksumite settlements (circa 400 to 50 BC) to water resources (streams and ancient
cisterns) in Aksum, Ethiopia. Background images: Ikonos (inner square) and Landsat TM (outer square). Reproduced with
permission from Luisa Sernicoli, University of Naples ‘‘L’Orientale’’, Dept of African and Arabian Studies, Pzza S. Domenico
Maggiore 12, Naples, Italy.

archaeological settlement distribution data with geoenvi-
ronmental maps in a GIS database, one can reconstruct
and interpret how human populations – ancient and
modern – interacted with the landscape and how those
interactions changed over time. Using such an approach,
archaeologists can model the dynamics of settlement
growth and decline (Billari and Prskawetz, 2003; Dean
et al., 2000). Variables such as distance to a river,
terrain type, accessibility, as well as proximity to other
towns and coasts may play an important role in shaping
settlement patterns. The following paragraphs describe
the GIS correlation analyses carried out in Aksum
mainly by the work of Sernicola (2009).

Aksum – located in the north–central sector of
Tigray region, about 35 km south-west of Adwa
(Figure 10.43) – flourished between the end of the first
millennium bc and the first millennium ad as the capital
city of the Aksumite kingdom. Even though the Aksum
region has been the subject of archaeological study since
the first decade of the twentieth century (Michels, 1979;
Fattovich, 1992; Phillipson, 1998), the detailed recon-
struction of ancient settlement dynamics in the area is a
recent development. In fact, starting in 2000 an intensive

and systematic archaeological survey was initiated with
the aim of providing complete coverage of the entire
Aksum territory (Bard et al., 2000; Fattovich et al.,
2000; Ciampalini et al., 2006; Sernicola, 2009). The
main goal of the survey was to reconstruct the settlement
history of the area in order to provide new insights for
long-term analyses of human–environment interactions
in this region. To this end, archaeological surveys
and environmental studies have been supplemented by
GISs analyses.

Quantitative and statistical analyses were conducted by
querying archaeological records that were surveyed and
stored in a GIS database. The database consisted of a
vector file with the location of 700 surveyed archaeo-
logical sites and linked to several attribute tables with
information on site location and description, typology
and density of surface artefact assemblages and cultural
and chronological attributions. This database was used
to model the changes in settlement density, settlement
dimension and location throughout the different cultural
phases. For instance, the Nearest Neighbour spatial
statistic tool available in the ArcGIS software was used to
evaluate the type of settlement distribution (clustered or
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Figure 10.45 Location of Proto-Aksumite settlements (circa 400 to 50 BC) with respect to soils and rock types. More productive
soils are generally those developed from syenite rocks (light violet class = vegetated colluvium/syenite) as they are rich in
clay minerals. A supervised classification of ASTER image was used to obtain the surface lithology map (Schmid et al., 2008).
Reproduced with permission from Luisa Sernicoli, University of Naples ‘‘L’Orientale’’, Dept of African and Arabian Studies,
Pzza S. Domenico Maggiore 12, Naples, Italy.

dispersed) during the different cultural phases. This was
done by measuring the distance between each site cen-
troid and its nearest neighbour’s centroid location, and
by comparing the resulting average with the average of
a hypothetical random distribution.

Factors that are commonly identified as being signif-
icant in the establishment of agricultural settlements in
the Tygrean plateau of northern Ethiopia include water
sources for domestic uses and animals, and soil fertility
(Sulas, Madella and French, 2009; Sernicola and Sulas,
in press). Therefore, proximity analyses like Buffer

and Multiple Ring Buffer (in ArcGIS) were used to
investigate whether settlement locations were selected
according to water and productive soils availability. In
the first case, buffer polygons were created around the
sites of each phase (e.g. Proto-Aksumite sites shown in
Figure 10.44) to a specified distance of 250 m (which
is commonly adopted for catchment analyses conducted
on sedentary rural settlements) in order to evaluate their
proximity to rivers, streams or ancient water cisterns.
In the second case the same type of buffer polygons
was created around the settlements and analysed using

as background the soil map elaborated by means of
remotely sensed data coupled with ground surveys
(Figure 10.45) (Schmid et al., 2008).

Finally, viewshed analysis available in the 3D Ana-

lyst extension of ArcGIS software was used to evaluate
the visibility of a specific category of Middle Aksum-
ite (about 350–550 ad) monuments traditionally called
‘Mestah Worki’ within the surrounding landscape. The
results from the archaeological excavations conducted in
one of the four Mestah Worki found in the Aksum terri-
tory suggest that this type of monuments represents a
ritual structure, however, the occurrence of coins and
tokens suggest that administrative activities were also
performed at these sites (Fattovich, 2005). This hypoth-
esis seems also to be confirmed by the local traditional
name given to these monuments; that is Mestah Worki
means ‘the place where gold is spread’. The prominent
position, the chronological classification, the occurrence
of both ritual features and administrative devices, and the
local name suggest that this type of structure, located in
the northern sector of the plain of Aksum (Figure 10.46),
played an important role as a landmark of the territory



374 Computer Processing of Remotely-Sensed Images: An Introduction

E
Mestah Worki buildings

OuchateOuchate
GoloGolo AsbahAsbahAsbah

AksumAksumAksum

AkeltegnaAkeltegnaAkeltegna

GazaGaza
MerchanMerchan

Gaza
Merchan

Ouchate
Golo

N

W

S

1.000 500 0 1.000 Meters

Figure 10.46 Viewshed analysis showing the visibility ranges (in beige) from four selected Middle Aksumite (circa 350–550 AD)
monuments traditionally called ‘Mestah Worki’ and located along the four main valley systems leading to Aksum. Background
images: Ikonos (inner square) and Landsat TM (outer square). Reproduced with permission from Luisa Sernicoli, University of
Naples ‘‘L’Orientale’’, Dept of African and Arabian Studies, Pzza S. Domenico Maggiore 12, Naples, Italy.

and perhaps as a place where foreigners or members of
the Aksumite kingdom paid their tributes to the ‘King of
the Kings’ of Aksum (Sernicola, 2009). Similar functions
were probably carried out by all the other Mestah Worki
found in the Aksum territory.

In order to determine the viewable areas from the four
Mestah Worki monuments, Sernicola (2009) draped a
Landsat TM satellite image over a DEM that was pre-
viously produced by digitizing and interpolating 20 m
spaced contour lines from a 1:50 000 topographic map of
the area. The Viewshed tool was then applied to identify
the cells that could be seen from any one of the four Mes-
tah Worki which were selected as the observer points with
their respective heights as measured in the field with a
hand-held GPS receiver (Figure 10.46). This type of GIS
analysis seems to confirm the interpretation given to Mes-
tah Worki monuments because of the prominent position
and location of these structures right at the entrance of
the four main valley systems leading to the capital city of
Aksum from the west, north-west, north and north-east.
Such data, together with the information resulted from the

excavations of the Mestah Worki at Akeltegna (Fattovich,
2005), might give new insights into the interpretation of
this still poorly known category of monuments (Michels,
2005; Sernicola, 2009).

10.10.4 Conclusions

Geospatial technologies are becoming an integral part
in archaeological studies, primarily because of two
reasons: (i) it is a non-destructive survey method which
enables studying the sites while preserving them; and
(ii) it is a tool that enables the integration of detailed
excavation results with regional landscape studies.
From the very beginning of GIS and RS development,
archaeologists understood very well the great value of
this mapping and analysis tool. In fact, archaeology
was one of the first disciplines in exploring the use of
aerial photography as a survey method in archaeological
site investigations. Only recently has satellite imagery
been adopted as a standard mapping and survey data
source in archaeology, mainly because of the increased
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spatial resolution of recent satellite sensors that enables
studying archaeological structures at submetre levels.
Other characteristics of RS sensors, such as thermal
and microwave sensing capabilities are also increasingly
being adopted in archaeological studies because of their
capability of detecting and mapping subsurface structures
that are not necessarily visible from the ground. These
types of sensors can play an important role in guiding
and limiting ground excavation efforts, and by doing so
are crucial in site preservation and maintenance.

From the practical examples illustrated in this chapter,
it is clear that recent developments in RS and GIS
technologies are ever more becoming intertwined as
both offer complementary information sources as well
as analysis tools. For additional application examples in
RS the reader is referred to the MIPS exercises included
in the publisher’s web site, www.wiley.com/go/mather4.





Appendix A

Accessing MIPS

MIPS is a software package written by the senior author
to implement many of the procedures described in this
book. It is written mainly in Silverfrost Fortran 95, but
some of the routines are compiled using Microsoft’s
Visual C++. Earlier versions were distributed on CD
with the second and third editions. The latest edi-
tion of MIPS can now be downloaded by ftp from
www.wiley.com/go/mather4. Simply download the file
mips.zip into a temporary folder, say C:\mips_temp,
and then use an unzipping program to unpack the files
from mips.zip, so that folder C:\mips temp holds
the zip file and its components. Arrange the files and
subfolders according to type, and double click on the
file install_mips.exe.

The MIPS installation program will then start. It was
written when MIPS was distributed on CD so some ref-
erences to CDs will be found – simply think of the folder
C:\mips temp as holding the contents of the CD. You
will then be asked to provide three pieces of informa-
tion. The first is the install folder, or the name of the
folder which is to contain all the MIPS executable files,
plus the help and image subfolders. This install folder
will be created for you. Unless you know what you are
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doing, enter C:\mips as the name of the install folder.
Second, you must provide the name of the source folder.
This is the folder into which mips.zip was unzipped,
namely, C:\mips_temp. Finally, provide your name (ask
someone if you don’t know).

Press the Install button and you will be guided through
a sequence of not-very-difficult questions. Quit the install
program and read Appendices B and C of this book before
proceeding.

MIPS has run successfully on Windows 2000, Win-
dows Vista, Windows XP and Windows 7. However, the
author cannot guarantee that it will work on any computer
or operating system, and further states that the software
comes without warranty, express or implied. It should
only be used for teaching and research purposes.

Several exercises are contained in an Examples folder
on the web site. These are pdf files prepared by Dr Koch
and illustrating the use of MIPS in a series of case studies.
The data for these case studies is also provided, as are
the figures used in the examples. These figures are saved
in TIFF and JPEG formats and can easily be converted
to PowerPoint presentations.





Appendix B

Getting Started with MIPS

The MIPS installation folder contains a text file called
readme.txt. This file can be opened with Windows
Notepad, and it contains all the information you
need to install MIPS. In these worked examples, it is
assumed that you have a directory structure as shown in
Figure B.1. MIPS also creates a file called mymips.ini

in your Windows directory (usually C:\windows). You
should never edit or delete this file. File readme.txt

also contains instructions on how to create a short-cut
icon on your desktop to access MIPS. Assuming that you
have created a short-cut icon on the Windows desktop,
double-click on it and MIPS will start. First, accept the
licence agreement. Next, note carefully the warning that
MIPS allows a maximum of eight image windows to
be open at any one time, that the maximum path plus
filename length is 200 characters and that some modules
refuse to accept paths/filenames with embedded blanks.
Finally, use the Open File Dialog Box1 to create a
log file to hold details of your MIPS session. Remember
that you can get help by clicking Help|Help on the main
menu bar.

Before proceeding to display an image, we need to
understand the way in which MIPS references and stores
image data. The original MIPS format uses an image
dictionary file to store the names (and other details) of one
or more related image files (an image data set). Each of
these image files is stored separately. In order to provide
compatibility with the ENVI image processing software,
a second storage format was added. This uses a single
file to hold all of the image data (with band 1 preceding
band 2, etc.). Such a file is said to be in band-sequential
or BSQ format. Associated with the BSQ file is a header
file with the suffix .hdr. Finally, a standard MIPS INF

1Some of the modules making up MIPS were compiled using Microsoft
Visual C++ (VC). The version of VC used here does not allow spaces
embedded in file or directory names so it is probably best to use under-
scores (_) to replace spaces.
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Drive C:

C:\MIPS\HTML
(Help files)

C:\MIPS\IMAGES
(INF files and images

data sets)

C:\MIPS
(program files)

Figure B.1 Folders in MIPS. The main folder,c:\mips, holds
the executable programs (MIPS plus ancillary programs). The
subfolder c:\mips\help stores the HTML files associated
with the MIPS Help function while c:\mips\images holds
a selection of images that are described in Appendix C.

file provides access details. The two methods of storing
and referencing image data sets are shown in Figure B.2.

The MIPS toolbar is automatically switched on when
you start MIPS for the first time. You can switch it on
and off via the Toolbar menu item. MIPS remembers
whether the toolbar is on or off at the end of the previous
session. Some people like it; others don’t, so you can
customize it to suit your own tastes.

Either click the ‘eye’ icon on the toolbar (there is
‘tooltip help’ to identify the icons – just leave the cursor
over the ‘eye’ for a second or two) or select View|View
Image. Select c:/mips/images as your default folder.
A list of MIPS INF files is provided in the Open File

Dialog Box. Select litcolorado.inf. This INF file
references a traditional MIPS image set. First, provide
a title for the window (such as Little Colorado River).
Then select False Colour from the drop-down list, and
finally highlight and select the three image files to be
combined to form a false colour image (this is done three
times in RGB order, once for each of the three selected
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MIPS INF FILES
Stores images filenames, image size
and other information

MIPS INF FILES
Stores images filenames, image size
and other information

Image File 1

Image File 2

Image File 3

Header File

BSQ or BIL
Image File

Figure B.2 Showing the two types of INF file. The left-hand
INF file holds details about the image dataset, and also stores
the filenames of the original image bands. There would, for
example be seven filenames (and paths) for a Landsat ETM+
image. The right-hand INF file stores the image data in one
file (band sequential or band interleaved by line) and so holds
one filename (plus image information). Also, there is a header
file which is included for compatibility with the ENVI software
package. ENVI will access the header and image files and so
datasets can be swapped easily.

files). I selected bands 7, 4 and 1 in that order. There
is a pause while the data are read from disc, and a win-
dow then opens with the title ‘Little Colorado River’, and
your false colour image is displayed. You may move the
window around, or minimize it.

Now open LaManchaETM.inf. You will see an infor-
mation message, telling you that this INF file references
an ENVI 8-bit data file (8-bit means 256 levels). You can
also see the size of the image file (512 lines × 512 pixels
per line × 6 bands). Click OK. Now provide a window
caption (for example ‘La Mancha’), again select False
Colour as the display type, and finally enter three file
identification numbers in RGB order. These file identi-
fication numbers are the positions of the image files in
the band sequential image data file. A value of 1 means
the first image in the bsq file. Since there are six bands
stored in the file LaManchaETM bsq, we cannot input a
number greater than 6 or less than 1. I selected 4, 3, 2
(TM bands 4, 3 and 2) and, after a short pause while
the data are read from disk, a window with the title ‘La
Mancha’ appears, containing a false colour image.

Try to display a selection of images from the
C:\mips\images directory. You should practise moving
the windows around, closing them, minimizing them,
and generally familiarizing yourself with starting the
MIPS program and displaying both greyscale and false
colour images.

Exit MIPS either by using the EXIT icon on the tool-
bar or clicking File|Exit. You do not need to close the
windows containing the images before you exit, but it
may sometimes be useful to close all of them at once. To
do this, select File|Close All Windows.



Appendix C

Description of Sample Image Datasets
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Using the Image Datasets

The images listed below are contained in the subfolder
mips/images in the installation file. When the installa-
tion starts, an opening page is displayed, and you can
select install MIPS from the main menu. The MIPS
installer gives you the option to transfer the example
image files from the installation file to your hard disk.
If you select this option then all of the image dictionary
(INF) files, as described in Appendix B, are changed so
that the new location of the image datasets is correctly
recorded. This is the easiest option.

Alternatively, you can use Windows Explorer to
copy the /images subfolder from the installation file to
your hard disk (let’s say you choose to move them to
C:/mips/images). The image dictionary (INF) files will
need to be updated, as they are set up to operate from
my CD drive, which has the drive letter G. For example,
the rio.inf file contains the following information:

IMAGE
G:/images/rio1.img
G:/mages/rio2.img
G:/images/rio3.img
G:/images/rio4.img
G:/images/rio5.img
G:/images/rio6.img
G:/images/rio7.img
-1 -1

255 255 255 255 255 255 255

5 8 1985

{Blank Line}
G:/images/rio.hst

{Blank Line}
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Note that the expression {Blank Line} means leave a
blank record.

If I want to move this INF file manually to the
C:/mips/images folder then I must firstly copy it from
its location at G:/images to C:/mips/images using
Windows Explorer then edit it so that it looks like this:

IMAGE
C:/mips/images/rio1.img
C:/mips/images/rio2.img
C:/mips/images/rio3.img
C:/mips/images/rio4.img
C:/mips/images/rio5.img
C:/mips/images/rio6.img
C:/mips/images/rio7.img
-1 -1

255 255 255 255 255 255 255

5 8 1985

{Blank Line}
C:/mips/images/rio.hst

{Blank Line}

There is a MIPS module under File|INF File

Operations that will do these changes automatically. It
will only work with ‘classic’ INF files, and not with the
newer type of INF file. See the online Help in MIPS for
more details.

Descriptions of Image Datasets
Included on the CD

1. Mississippi River1

2. Little Colorado River1

3. London1

4. Paris1

5. San Joaquin Valley, California1

6. Morro Bay, California1

7. Candlewood Lake, Connecticut1

8. Rio de Janeiro, Brazil1

9. Nottingham4

10. Chott el Guettar, Tunisia5

11. Gregory Rift Valley, Kenya5

12. Littleport, Cambridgeshire2

13. Los Monegros, NE Spain2

14. Fry Canyon, Arizona/Utah2

15. Tanzanian Coast5

16. The Camargue, France4

17. Red Sea Hills, Sudan5

18. Radarsat images: East Anglia, The Netherlands,
Indonesia and western Canada3

19. AVHRR browse data, Australia
20. Landsat TM, The Wash, eastern England2

1. Mississippi River: The centre latitude and longi-
tude of this Landsat TM image set is 34◦46′N,

90◦27′W, a point to the south-west of Memphis,
Tennessee. The date of acquisition is 13 January
1983. The image has 512 rows, 512 columns and
7 bands. The image set is referenced by the file
missis.inf.

2. Little Colorado River: The centre latitude and lon-
gitude of this Landsat TM image set is 36◦12′N,

111◦47′W, to the east of the San Francisco peaks,
Arizona. Here the Little Colorado River flows NNE
across the Painted Desert. The date of acquisition
is 24 August 1985. The image has 512 rows, 512
columns and 7 bands. The image set is referenced
by the INF file litcolorado.inf.

3. London: This Landsat TM image set covers the
centre of London (51◦30′N, 0◦20′W). The date of
acquisition is 18 August 1984. The image has 512
rows, 512 columns and 7 bands. The image set is
referenced by the INF file london.inf.

4. Paris: This Landsat TM image set covers the centre
of Paris (48◦50′N, 2◦20′E), and was acquired on 9
May 1987. The size of the mages is 512 lines of
512 pixels. The image set is referenced by the INF
file paris.inf.

5. San Joaquin Valley, California: The centre of
this Landsat TM image set is at the point 35◦11′N,

119◦06′W, near Fresno, California. The date of
acquisition is 15 September 1986. The image has
512 rows, 512 columns and 7 bands. The image
set is referenced by the INF file san-joaq.inf.

6. Morro Bay, California: The centre of this Landsat
TM image set is at the point 35◦21′N, 120◦49′W, to
the north of San Luis Obispo, California. The date
of acquisition is 19 November 1984. The image has
512 rows, 512 columns and 7 bands. The image set
is referenced by the INF file morrobay.inf.

7. Candlewood Lake, Connecticut: The centre of this
Landsat TM image set is at the point 41◦30′N,

73◦30′W, in the state of Connecticut. Two image
sets are provided. The first was acquired in the sum-
mer, on 10 June 1984, and the second in autumn, on
9 October 1986. Both images have 512 rows, 512
columns and 7 bands. The summer image set is ref-
erenced by the INF file cans.inf and the autumn
(fall) data are referenced in canf.inf.

8. Rio de Janeiro, Brazil: This Landsat TM image
set shows the city of Rio de Janeiro, Brazil (23◦S,

43◦W), and its surroundings. The date of acquisition
is 5 August 1985. The image has 512 rows, 512
columns and 7 bands. The image set is referenced
by the file rio.inf.

9. Nottingham: This multispectral SPOT image
covers the area around the city of Nottingham
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(52◦50′N, 1◦10′W). The image has 1024 rows and
1024 columns. The date of acquisition is unknown.
The name of the file that references this image set
is notspot1.inf.

10. Chott el Guettar, Tunisia: The Chott el Guettar is
a dry saline lake located near 33◦50′N, 8◦30′E in
Tunisia. The area shown on this 512 × 512 pixel
subimage covers part of the salt lake bed, with the
southern slopes of the Djebel Ortaba to the north
of the lake. The main road from Gabes to Gafsa
runs along the northern side of the saline lake in a
general NW-SE direction. Three Landsat TM bands
(2, 3 and 4) are provided, and these are referenced in
the file egmar.inf. The date of image acquisition
is not known.

11. Gregory Rift Valley, Kenya: This TM image set
contains threeLandsat TM bands (3, 5 and 7) and
is 512 × 512 pixels in size. The Gregory rift val-
ley is part of the East African Rift system. The
area shown on this image lies to the north of Lake
Baringo and south of Silali volcano, at approxi-
mately 1◦N, 36◦E. This area is sparsely vegetated
and several lava flows of different ages and com-
positions are clearly apparent. The eroded area to
the west of the small volcanic cone visible in the
lower right of the image is a pyroclastic deposit.
Alluvial areas extend on either side of the river
that flows eastwards across the northern part of the
image area. The image acquisition date is 30 July
1884. The three TM bands are referenced by the
file kenya.inf.

12. Littleport, Cambridgeshire: The small town of
Littleport is located about 5 km north of the city of
Ely, Cambridgeshire, UK, at 52◦25′N, 0◦20′E. The
main features of the area shown on the image are the
River Ouse, running NE on the right-hand side of
the image, and the parallel Old and New Bedford
Rivers, also running in a NE direction. This area
is low-lying (around sea level) and flat. The blue
areas on the band 432 colour composite are either
ploughed fields or towns and villages. The main
crops in this fertile region of the Fens are wheat,
barley and sugar beet. The image area contains a
few small clouds and associated shadows. Six of
the seven Landsat TM bands are included (band 6
is excluded). Image size is 512 × 512 pixels. The
file for this image set is littlept.inf.

13. Los Monegros, NE Spain: The Los Monegros
region lies in the Spanish province of Aragon.
It is a semi-arid and sparsely populated upland
region, with an average altitude of 350 m. Recent
developments include the building of irrigation
canals to bring water for agriculture from the
Flumen river system to the north of the area shown

on this Landsat TM image, acquired on 7 July
1997. The image covers the area between the
village of Bujaraloz (in the top right corner of
the image) and the northern slopes of the Ebro
Valley. The approximate latitude and longitude of
the image centre are 41◦30′N and 0◦15′W. The
Laguna la Playa, which is generally dry in summer,
lies to the south of Bujaraloz. The southern part
of the area is mainly dryland farming (wheat and
barley). The north-west part of the image covers a
dissected upland area covered by low coniferous
trees. Bands 1–7 of this Landsat TM image are
referenced by the file LosMoneg97.inf. Bands
1–5 and 7 of a Landsat TM sub-image, acquired
in 1991 and covering approximately the same area,
is referenced in LosMoneg91.inf. Differences
between the 1991 and 1997 images are due to
changes in agriculture, including crop rotation and
extension of the ploughed area, and differences in
the weather conditions in the days preceding image
acquisition. The period before the 1997 image was
acquired was particularly wet.

14. Fry Canyon, Arizona/Utah: This four-band Land-
sat MSS image has been sub-sampled (taking every
sixth pixel on every fourth line). It covers the area
from the north of the Grand Canyon in Arizona
(around the latitude of the city of Page) to the
Canyonlands National Park, south of Moab, Utah
(approximate centre position: 36◦N, 111◦W). Lake
Powell is a prominent water feature in the south
of the region. The main tributary of the Colorado
River, the San Juan, joins near the northern end
of Lake Powell. The upland areas to the west
of the Colorado include the snow-covered Henry
Mountains (well-known to readers of John Wesley
Powell’s famous monograph on their geology
and geomorphology), the Waterpocket Fold, the
Kaiparowitz Plateau and Smoky Mountain. Navajo
Mountain lies to the south of the Colorado–San
Juan confluence. The mountain ridges are vegetated,
mainly by low trees, and the lowland areas are
semi-arid. The file fry.inf references four Landsat
images, the MSS bands labelled 4, 5, 6 and 7.

15. Tanzanian Coast: This three-band Landsat MSS
image set covers an area of the Tanzanian coast
south of Dar-es-Salaam and north of Mafia Island,
at a latitude and longitude of 7◦30′S, 39◦25′W. The
northern part of the coast is fringed with coral reefs,
and a small coral island is apparent in the lower
centre of the image. The reddish colours over the
land indicate forest. Brownish and whitish areas
have been cleared. The coastal waters are clear, and
the colour variations here refer to water depth as
the light in MSS bands 4 and 5 is reflected from
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the sea bed. The edge of the continental shelf is
clearly visible. This image set is 512 × 512 pixels
in size and is referenced by tanzcoas.inf. Note
that Landsat MSS bands 4, 5 and 7 are provided,
and that the dynamic range of these bands is 7-bit
for bands 4 and 5, and 6-bit for band 7.

16. The Camargue, France: Two SPOT multispectral
images, each of 512 × 512 pixels, show the area to
the north of the town of Tarascon in the Camargue
area of the Rhône delta in the south of France
(43◦50′N, 4◦45′E). The first image set (referenced
by camarg.inf) was collected on 12 January 1987.
The second (camarg1.inf) was collected on 17
January of the same year. The two image sets show
the changes that occurred between these two dates,
largely the result of a comprehensive snowfall.
These images are extracts from a demonstration
CD (‘SPOT Scene’) produced by SPOT Image.

17. Red Sea Hills, Sudan: The Red Sea Hills are
located in eastern Sudan (between 18◦ and 19◦N
latitude and around 36–38◦E longitude). The area
is described by Koch and Mather (1997; see also
Mather, Tso and Koch, 1998) as a 200 km wide
range of mountains, rising steeply from the coastal
plain to elevations of 1000 m and more. The sandy
Nubian Desert lies to the west. The upland area
is heavily dissected by a network of drainage
channels called khors. The underlying rock is
volcanic and granitic, with some limestone areas,
and is heavily faulted with the main directions of
faulting being N–S, with a subsidiary E–W trend.
Two image sets are provided. One is a degraded
version of a Landsat TM image from 1984, which
has been resampled at a 6-pixel interval in both
rows and columns and then padded with zeros to
give an image size of 1024 × 1024 pixels. The
second is a full resolution extract from the same
image, and is also 1024 × 1024 pixels in size. The
degraded image is referenced by the dictionary file
sudanlo.inf, while the full resolution image is
referenced by sudanhi.inf.

18. Radarsat Images: Four Radarsat image sets
are included on this CD. Each of the images
is c© Canadian Space Agency/Agence spatiale
canadienne, and was received by the CCRS
and processed and distributed by RADARSAT
International. The image dictionary files hengelo.
inf, indonesia.inf and okanagan.inf each
reference a single RADARSAT SAR image which
is 512 × 512 pixels in size. The hengelo image
covers an agricultural area near the town of
Hengelo, in The Netherlands. The indonesia

image shows a volcanic peak on the island of Java,
while the okanagan image is of a forested area
around Okanagan in British Columbia, Canada. The
east_anglia.inf image dictionary file references
four Radarsat images, each 512 × 512 pixels in
size, covering an area of East Anglia (UK) to the
south-west of Lakenheath. These four images were
collected at different times during the crop-growing
season. They have been geometrically corrected,
and can therefore be overlaid. Colour differences
then indicate differential growth, which affects
the back-scattering properties of the surface. I am
grateful to Mr. G. Gill for providing these images.

19. AVHRR, Australia: This is a browse image of
a five-band NOAA-14 scene covering parts of
New Guinea, Northern Territory and Queensland.
The area of the image is approximately 2000 by
4500 km, giving a pixel size of around 5 km across
the scan lines (columns) and 4 km in the along-
track (row) direction. The date of image capture
was 20 July 1996 at 04.31 GMT. I am grateful to
Susan Campbell of the CSIRO Earth Observation
Centre (EOC), Canberra, Australia, for her help in
providing the image data. The data were collected
by the Australian Institute of Marine Science
(AIMS) in Townsville, Queensland. The scale of
this image is roughly that of the Global Area
Coverage (GAC) data, and shows the problems
involved in obtaining cloud-free NDVI composites
from daily AVHRR data. The image dictionary file
for this image set is avhrr.inf.

20. Landsat TM, The Wash, eastern England: Four
of the seven TM bands are included in this image
extract – bands 2, 3, 4 and 5. The image size is
707 scan lines with 800 pixels per line. The image,
which has been geometrically registered to the UK
National Grid, covers the southern end of The
Wash, a shallow area of sea on the east coast of
England. The Great Ouse River passes through the
town of Kings Lynn before discharging into The
Wash. To the north-west of the river the coastal
lands are salt marshes and reclaimed marshland,
which provide excellent agricultural land. King
John of England lost his country’s treasury in these
marshes in the early thirteenth century. It has never
been recovered. The area to the east of the river
is more undulating with forested low hills, within
which Sandringham House, one of HM Queen
Elizabeth II’s residences, is located. The four TM
bands for this 1990 image are referenced by the
INF file wash90.inf.
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Acronyms and Abbreviations

ADEOS Advanced Earth Observing Satellite (Japan)
ALI Advanced Land Imager (NASA)
ALOS Advanced Land Observing Satellite (Japan)
ANN Artificial neural network
ASAR Advanced SAR (Envisat)
ASTER GDEM ASTER Global DEM
ASTER Advanced Spaceborne Thermal Emission and ReflectiveSpectrometer
ATREM ATmospheric REMoval (model)
AU Astronomical Unit
AVHRR Advanced Very High Resolution Radiometer
AVIRIS Airborne Visible and Infrared Spectrometer (JPL)
BDRF Bidirectional Reflectance Distribution Function
BIL Band Interleaved by Line
BIP Band Interleaved by Pixel
BNSC British National Space Centre (now UK Space Agency)
BSQ Band Sequential
BU-CRS Boston University Center for Remote Sensing
CCD Charge Coupled Device
CEOS Committee on Earth Observation Satellites
CHRIS Compact High Resolution Imaging Spectrometer
CNES Centre National d’Etudes Spatiales (French Space Agency)
CO2 carbon dioxide
COSMO/Skymed COnstellation of small Satellites for Mediterranean basin Observation
CW Continuous Wave
CZCS Coastal Zone Colour Scanner
DAIS Digital Airborne Imaging Spectrometer
DEM Digital Elevation Model
DFT Discrete Fourier Transform
DInSAR Differential INSAR
DIODE Détermination Immédiate d’Orbite par DORIS Embarqué (Instantaneous determination

of orbit using onboard DORIS)
DLG Digital Line Graph
DLR German Space Agency
DORIS Doppler Orbitography and Radiopositioning Integrated by Satellite
DSM Digital Surface Model
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DT decision tree
DWT Discrete Wavelet Transform
DXF Drawing Exchange Format
EIFOV Effective Instantaneous Field Of View
EME ElectroMagnetic Energy
EMR ElectroMagnetic Radiation
EO-1 Earth Observing Mission 1 (USA)
ERE Effective Resolution Element
ERS European Remote sensing Satellite
ESA European Space Agency
ESRI Environmental Systems Research Institute
ETM+ Enhanced Thematic Mapper Plus (Landsat-7, USA)
FFT Fast Fourier Transform
FOV Field of View
FWHM Full Width Half Maximum
GCM global circulation model
GCP Ground Control Point
GDEM Global DEM (ASTER)
GIS Geographical Information System
GLAS Geoscience Laser Altimeter System
GLCM Grey Level Co-occurrence Matrix
GPS Global Positioning System
GRASS Geographic Resources Analysis Support System
H2O water/water vapour
HRG High Resolution Geometric (SPOT)
HRS High Resolution Stereoscopy (SPOT)
HRV High Resolution Visible (SPOT)
HRV-IR High Resolution Visible and InfraRed (SPOT)
HSI Hue-Saturation-Intensity
HSV Hue-Saturation-Value (same as HSI)
HyMap Hyperspectral Mapper
ICESat Ice, Cloud and land Elevation SATellite
ICA Independent Components Analysis
ID IDentifier
IEEE Institute of Electrical and Electronic Engineers
IFOV Instantaneous FOV
IGARSS International Geoscience and Remote Sensing Symposium (IEEE)
InSAR Interferometric SAR
IR Infrared
IRS Indian Remote Sensing Satellite
ISPRS International Society for Photogrammetry and Remote Sensing
ISS International Space Station
JERS Japanese Earth Resources Satellite
JPL NASA Jet Propulsion Laboratory, Pasadena, California
LAI Leaf Area Index
LDCM Landsat Data Continuity Mission
Lidar Light Detection and Ranging
LISS Linear Self Scanning Sensor (India)
m metre
MAD Median of Absolute Deviations
MCDA Multiple Criteria Decision Analysis
MISR Multi-angle Imaging SpectroRadiometer (US)
MODIS Moderate Resolution Imaging Spectrometer
MOS Marine Observation Satellite (Japan)
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MSS Multispectral Scanner
MTF Modulation Transfer Function
NASA National Aeronautics and Space Administration
NPOESS National Polar-orbiting Operational Environmental Satellite System
NDVI Normalised Difference Vegetation Index
NEST Next European Space Agency Synthetic Aperture Radar Toolbox
NEXRAD Next Generation Radar (NOAA)
NIR Near Infrared
NLM NonLinear Mapping
nm nanometre
NOAA National Oceanic and Atmospheric Administration (USA)
O2 oxygen
OCTS Ocean Colour and Temperature Sensor
OO Object Oriented
OSAVI Optimized Soil-Adjusted Vegetation Index
OSTM Ocean Surface Topography Mission
PALSAR Phased Array L-band SAR (ALOS)
PCA Principal Components Analysis
PPI Pixel Purity Index
PRARE Precise Range and Range Rate Equipment
PSF Point Spread Function
PV Pixel Value
PVI Perpendicular Vegetation Index
Radar Radio Detection and Ranging
RAM Random Access Memory
RGB Red-Green-Blue
RMSE Root Mean Square Error
RS Remote Sensing
SAM Spectral Angle Mapping
SAR Synthetic Aperture Radar
SAVI Soil Adjusted Vegetation Index
SeaWIFS Sea-viewing Wide Field of View Sensor (USA)
SG Savitzky–Golay
SHOALS Scanning Hydrographic Operational Airborne Lidar Survey
SIR Shuttle Imaging Radar
SLAR Side-Looking Airborne Radar
SLC (i) scan line corrector (Landsat ETM+) (ii) Single-Look Complex (SAR image)
SLIM-6 Surrey Linear Imager-6
SOM Self Organising Map
SPOT Satellite Pour l’Observation de la Terre (Earth Observation Satellite) (France)
SRTM Shuttle Radar Topographic Mission
SSTL Surrey Space Technology Ltd.
SVD Singular Value Decomposition
SVM Support Vector Machine
SWIR ShortWave InfraRed
TDRS Tracking and Data Relay Satellite System
TIFF Tagged Image File Format
TIN Triangulated Irregular Network
TIR Thermal Infrared
TM Thematic Mapper (Landsat-5, USA)
TSAVI Transformed Soil-Adjusted Vegetation Index
TRMM Tropical Rainfall Mapping Mission
UAE United Arab Emirates
UAV Unmanned Aerial Vehicle
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USGS United States Geological Survey
UT Universal Threshold
VI Vegetation Index
VIIRS Visible/Infrared Imager Radiometer Suite
VIS VISible
VNIR Visible and Near Infrared
Wm−2 sr−1 Watts per square metre per steradian
Mm micrometre
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nel paesaggio rurale di Aksum: dati archeologici, etnografici e
ambientali, in Studi in Onore di Yaqob Beyene, Studi African-
istici – Serie Etiopica , Vol. 7 (eds C. Baffioni, A. Bausi,
F. Ersilia, and A. Manzo), Università degli Studi di Napoli
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6S model 115
absorption 15, 17
absorption bands 22
accuracy, of ground control points 104
active sensor 12
Adaboost 272
adaptive filter 209
adjacency effect 113
Advanced Spaceborne Thermal Emission

and Reflection Radiometer (ASTER)
50, 52–56, 69

Advanced Synthetic Aperture Radar
(ASAR) 61, 63, 288–289

Advanced Very High Resolution
Radiometer (AVHRR) 41 et seq., 69

Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) 285, 298

Aksum (Ethiopia) case study 371–375
albedo 15
algorithm, choice of 80–81
Along-Track Scanning Radiometer

(ATSR) 40–41
along-track stereo viewing 50
amplitude 7–8, 173–174, 290
amplitude, computation of 177
amplitude spectrum, two-dimensional 175
ANN, see artificial neural network
apparent radiance 118
archaeological analysis, using RS/GIS

365–375
artificial neural network 251–254
artificial neural network, hidden layer 251
artificial neural network, learning rate 252
ASAR, see Advanced Synthetic Aperture

Radar
aspect 334, 368
ASTER, see Advanced Spaceborne

Thermal Emission and Reflection
Radiometer

ASTER global DEM (ASTER GDEM)
94, 343

ASTER spectral library 21
ASTER, radiometric calibration 120–121
Astronomical Unit (AU) 120
Atlas 52
atmospheric correction 87, 112–117
atmospheric correction, Chavez’s method

114
atmospheric correction, empirical line

115–116

Computer Processing of Remotely-Sensed Images: An Introduction, Fourth Edition Paul M. Mather and Magaly Koch
c© 2011 John Wiley & Sons, Ltd

atmospheric correction, image-based
methods 114

atmospheric correction, in change
detection 116

atmospheric path radiance 16,
112–114

atmospheric transmittance 295
atmospheric window 15, 284
ATREM 115
ATSR, see Along-Track Scanning

Radiometer
attenuation 113
AU, see Astronomical Unit
autocorrelation, spatial 39
automatic recognition, ground control

points 105–107
AVHRR, see Advanced Very High

Resolution Radiometer
AVIRIS, see Airborne Visible/Infrared

Imaging Spectrometer

Bach, J.S. 204
backpropagation 252
bagging, in classification 271
band interleaved by line (BIL) format

74
band ratio 153
band sequential (BSQ) format 74
base 2 number representation 69
baseline, interferometric 286, 288
Bhattacharyya distance 278
bi-directional reflectance 113
bidirectional reflectance distribution

function (BRDF) 18–19, 21, 116,
121

BIL, see band interleaved by line format
bilinear resampling 110
binary digit (bit) 69
bit 69
bitmap 75
bits per pixel 69–70
blackbody 14
boolean operations 332–333
boosting, in classification 269, 271
brain, model of 250
BRDF, see bidirectional reflectance

distribution function
BSQ, see band sequential format
Buffering (buffer) 332, 373
Butterworth filter 222, 224

calibration, SAR data 121
canonical correlation change analysis 192
CCD, see charge-coupled device
centroid classifier 247
CEOS, see Committee on Earth

Observation Satellites
change detection 187–192
change detection, canonical correlation

method 192
change detection, NDVI difference 188
change detection, principal components

analysis 188–192
charge-coupled device (CCD) 4
Chavez’s method of atmospheric

correction 114
check points, polynomial surface 105
Chernov faces 341
Chirp function 185
chlorophyll 24
CHRIS, see Compact High Resolution

Imaging Spectrometer
classification, defined 229
classification, geometrical model

231–233
classification, k-means 233–234
classification, modified k-means 239–240
classification, nonparametric 240
classification, object oriented 270
classification, parametric 240
classification, supervised 230, 240
classification, training samples 240
classification, unsupervised 230, 233
classification, use of external data

275–276
classification accuracy 280 et seq.
classification accuracy, fuzzy classifier

282
classified image 71, 73
classifier, rule-based 270
classifiers, ensembles of 271
cluster analysis 238, 240
clustering 229
Coastal Zone Colour Scanner (CZCS) 42
coherence, interferometric 288
coherence map 289, 292
coherent radiation 285
collinearity equations 96
colour image 71–73
colour vision 126
colour vision, tristimulus theory 127
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Committee on Earth Observation
Satellites (CEOS) 29

Compact High Resolution Imaging
Spectrometer (CHRIS) 18–19, 57

complex conjugate 290
computation of matrix inverse 81–82
computer modelling 327
confidence limits 83
confusion matrix 280–282
connectivity 334–335
context 230, 276–277
contiguity 334
continuum removal 311, 315–316
controls on leaf reflectance, 19
correlation analysis 362
correlogram 242
cosine theta coefficient 264
cosmetic operations 89–94
COSMO/Skymed 52, 61–62, 64–65, 287,

289
cubic convolution resampling 110–111
CZCS, see Coastal Zone Colour Scanner

DAIS, see Digital Airborne Imaging
Spectrometer

data compression 76–78
data conversion to 8 bits 70–72
data formats 74 et seq.
data fusion 357 et seq.
data mining 269, 338
data model 328–329
data structure 329
Daubechies wavelet 306
DC point, two-dimensional Fourier

transform 174
Death Ray 59
decision boundary 231
decision tree classifier 255–258, 269, 346
decorrelation, in InSAR 290, 293
decorrelation, in interferometry 288
decorrelation stretch 169–170
Delaunay triangulation 329, 331
DEM, see digital elevation model
Dempster-Schaefer theory 271
dendrogram 237–238, 240, 341
denoising, 1D data 304–308
denoising, image 312–314
density slicing 140
depression angle, radar 61
derivative, first – see difference, first
derivative, second – see difference,

second
derivative analysis 300–301, 309–310
derivative method, red edge 310–311
destriping 90–94
destriping, histogram matching 92–94
destriping, linear method 91–92
detail coefficients, see wavelet coefficients
determinant, of matrix 81
Détermination Immédiate d’Orbite par

DORIS Embarqué (DIODE) 50
device-independent bitmap (DIB) 75
DFT, see discrete Fourier transform
DIB, see device-independent bitmap
difference, first 300–301, 310

difference, second 300–301
difference image 150
difference image, in classification 150
differential interferometric synthetic

aperture radar (DInSAR) 289–290
diffuse reflectance 18
Digital Airborne Imaging Spectrometer

(DAIS) 20, 285, 294–299, 305
digital elevation model (DEM) 287–290,

292
digital image, defined 67–68
digital surface model 293, 316
DInSAR, see differential interferometric

synthetic aperture radar
DIODE, see Détermination Immédiate

d’Orbite par DORIS Embarqué
directional filter 221, 224
Disaster Monitoring Constellation (DMC)

55, 58
discrete Fourier transform 148, 172–178
discrete Fourier transform, example 180
discrete wavelet transform 148, 178–186
discrete wavelet transform,

two-dimensional 186–187
divergence 277–278
divergence, stepwise 278–279
Doppler effect 59–60
Doppler orbitography and

radiopositioning integrated by
satellite (DORIS) 50, 80, 96

DORIS, see Doppler orbitography and
radiopositioning integrated by
satellite

drone 4
DSM, see digital surface model
DT, see decision tree classifier
Dundee Satellite Receiving Station 41
DWT, see discrete wavelet transform
dynamic range, of image 69

Earth Observing-1 (EO-1) 32, 285, 298
Earth rotation correction 97–98
Earth-Sun distance 120
eCognition 268, 271
edge detection 219
effective instantaneous field of view

(EIFOV) 34
effective resolution element 33
EIFOV, see effective instantaneous field

of view
eigenvalue 82, 163
eigenvector 163
Einstein, A. 6
electromagnetic energy 1
electromagnetic radiation 2
electromagnetic radiation, factors

affecting 2
electromagnetic radiation, interaction with

Earth’s atmosphere 15–17
electromagnetic radiation, interaction with

Earth’s surface 17–26
electromagnetic radiation, nature of 6
electromagnetic radiation, sources of

13–15
electromagnetic radiation, upwelling 2

electromagnetic spectrum 7
electromechanical scanner 2–3
EME, see electromagnetic energy
empirical line, atmospheric correction

115–116
EMR, see electromagnetic radiation
end member 259–262, 264
energy 4
Enhanced Thematic Mapper Plus, Landsat

(ETM+) 48
ensembles of classifiers 271
entropy 39, 200
ENVI data formats 75
environmental change 371
environmental degradation 371
environmental GIS 1
environmental modelling 325, 327, 334,

338–340
environmental radiance 34, 113
ENVISAT 61, 288, 289
EO-1, see Earth Observing-1
ERE, see effective resolution element
errors in digital calculation 80–83
ERS, see European Remote Sensing

satellite
ESA Sentinel Programme 52, 61
estimation of coefficients of least-squares

polynomial 106–107
ETM+, see Landsat Enhanced Thematic

Mapper Plus
Euclidean distance 232
Euclidean space 231
European Remote Sensing satellite (ERS)

61–62, 288
evidential reasoning 271, 276
exo-atmospheric solar irradiance 122
exploratory data analysis 338
eye, response function 8–9

far range, radar 63
fast Fourier transform (FFT) 175–178
feature 230
feature selection, using decision tree 279
feature selection, using divergence 277
feature selection, using genetic algorithm

279
feature selection, using PCA 277
feature selection, using SVM 279
feature space 231
FFT, see fast Fourier transform
file formats for spatial data 331
filter, defined 203
filter transfer function 221–222
first derivative, defined 215–216
first difference 300–301
first return 317–322
Flash floods, GIS example 355–365
flat Earth correction 291
flux 4
foreshortening, radar 61–62
FORMOSAT-2 57
Fourier, Jean Baptiste Joseph 175
Fourier transform, see discrete Fourier

transform
Fourier transform-based filters 204
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frequency 172
frequency-domain filter 221–227
frequency domain representation 172
Frost speckle filter 211–212
full width half maximum (FWHM) 295
fuzzy classification 265–267, 282
fuzzy c-means algorithm 266
FWHM, see full width half maximum

gain 118
gain and offset, Landsat-5 TM 119
gamma rays 9
Gaussian distribution 138
Gaussian stretch 138
GCP, see ground control point
GDEM, see ASTER global DEM
GEMI, see global environment

monitoring index
genetic algorithm 270
geobotanical anomaly 21
geocoding 94, 96
geocomputation 327
geocorrection 94
geographical information system,

definition 326
geomatics 327
geometric correction 88, 94–112
geometric correction using digital

photogrammetric methods 95
geometric correction, polynomial method

98–108
geometric correction, sources of error 95
geometric registration 94
georeferenced image 88
georeferencing 94
Geoscience Laser Altimeter System 318
geospatial technology, in archaeology 374
geostationary orbit 30
Ghibe valley, Ethiopia, visualization 343
GIS, see geographical information system
GLAS, see Geoscience Laser Altimeter

System
GLCM, see grey level co-occurrence

matrix
global environment monitoring index 155
Global Positioning System (GPS) 289
goodness of fit, of polynomial surface 105
Google Earth 18
GPS, in locating ground control points 99
GPS, see Global Positioning System
graphics memory 68
grey level co-occurrence matrix (GLCM)

212, 272–274
greyscale image 71, 73
ground control point 96, 98–108
ground control points, accuracy 104
ground control points, automatic

recognition of 105–107
ground control points, examples of 102
ground control points, factors affecting

choice of 105
ground control points, number of 104
ground control points, spatial distribution

104

groundwater flow, GIS model of 345–355
Guyot–Baret procedure, red edge

310–311

Hamlet 15
harmonic 174
Hebbian learning 251
Herschel. F.W. 6
Hertz, H. 7
hierarchical cluster analysis 341
High resolution commercial and small

satellite systems 55–58
High Resolution Geometric (HRG) 50
High Resolution Stereoscopic (HRS) 50
High Resolution Visible (HRV) 48–49
High Resolution Visible Infrared

(HRV-IR) 50
high-pass filter 203, 214
high-pass filter, derivative-based 215–219
high-pass filter, subtraction method

214–215
histogram equalization contrast stretch

129
Homul (Guatemala) case study 365–371
HRS, see High Resolution Stereoscopic
HRV-IR, see High Resolution Visible

Infrared
HSI, see hue-saturation-intensity
HSI, see hue-saturation-intensity

transform
hue-saturation-intensity colour model 127
hue-saturation-intensity transform

171–172
Hughes phenomenon 282
human vision 6, 126
von Humboldt, A. 284
Hymap sensor 297–298, 300
Hyperion 32
hyperspectral 294

ICA, see independent components
analysis

ICESat 285
ideal filter 222–224
identification 229
IFOV, see instantaneous field of view
IKONOS 55–57, 69
ill-conditioned matrix 81
illumination angle effects, on detected

radiance 116
image, colour 68, 69A
image, greyscale 68
image addition 148–149
image coordinates 99
image enhancement, defined 125
image fusion 196–199
image fusion, Gram-Schmidt

orthogonalization method 198
image fusion, using principal components

analysis 198
image fusion, wavelet approach 198
image rectification 94
image registration 88, 111–112
image subtraction 149–150
Imaging spectroscopy, 294–315

inclination, orbit 30
independent components analysis (ICA)

265
Indian space programme 45–46
infrared 7, 9
InSAR, see interferometric SAR
instantaneous field of view 32
integration of remote sensing and GIS 328
interferogram 291
interferometric SAR 285–294
interferometry, applications 293–294
Interferometry, processing steps 290
interferometry, repeat pass 287
interferometry, single pass 287
interpolation 335–337
inverse distance weighting (IDW)

interpolator 337
irradiance 5
ISODATA classification 234–239

Japanese Earth Resources Satellite (JERS)
62, 288

Jason 45
JERS-1, see Japanese Earth Resources

Satellite
Joule, J.P. 4
Julian day 118

kappa coefficient 280–281
Karhunen-Loève transform, see principal

components analysis
Kauth-Thomas transform, see Tasselled

Cap transform
k-means clustering 360–361
KOMPSAT-2 57
kriging 337

labelled image, see classified image
labelling (pixels) 229, 232
Lambertian reflectance 18
Lambert’s cosine law 19
Landsat Data Continuity Mission 48–49
Landsat Enhanced Thematic Mapper Plus

(ETM+) 48
Landsat Multispectral Scanner, 46–47
Landsat Thematic Mapper 47–48
Laplacian filter 217–219
last return 317
layover, radar 62
LDCM, see Landsat Data Continuity

Mission
least-cost pathways 367
least-cost route analysis 369
least squares method 100–102
least-squares polynomial, estimation of

coefficients 106–107
Lee speckle filter 358
lidar 285, 315–323
lidar, first return 317
lidar, last return 317
lidar footprint 319
light, speed of 7
light, visible 8
lineament 220
linear contrast stretch 128
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Linear Imaging Self-scanning Sensor
(LISS) 45–46

linear mixture model 258–263
LISS, see Linear Imaging Self-scanning

Sensor
logical masking 151
look angle, of radar 286
low-pass filter 203
LOWTRAN 115

Mahalanobis distance 243, 250
map, definition 95
map coordinates 99
map projection 95
masking 151
matrix inverse, computation of 81–82
maximum likelihood classifier 83,

247–250, 255–258
maximum variance, principle of 162–163
MCDA, see multicriteria decision analysis
median filter 208–209
median filter, fast algorithm 209
metadata 74–77, 79
method of least squares 100–102, 107
microwave 11
microwave imaging sensors 58–66
Mie scattering 16
Minnaert correction 123
MIPS Appendices A-C.
missing scan lines 89–90
mixed pixel 258
modelling 327
Moderate Resolution Imaging

Spectrometer 42–45
MODIS, see Moderate Resolution

Imaging Spectrometer
MODTRAN 115
modulation transfer function 34
Morton number 78
Mosedale valley, visualization 344–345
moving average filter 204–211
moving window filter 206–208
MSS, see Landsat Multispectral Scanner
MTF, see modulation transfer function
multicriteria decision analysis 333,

345–355
multifrequency radar 61
Multispectral Scanner, Landsat (MSS)

46–47
multitemporal imagery 21
multivariate normal density 248

Nagao and Matsuyama filter 212–214
National Polar-orbiting Operational

Environmental Satellite System
(NPOESS) 41–42

natural colour image 73
NDVI, see Normalised Difference

Vegetation Index
near infrared 9
near range 63
nearest neighbour point pattern analysis

373
nearest neighbour resampling 109–110
neighbourhood 230

NEST, see Next European Space Agency
Synthetic Aperture Radar Toolbox

neural classifier 250–254
Newton, Sir Isaac 6
Next European Space Agency Synthetic

Aperture Radar Toolbox (NEST) 61
NIR, see near-infrared
noise-adjusted principal components

analysis 148, 168–169
noise covariance 169
noise variance 168
nonlinear mapping 244, 263, 341–342
non-parametric classification 240
non-selective scattering 16
Normal distribution 138
Normalised Difference Vegetation Index

(NDVI) 153–156
Normalised Difference Vegetation Index,

use in change detection 188
NPOESS, see National Polar-orbiting

Operational Environmental Satellite
System

number of ground control points 104
numerical analysis 80–83

object-oriented (OO) classifier 270–271
ocean colour 25–26
Ocean Colour and Temperature Sensor 45
Oceansat-2 45
Ocean Surface Topography Mission

(OSTM) 45
OCTS, see Ocean Colour and

Temperature Sensor
offset 118
one-dimensional discrete wavelet

transform, algorithm 182
OO, see object oriented
optimized soil-adjusted vegetation index

(OSAVI) 155
orbit, geostationary 30
orbit, sun-synchronous 30, 31
orbit inclination 30
orbit parameters 30
orbital geometry, geometric correction

96–98, 100–101
orbital geometry, geometric correction,

example 100–101
Orion 52
orthorectification 94–95
OSAVI, see optimized soil-adjusted

vegetation index
OSTM, see Ocean Surface Topography

Mission
overflow, in computation 80
overlay operations 332–333

PALSAR, see Phased Array L-band
Synthetic Aperture Radar

pan-sharpening 196–198, 201
parallelepiped classifier 245–247
parametric classification 240
passive sensor 12
path radiance 16
pattern 230
pattern recognition, see classification

Paxman, J. 67
PCA, see principal components analysis
perceptron 251
period 7
perpendicular vegetation index (PVI)

156–157
phase angle, computation of 177
phase difference 286
phase unwrapping 290, 291
Phased Array L-band Synthetic Aperture

Radar (PALSAR) 61–62, 65–66,
357–362, 364

photogrammetric methods 95
photon 6
pixel 2
pixel, properties of 34
pixel purity index (PPI) 263
pixel size 34
Planck’s law 14
Pléiades 52
point pattern analysis 335
point spread function 32, 33
polarimetric radar 61
polarization state 4
polynomial least squares function 102
polynomial method, geometric correction

98–108
polynomial surfaces, visualization of 103
PPI, see pixel purity index
PRARE, see Precise Range and Range

Rate Equipment
Precise Range and Range Rate Equipment

(PRARE), 288
principal axes 162
principal components analysis (PCA)

81–82, 147, 160–168
principal components analysis, in change

detection 188–192
principal components analysis, inverse

transform 170
PROSPECT model 339–340
proximity analysis 334, 372–373
pseudocolour enhancement 140
pseudocolour image 72
pseudocolour transform 144
PSF, see point spread function
pushbroom scanner 2–3
PVI, see perpendicular vegetation index

quadrature mirror filtering 182
quadtree 78, 330–331, 337
Quickbird 56–57

radar 12
radar history 59
radar waveband nomenclature 13
Radarsat 61–64, 357–358, 360, 364
radiance 5, 113
radiance, apparent 118
radiant emission 5
radiant exitance 5
radiant flux density 5
radiative transfer model 115
radiometric resolution 37–39
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RAM, see Random Access Memory
(RAM)

Random Access Memory (RAM) 68
random forest 269
Rapideye 55, 58
raster 67–68, 328, 330–331
raster to vector conversion 332
rational polynomials, in geometric

correction 111–112
Rayleigh criterion 34
Rayleigh scattering 16
real data representation 69
red edge 19–20, 309–311, 315
red edge, derivative method 309–311
red edge, Guyot–Baret procedure

309–311
reflectance 5, 118
reflectance, diffuse 18
reflectance, specular 18
reflectance spectra, geology 21–23
reflectance spectra, of soils 26
reflectance spectra, of vegetation 19–21
reflectance spectra, of water bodies 22–26
regression analysis 337–338
remote sensing, basic assumption 17
remote sensing, defined 1
remotely-sensed image, defined 3
resampling 107
resampling, bilinear 110
resampling, cubic convolution 110
resampling, nearest neighbour 109–110
residual, least squares 104
resolution, temporal 30
Resourcesat 46
retina 126
RGB colour model 126–127
RGB (red-green-blue) representation 68
ringing 222
RMSE, see Root Mean Squared Error
Roberts gradient 216–217
robust estimation 243
root mean squared error (RMSE) 260
rule-based classifier 270
run length encoding 77–78

SAM, see spectral angle mapping
Sammon nonlinear mapping 244, 263,

341–342
sample size 84
SAR, C band 60
SAR, L-band 60
SAR, see synthetic aperture radar
SAR band designations 60
SAR data calibration 121
SAR principle 60
SAR sensors 58–66
SAR tutorials 64
Satellite Pour l’Observation de la Terre

(SPOT) 48
SAVI, see soil adjusted vegetation index
Savitzky–Golay polynomial smoothing

302–305
scale 270
scale components 203–204
scaling up/down 35

scanner 2–3
ScanSAR 289
scattering 15–16
Schrödinger, E. 6
Seasat 12
sea-surface temperature 25,41–42
SEAWiFS 45
second, defined 8
second derivative, defined 215–216
second difference 215, 300–301, 309
segmentation 221, 270
selective principal components analysis

163
Self-Organising Map 254
sensor, active 12
sensor, passive 12
sensor calibration 117–121
sensor calibration, defined 118
Sentinel Programme 52, 61
shadow, radar 62
Shakespeare, W. 30
SHOALS 321
shortwave infrared 9
Shuttle Radar Topography Mission

(SRTM) 287
side-looking airborne radar (SLAR) 59
sigma filter 211–212
signal-to-noise ratio (SNR) 36–38, 169
Sinai peninsula, Egypt 356
single-look complex SAR image 286
singular matrix 83
singular value decomposition 262
skeletonization 221
skew angle 97
skylight 16
SLAR, see side-looking airborne radar
SLC, see single-look complex
SLIM-6, see Surrey Linear Imager-6
slope 333–334, 350, 362, 368
SNR, see signal to noise ratio
Sobel filter 219–221
software, for radar processing 62
software reliability 80
soil adjusted vegetation index 155
soil line 157
soil, reflectance spectra 26
solar azimuth angle 17–18, 30
solar constant 13
solar elevation angle 17–18
solar irradiation curve 15
solar zenith angle 30
SOM, see Self Organising Map
spatial analysis 335
spatial autocorrelation, 39
spatial data models 328–329
spatial data structure 329
spatial distribution of ground control

points 104
spatial domain filter 207–208
spatial domain representation 172
spatial resolution, defined 32
speckle 61
speckle filter 209, 211–212
spectral angle mapping (SAM) 263–264
spectral reflectance 5

spectral resolution 35–37
spectral response (of target) 17
spectral response curve 17
spectral signature 17
specular reflectance 18
SPOT, see Satellite Pour l’Observation de

la Terre
SPOT Follow-on Programme 52
SPOT High Resolution Geometric (HRG),

see High Resolution Geometric
SPOT High Resolution Stereoscopic

(HRS), see High Resolution
Stereoscopic

SPOT High Resolution Visible (HRV),
see High Resolution Visible

SPOT High Resolution Visible Infrared
(HR-VI), see High Resolution
Visible Infrared

SPOT HRG, see High resolution
Geometric

SPOT HRS, see High Resolution
Stereoscopic

SPOT HRV, see High Resolution Visible
SPOT HRV-IR, see High Resolution

Visible Infrared
SPOT orbit 49
SPOT radiometric calibration 119–120
SPOT sensor calibration 119
SPOT Supermode 50–52
SPOT Vegetation sensor 51
SRTM, see Shuttle Radar Topography

Mission
SST, see sea-surface temperature
SSTL, see Surrey Space Technology Ltd.
standard principal components analysis

160
standardized variable 162
Star-3i interferometric DEM 367–368
statistical analysis 337–338
statistics 83–84
steepest descent, method of 252
Stefan-Boltzmann law 14
steradian 5
subband coding 182
subpixel classification 254, 258–272
Sun 13
sun angle correction 117
sunglint 24
sun-synchronous orbit 30–31
support vector machine (SVM) 256–258,

267–269
Surrey Linear Imager-6 58
Surrey Space Technology Ltd. 55
SVD, see singular value decomposition
SVM, see support vector machine
swath width 30
SWIR, see shortwave infrared
synthetic aperture radar 12
system processing 78–80

TanDEM-X 64, 287–288
Tasselled Cap transform 156–160
TDRS, see Tracking and Data Relay

Satellite System
temporal resolution 30
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terrain effects, on measured radiance
121–123

TERRASAR-X 61–62, 64–65, 287
texture 230, 272–275
texture, entropy-based 274–275
texture, Fourier-based 274
texture, fractal-based 274
Thematic Mapper (TM), Landsat 47–48
thermal infrared 11
TIFF format 75
time-varying calibration coefficients 118
TIN, see triangulated irregular network
TIR, see thermal infrared
TM, see Landsat Thematic Mapper
TOPEX/Poseidon 45
topology 329–330
Topsat 57–58
Tracking and Data Relay Satellite System

(TDRSS) 13
training sample 240–245
training sample, effect of spatial

autocorrelation 241–242
training sample size 241
training samples, robust estimation 243
transform, defined 147
transformed soil-adjusted vegetation index

(TSAVI) 155
triangulated irregular network 329, 331,

337

TSAVI, see transformed soil-adjusted
vegetation index

two-dimensional discrete Fourier
transform 173–178

UK National Grid 95
ultraviolet 7, 9
underflow, in computation 80
universal threshold 302, 306–307
Unmanned Aerial Vehicle (UAV) 29; see

also Drone
upwelling radiance 113
UT, see universal threshold

vector data structure 329–330
vector spatial entities 329
vector to raster conversion 332
Vegetation – AVHRR comparison 51
vegetation indices 152–156
vegetation indices, calibration of 155
vegetation ratio 153
Vegetation sensor (SPOT) 51
view angle effects, on detected radiance

116
viewshed analysis 373–374
VIIRS, see Visible/Infrared Imager

Radiometer Suite
Visible/Infrared Imager Radiometer Suite

41

visible spectrum 6–8
vision 6, 126
visualization 340

water, reflectance spectra 26
watt 4
Watt, J. 4
wavelength 7
wavelet coefficients 182
wavelet time-scale diagram 183
wavelet time-scale diagram and 1D

Fourier transform compared
184–186

wavelet, see discrete wavelet transform
wavelet transform-based filters 204
wavelets, in smoothing 302,

304, 306
wavelets, in speckle filtering 61
weighted overlay 333, 346–348, 351
Welford’s method 81
Wien’s displacement law 14–15
window 15
Wittgenstein, L. 229
Worldview 57

X-rays 9

Zeus 52
zonal statistics 362, 364
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